Artificial Intelligence for Human-Robot Interaction: Papers from the 2014 AAAI Fall Symposium

A Few Issues on Human-Robot Interaction for
Multiple Persistent Service Mobile Robots

Manuela Veloso,
with Joydeep Biswas, Brian Coltin, Max Korein, Juan Pablo Mendoza, Vittorio Perera.
Thanks to Cetin Mericli, Thomas Kollar, Yichao Sun, Stephanie Rosenthal
mmy@cs.cmu.edu
School of Computer Science, Carnegie Mellon University

Introduction

Al and robotics researchers aim at having robots in our envi-
ronments coexisting with humans, as artificial creatures that
will help humans and collaborate with humans to improve
our societies. There will be more than one robot. Robots
will not interact with some humans just once, or a few times,
but many times. Humans will interact with robots to change
their requests and to teach and correct their behaviors. This
abstract briefly discusses a few issues for Al and HRI for
such challenging repeated interactions in space and time be-
tween robots and humans. We have made different levels of
research progress on these issues, as we discuss. Our presen-
tation is motivated by our work with the CoBot mobile ser-
vice robots, which have been running in our environments
for the last three years, and for more than 500kms.

The CoBot Robots

The CoBot robots have several contributions to service
robots (Veloso et al. 2012), including: robust real-time au-
tonomous localization (Biswas, Coltin, and Veloso 2011),
based on WIFI data (Biswas and Veloso 2010), and on
depth information (Biswas and Veloso 2012); symbiotic au-
tonomy in which the deployed robots can overcome their
perceptual, cognitive, and actuation limitations by proac-
tively asking for help from humans (Rosenthal, Biswas,
and Veloso 2010), and from the web (Kollar, Samadi, and
Veloso 2012; Samadi, Kollar, and Veloso 2012), and from
other robots (Aguero and Veloso 2012); human-centered
planning in which models of humans are explicitly used in
robot task and path planning (Rosenthal, Veloso, and Dey
2011); semi-autonomous telepresence enabling the combi-
nation of rich remote visual and motion control with au-
tonomous robot localization and navigation (Coltin et al.
2011); web-based user task selection and information in-
terfaces; and creative multi-robot task scheduling and ex-
ecution (Coltin and Veloso 2012). The robots, built by
Mike Licitra and maintained by Joydeep Biswas, have op-
erated over 500km for more than three years basically with-
out hardware failures. Our robots include a modest variety
of sensing and computing devices, including the Microsoft
Kinect depth-camera, vision cameras for telepresence and
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interaction, a small Hokuyo LIDAR for obstacle avoidance
and localization comparison studies, and a touch-screen and
speech-enabled tablet, microphones and speakers. Figure 1
shows three of our CoBot robots.

Figure 1: Three CoBot serive mobile robots.

We have been experiencing the CoBot service robots for
a long time at CMU navigating in our indoor environments
fully robustly. The robots perform tasks of escorting people,
transporting items, and just going to places. We raise four
issues: (i) the robots currently have no model, no memory of
any of the tasks performed or of the humans with whom they
interacted; (ii) the robots need to be interruptible by humans
and possibly correctable; (iii) the robots need to coordinate
among the multiple robots, not only in terms of task schedul-
ing, but also in terms of their interactions with humans; and
(iv) the robots need to provide a safe motion.

Robots with Past, Present, and Future

CoBot can very effectively escort people in the building. It
does it by itself and not followed by any developer. So for
example, consider Manuela interacting with CoBot to re-
quest that CoBot escort a visitor from Manuela’s office to the
visitor’s next appointment at 3pm. The dialog-based human-
robot interaction is perfectly effective and the robot is able
to ground its task, including the destination location from
dialoging with the task requester. Manuela stays in her of-
fice and CoBot leaves escorting the visitor. Later that day,
or on the following day, CoBot comes by Manuela’s office
again, for some other task, e.g., delivering a message or a
package. Naturally, Manuela would like to ask “How did it



go with the visitor this morning? Did you reach the desti-
nation well? Did you have any problem finding the place?
Was the meeting host ready to receive our visitor? Did you
apologize that the visitor was a bit late?” Although the robot
logs most of its execution, we don’t have yet a way to refer-
ence past experience to be able to engage in an appropriate
human-robot interaction that refers to the filtered past of the
robot relevant to a specific user. References to the past, and
correlations with the present, and predictions of the future
need to be part of the human-robot interaction with persis-
tent robots, i.e., robots that are present everyday.

We have a long experience and interest on reasoning
based on memory (Veloso 1994; Ros et al. 2009; Fernandez
and Veloso 2012; Mericli, Veloso, and Ak?n 2012), where
experience needs to be stored and indexed, retrieved based
on some similarity metric, and effectively adapted. We hope
that such research is of interest to persistent service robots.

Interruptible, Correctable, Own Autonomy

We have spent the last few years getting our mobile robots to
autonousmly localize, navigate, and perform tasks in the en-
vironment. It was a long path to get to this point, where ev-
erything is working, namely: hardware, perception, sensing,
localization, path planning, navigation, task requests, task-
based interaction with humans, and symbiotic autonomy en-
abling the robots to proactively ask for help from humans
and the web, when they find needed. We now realize that
the robots seem to be “too,” autonomous, i.e., they get tasks,
they generate plans to achieve their tasks, and they execute
them with the sole goal of executing their plans. We realize
that humans may want fo interrupt the robot on its naviga-
tional path, “CoBot, please wait!” a user can say. CoBot
is executing its plan, can now be interrupted. We have re-
searched on how to represent tasks, and their constraints and
execution status.

The human-robot interaction for allowing a human to in-
terrupt a robot is complex, as many situational features and
constraints need to be consider, including task priorities, hu-
mans requesters, interruption frequency, and timings.

In addition to interruptions of a task for creating a new
task, of particular interest are interruptions related to cor-
rections of the robot behavior. We have previously worked
on language-based teaching and correction of new tasks to
our CoBots (Mericli et al. 2014), as well as robots demon-
strating and correcting robot’s behaviors in general (Cher-
nova and Veloso 2009; Argall, Browning, and Veloso 2012;
Mericli, Veloso, and Akin 2012), to capture new tasks and
revise behaviors, in particular also to be socially appropriate.

Furthermore, persistent robots need to generate their own
actions to match any metric to value their own autonomy.
They can explore on their own to learn task-related features
of the environment that can improve their user-task success
rate (Korein, Coltin, and Veloso 2014). Due to their ex-
perience, they can also act to anticipate requests, based on
learned personal task preferences and routines.

Safe Execution

The CoBot robots move by themselves, and are not chaper-
oned by any person. Such autonomous execution behavior in
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human environments raises important safety objectives. The
robots are already equipped with a variety of mechanisms to
detect possible failures, in particular