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Abstract 
Subnational policies pertaining to photovoltaic (PV) 
systems have increased in volume in recent years and 
federal incentives are set to be phased out over the next few. 
Understanding how subnational policies function within and 
across jurisdictions, thereby impacting PV market 
development, informs policy decision making. This report 
was developed for subnational policy-makers and 
researchers in order to aid the analysis on the function of PV 
system incentives within the emerging PV deployment 
market. The analysis presented is based on a ‘logic engine’, 
a database tool using existing state, utility, and local 
incentives allowing users to see the interrelationships 
between PV system incentives and parameters, such as 
geographic location, technology specifications, and 
financial factors. Depending on how it is queried, the 
database can yield insights into which combinations of 
incentives are available and most advantageous to the PV 
system owner or developer under particular circumstances. 
This is useful both for individual system developers to 
identify the most advantageous incentive packages that they 
qualify for as well as for researchers and policymakers to 
better understand the patch work of incentives nationwide as 
well as how they drive the market. In the case of the latter, 
findings from initial queries identify a limited connection 
between incentives and market development (based on 
current data) and point to differing complexities for system 
developers depending on system owner and size. The entire 
effort reveals (or possibly reiterates) a critical lack of data 
on both local policy environments and the structure of 
market penetration to be able to understand the impact of 
subnational incentives on the market. 

 Introduction    
State, local, and utility (collectively “subnational”) entities 
are increasingly developing and implementing clean 
energy policies, particularly as they apply to solar 
distributed generation. As of 2014, 29 states have adopted 
the Renewable Portfolio Standard, and 245 solar-qualified 
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subnational incentive programs span 48 states, the District 
of Columbia, Puerto Rico, and the U.S. Virgin Islands 
(DSIRE 2013).1 These policies, implemented in parallel 
with rapid decreases in solar technology and installation 
costs (Feldman et al. 2013), contribute to a developing 
market for solar technologies in the United States. This 
report provides an overview of currently available solar 
incentive trend data to inform the potential magnitude of 
PV technology market penetration in the United States. 
The “logic engine” database was used to inform the 
analysis. It was developed based on the 2013 data from the 
Database of Incentives for Energy Efficiency & Renewable 
Energy (DSIRE) funded in part by the U.S. Department of 
Energy (DOE). The analyses establish distinct incentive 
application regions and evaluate how incentives in those 
regions function and impact the costs of solar projects. 
This allows incentives to be evaluated from two 
perspectives for policymakers: 1. Analyze individual 
effects of subnational policies as they are adopted within 
the policy environment; and 2. Assess the function of a 
group of subnational policies that contribute to the 
development of a PV distributed generation market 
technologies on a national scale.  

Methodology 

The methodology is based on the following primary 
activities:  

1. Encoding the rules related to DSIRE incentives in 
a logic database 

2. Determining the geographic applicability of each 
combination of DSIRE incentives 

3. Estimating the qualification for incentives for a 
wide variety of system types and geographically 
dispersed customers.  

                                                
1 The only unrepresented states are West Virginia and Wyoming. 
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 First, incentive data from the DSIRE database were 
interpreted into a series of logic-based algorithms that can 
accurately respond to moderately complex queries about 
the applicability of particular incentive combinations under 
specific conditions. The logic database is encoded in the 
Resource Description Framework (RDF) (RDF Working 
Group 2013) using the Web Ontology Language (OWL) 
(OWL Working Group 2013) for representing relationships 
between data elements and Jena rules (Apache Software 
Foundation 2013) for specifying the mathematical logic 
needed to evaluate whether a particular customer installing 
a particular system at a particular location would be 
eligible for incentives. The source data describing the 
incentives were gathered from the DSIRE website (North 
Caroline State University 2013a), the DSIRE XML feed 
(North Carolina State University 2013b), and the 
quantitative spreadsheet of DSIRE incentives provided 
periodically to the National Renewable Energy Laboratory 
(NREL) (North Carolina State University 2013c). The 
great advantage of RDF is that it can capture arbitrarily 
complex relationships between elements of information in 
a manner that can be queried and analyzed in software-
based reasoning systems (namely logic engines). Encoding 
DSIRE involved decomposing each incentive into small, 
discrete, logical statements about aspects of the incentives, 
and using a precise, machine-readable vocabulary to make 
those statements. For example, the statement that an 
incentive identified by the label “WA173F” has a feed-in 
tariff value of $0.17/kW for commercial PV would be 
encoded as the following subject-predicate-object triplet: 

<http://dsirelog.nrel.gov/v6/nrel-
data.owl#incentive_WA173F> 
<http://dsirelog.nrel.gov/v6/nrel-
data.owl#pv_com_fit_dlrs_kwh> 
"0.17"  

In this triplet, the URI “http://dsirelog.nrel.gov/v6/nrel-
data.owl #incentive_WA173F” specifies that the incentive 
WA173F is the subject of the assertion, the URI 
“http://dsirelog.nrel.gov/v6/nrel-
data.owl#pv_com_fit_dlrs_kwh” indicates which property 
of that subject is being asserted, and the value “0.17” 
provides the value of the property asserted. In this study 
the implementation of the DSIRE logic currently contains 
73,812 RDF triplets of this sort and includes a 
comprehensive set of descriptive information, geographic 
relationships, and quantitative properties. 

The quantitative spreadsheet from DSIRE describes the 
geographic applicability of each incentive by associating it 
with a parameter that indicates whether an incentive is 
applied at the federal, state, utility, or local level. One 
complication in this categorization involves incentives that 
are listed at the state level, but that have separate 
implementations for each utility. This complication was 
addressed by splitting these incentives into sub-incentives 

that represent each utility described in the incentive text, 
but retained as listed at the state level. 

Because detailed utility boundaries are not freely 
available, the data used to describe these geographic 
regions were leased from Ventyx Research (Ventyx 2013). 
These data were further processed in two ways before 
geographies were assigned to incentives: 

1. The utility boundaries were processed to remove 
“slivers,” which are artifacts in the form of 
hundreds of small polygons created when two 
regions overlap imperfectly. These artifacts can 
occur where utility boundaries meet each other 
and/or they meet state boundaries.  

2. The utility boundaries were joined to form state 
geographies that were then joined into a single 
national geography. This process resulted in a 
dataset composed of distinct incentive geometries 
at each sector with minimal errors at regional 
boundaries.  

This dataset was then used to assign federal, state, and 
utility incentives to their respective geometries. Local 
incentives, for the most part, are associated with counties 
or urban areas. These geographies were selected from data 
purchased from Environmental System Research Institute 
(ESRI) (ESRI 2012) and then added to the master dataset 
depicting all the incentive geographies. 

 This master dataset contained hundreds of overlapping 
polygons, each of which described a geographic area in 
which a federal, state, utility, or local incentive could be 
applied. In an effort to bound the combinatorics of 
performing the analysis, this dataset was reduced to a form 
in which each polygon represented an area defined by a 
unique combination of applicable incentives. This was 
accomplished in a two-part process: a series of spatial 
intersections were performed with the intention of 
obtaining a set of polygons representative of all possible 
combinations of incentive areas. These polygons were then 
grouped by the sorted list of associated incentive identifiers 
and merged to form polygons that represented areas in 
which a unique combination of incentives could be 
applied. This final dataset represented a complete list of all 
potential incentive combinations available across the 
country. The total number of potential combinations of 
incentives was refined to a finite number which enabled an 
accurate estimate of applicable incentives at any location in 
the United States. To determine which combinations of 
incentives apply under different sets of conditions, 
approximately 1.3 million hypothetical customer and 
system combinations were generated with the following 
parameters specified: 
• Customer type: Residential, commercial, governmental, 
nonprofit 
• Customer geographic location: 212 areas representing 
unique combinations of incentives 
• System capacity (kW): Residential 2–10, commercial, 
governmental, nonprofit 10–250 
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• System cost ($) 
• Residential 4–7 ($/W) 
• Commercial 4–6 ($/W) 
• Government, nonprofit 4 .5–6.5 ($/W) 
• Capacity factor: an average capacity factor (Drury et al. 
2013) was used for each region. 

The frequency and values for these parameters were 
chosen according to joint probability distributions that 
loosely represent the prevalence of various PV systems in 
the United States. The logic engine database was then used 
to infer the combinations of incentives for which each 
customer or system is eligible and then to estimate the total 
or average monetary benefit. In this initial study, the 
monetary benefit was defined as the total expected 
undiscounted payment made by the incentive.  

 Once the eligibility of all incentives and their expected 
benefits were computed, combinations of incentives that a 
customer could obtain simultaneously were determined. 
Because taking advantage of some incentives might 
exclude qualifying for others, a customer could 
concurrently obtain many possible groups of incentives or 
“baskets.” Some of these baskets have a higher total 
monetary benefit than others. The basket of compatible 
incentives with the greatest total benefit represents the 
“best” combination of incentives for a particular type of 
customer and PV system configuration. The relative 
importance of assessing the value of incentive 
combinations varies based on the goals of the analysis. In 

this analysis, the best combination of incentives is assumed 
to result in the greatest monetary benefit to the consumer. 
All incentives do not necessarily appear in the best set of 
benefits for customers; some are suboptimal if the total 
undiscounted value of the monetary benefit is the criterion 
for placing it in the best set. This led to some incentives 
not qualifying for the best mix of incentives in a region. As 
such, a different definition on the part of the consumer 
(e.g., discounted cash flow or payback period), would 
probably change the best mix of incentives. 

Results 
In August 2013, 245 active, PV-eligible incentives were 
listed in DSIRE. Most (234 or 94%) are either state based 
(75 incentives or 30%) or utility based (159 incentives or 
65%), with relatively fewer federal, local, and other 
incentives (see Table 1).  

This breakdown of PV-eligible incentives by sector is 
expected from a policy development standpoint and as a 
result of data design in DSIRE. States and electricity 
distribution utilities outnumber federal government 
agencies, so the number of policies implemented by states 
and utilities is expected to be higher. Although the logic 
should apply to the local level, there are more localities, so 
more local policies are expected to be implemented. There 
are two potential limitations to this assumption:  

Table 1. Summary of Incentives and Special Conditions for PV Incentives in DSIRE 
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• Policy implication: based on the data in DSIRE, local 
governments are less concerned about and/or able to 
support solar markets through incentive-based policies than 
are states or electricity distribution utilities.  
• Data limitation perspective: DSIRE’s scope is limited 
to incentives available in localities with large populations 
or considered by the database authors to be “especially 
innovative” (DSIRE FAQ 2013), meaning that it does not 
capture all available local incentives.  

DSIRE lists incentives for all jurisdictions as a mixture 
of production and investment incentives. More than one 
third of PV incentives require special conditions for 
eligibility that request information beyond basic customer 
and system characteristics—see Table 1 for a synopsis of 
the prevalence of these special conditions. Such special 
conditions likely have two distinct impacts on the pool of 
available incentives:  

1. Target specific customers who can assist in 
meeting specific policy goals within jurisdictions 
(e.g., new home-specific incentives). 

2. Increase the uncertainty in determining whether a 
customer deploying a PV system qualifies for an 
incentive that maintains a waitlist. 

 Customers can obtain the best set of incentives for their 
PV systems by considering the number of potentially 
available incentives that overlap states. At any geographic 
location, a PV system may qualify for a number of 
incentives depending on the type of customer, system 
capacity, and system cost. Systems might qualify for up to 
seven incentives, although residential and commercial 
customers generally have a broader range of qualifying 
incentives to choose from than do nonprofit and 
government customers. This may indicate generally more 
organized and optimized incentive structures for residential 
and commercial customers and/or an increased number of 
options meeting the more varied needs of the residential 
and commercial sectors. In some cases, a customer might 
be able to simultaneously obtain several incentives for the 
same system (e.g., a federal tax credit, a state tax credit, 
and a utility rebate), but in other cases the selection of one 
incentive legally precludes the selection of another 
incentive for which the customer qualifies.  

 The monetary benefits vary with PV system cost and 
capacity for typical systems. In many regions, the total 
benefit for residential and commercial customers is around 
$2/W, but in several localities; e.g., Oregon and Florida, 
this nominal value is substantially higher; benefits offered 
to governmental and nonprofit customers vary greatly by 
state. For example, in Delaware different sets of incentives 
qualify for the best combination, depending on system 
capacity, customer type, and system cost. The total benefit 
offered toward installing residential and commercial PV 
systems is constant in the range of $3/W on a per-capacity 
basis, but benefits offered toward installing governmental 

and nonprofit systems tend to diminish as system capacity 
increases. 

 Findings illustrate patterns that apply across the United 
States. The best combination of PV incentives is 
determined more often by system capacity than by system 
cost-per-capacity. Most geographic regions capture single 
best combinations of incentives, which are differentiated 
by system capacity, not by specific end use sector. In 
locations where a single best combination of incentives 
prevails, consumers can obtain this basket of incentives by 
selecting any system capacity and cost. For instance, 
residential consumers can choose the same combination of 
incentives that their neighbors choose. In cases with 
several unique combinations of best incentives, system-
specific capacity and/or cost determine the optimal one. 
The most valuable incentive of the mix of best incentives 
for particular system characteristics typically comprises 
most of the total value for governmental and nonprofit 
customers, but only about two thirds of the value for 
residential and commercial customers. The overall value of 
the benefit sometimes varies substantially depending on 
system configuration: the total benefit can vary by several 
dollars per Watt, depending on system capacity and cost, 
having a potentially significant effect. In locations with 
this variability, it provides residential and commercial 
consumers (and to a lesser extent, government and 
nonprofit consumers) an opportunity to increase their 
benefits on a per-Watt basis, by selecting a system capacity 
and/or cost that maximizes payback. That is, the incentive 
may influence consumers to choose a unique system 
capacity for their needs. The fundamental sources of the 
variability in benefits are factors related to the design of 
incentives: 
• If the maximum benefit is capped under the incentive, 
selecting a more costly system may result in a lower per-
Watt benefit. 
• If the incentive has a capacity cap or multiple capacity 
tiers, selecting a larger system may result in a lower per-
Watt benefit. 
• If net-metering or production is capped, selecting a larger 
system may result in a lower per-Watt benefit. 

 In Figure 1, we further break down sources of variations 
in terms of the type of incentive, the source of the 
incentive, and whether incentives with complex conditions 
are excluded. We see that the average range of benefit 
varies dramatically based on the type of incentive; 
corporate and personal tax credits vary less than $0.5/W 
and performance-based incentives vary up to $7/W 
depending on geographic location and system 
characteristics. The benefits of federal and local incentives 
tend to vary less than those of state- and utility-based 
incentives. Furthermore, based on the box-and-whisker 
plot, there is no apparent difference in the average benefit 
for “simple” incentives versus all incentives combined. 
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Finally, correlations between self-reported PV adoption 
data (NREL 2014) and the level of DSIRE-reported 
incentives in the geographic region were evaluated. 
Exploratory analysis of these data, both at the county and 
at the point level of resolution, did not indicate a strong 
correlation between the value of incentives and PV 
adoption. There are hints of slight positive trends in per-
capita PV adoption as a function of the magnitude of 
incentive benefits, but the data quality limitation of the 
self-reported data, incompleteness of DSIRE’s subnational 
data, and time differences between promulgation of 
incentives and installation of PV systems confound causal 
relationships between incentives and adoptions in these 
datasets. However, a thorough and careful analysis that 
includes models for biases in these data and that accounts 
for the temporal variations might unearth niches where 
incentives are strongly correlated with adoption.  

Data and Conclusion 
“Subnational” entities are increasingly developing and 
implementing clean energy policies, particularly with 
reference to solar distributed generation. The foregoing 
analysis, based on the logic engine, is intended to be a 
data-driven beginning to analysis on the functioning of 
subnational policies in their jurisdictions to inform 
policymakers’ analysis on the market for PV deployment. 

This initial analysis focuses on identifying patterns within 
PV incentives data at the subnational level across the 
United States. Five major areas related to the functioning 
of PV incentives as applied to customer use are discussed.  

Overall, the numbers and types of incentives that 
consumers can consider in project development decision-
making vary. Much of the variability is tied to geography, 
type of consumer, and special conditions placed on 
incentives. A three-stage decision process in consumers’ 
assessment of incentives is assumed: 

1. Determine for which incentives the consumer and 
system qualify. 

2. Analyze the value of the incentive to the specific 
consumer. 

3. Capture the value of the incentive through 
application and reception. 

Each stage in the decision process presents challenges to 
the consumer in determining qualification, estimating 
benefits, and optimizing payback, respectively. At this 
time, the database created by the logic engine is not 
publically accessible, but this capability could be pursued 
in a future area of research.  

First, at each stage of the decision process, a consumer 
may consider a multiplicity of incentives depending on 
where a project is located. The logic engine reported 212 
distinct geographic areas in the United States to which PV 
incentives are applicable. In these regions, a consumer may 

Figure 1. Variability of incentives as a function of incentive type, source of incentive, and whether incentives with special 
conditions are excluded. In this box-and-whisker plot, the second quartile of the distribution is shown in dark gray, the third 
quartile in light gray, and 5%/95% quartiles as black bars.  
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consider a unique mix of up to seven incentives. Although 
there are geographic hot spots (e.g., California) where 
seven incentives might apply, it is more common for three 
incentives to be potentially applicable to a project. In some 
cases, the consumer may qualify for up to seven incentives, 
but is legally constrained from claiming all simultaneously. 
The best legally allowable combination of incentives—
defined as the total undiscounted payment from the 
incentives—usually contains up to four incentives.  

Second, the number and type of incentives available to 
the user varies dramatically by geography and type of 
consumer. In nearly all locations residential customers can 
qualify for the best combination of incentives that is 
unique and does not vary with system capacity or cost. 
Thus, residential consumers in a region with a single best 
combination of incentives can apply for the same mix of 
incentives as their neighbors, regardless of differences in 
system cost and capacity. The same logic as for residential 
customers applies to about 80% of locations for 
commercial, government, and nonprofit customers, but 
20% involve a different range of best combinations of 
incentives based on system cost and capacity. This 
indicates that the commercial, government, and nonprofit 
sectors have a wider variety of options available.  

Third, PV system capacity and cost primarily determine 
which incentives are in the best combination for a 
particular consumer type at a given location (capacity is a 
more important determining factor than cost). That is, 
policies are defined based on system capacity and 
potentially suggest consumers adopt particular capacity of 
systems. In Delaware, the total benefit from a PV system 
was highest from a 10-kW system capacity regardless of 
system cost for government customers; the highest benefit 
for nonprofit customers was from a 15-kW system 
regardless of system cost. The estimated benefit of the best 
combinations of incentives varies, on average, by more 
than $1/W for residential and commercial customers, 
depending on system capacity and cost, but less than 
$0.5/W for government and nonprofit customers. The 
variability in estimated benefit is greater in locations where 
the customer might be eligible for a range of best 
combinations of incentives, depending on system 
characteristics. On average, system cost is a more 
influential factor than system capacity in estimating 
monetary benefit.  

Fourth, most of the variability (and thus, uncertainty) in 
in per-Watt benefit arises from special conditions, such as 
system capacity, or production caps that are built into 
incentives. Special conditions, if present, increase the 
variability in estimated payback. More than one third of 
PV incentives have such special conditions for incentive 
eligibility that require information beyond basic customer 
and system characteristics. Some incentives involve caps 
on budget, set a capacity requirement, or maintain waiting 
lists. Others involve customer characteristics (e.g., income 
or membership in a group) or PV system characteristics 
(e.g., type of installer). Understanding the impacts of these 
special considerations that limit the applicability of 

incentives on the local and subsequently, national PV 
market is beyond the scope of this initial study, but is 
feasible with the current data structure.  

Fifth, a handful of incentives never appear in the sets of 
best combinations of incentives because other options are 
more viable in terms of their benefits and availability. One 
interpretation is that these incentives are not optimized and 
could be extraneous; it is equally or more possible that this 
is a factor of the definition of best used in this analysis. A 
different definition on the part of the interested consumer 
(e.g., discounted cash flow or payback period), would 
probably change the mix of primary incentives. Providing 
for a wider range of definitions of best incentives to 
generate more possible incentive combinations to inform 
local or national policymaking is a possible next step for 
further research.  

These five outcomes explain the function of incentives 
and their dependence on parameters, such as geographic 
location, and represent the initial findings from the logic 
engine database. Increasing subnational leadership, as 
measured by an increasing volume of subnational policies 
for PV, indicates that further understanding how these 
policies could interface or interfere with each other and/or 
with federal incentives, can inform local policy 
development and potential impacts on a national 
patchwork of policies. This is beyond the scope of this 
initial evaluation; however, several priority areas could be 
examined in future studies. 

A multitude of questions can be evaluated with the logic 
engine about whether PV incentives facilitate the PV 
market for deployment on a national scale. This analysis is 
possible with the data available in DSIRE and the OpenPV 
database (http://openpv.nrel.gov/), the most comprehensive 
list nationwide of crowd-sourced PV installations; 
however, additional detail in both systems would provide 
more accurate results. A comprehensive list of local and 
utility incentives is needed and would increase the 
resolution and accuracy of this analysis. The data on the 
current status of PV installations are available from 
OpenPV database, but this database has limitations related 
to the data being generally self-reported. Increased data 
collection and validation of systems would improve such 
an analysis.  

Another opportunity is to examine “special 
considerations” in policies as a way of identifying the 
impacts of local design priorities on the development of a 
national PV market. This type of analysis would help 
policymakers assess the intended applications of policies in 
different parts of the country and then observe their 
impacts on PV technology adoption. For example, if it 
could be shown that the incentives in one region or state 
specifically reward high system cost, because the system 
was purchased locally or installed using a specific 
technology, a correlation could be made between those 
incentives and the types of systems that are installed in that 
region. Once this relationship is better understood, it could 
be used to help subnational policymakers develop policies 
that focus on coordinated support for a particular aspect of 
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the technology based on parameters such as system cost 
and capacity. 

These suggestions contain assumptions about how 
specific aspects of a policy could impact PV system 
adoption. These assumptions are often used in policy 
decision-making, but are not fully understood. To 
determine the impact of a policy change on PV system 
adoption, the assumptions would need to be quantified and 
validated against historical data. Further, changes in the 
policy mix could be modeled and projected impacts of 
subnational policy changes could be applied to the national 
PV market. This model would serve as collective 
knowledge to policymakers to help them formulate 
national and regional renewable energy adoption strategies 
to increase the level of PV system market penetration on a 
national scale.  
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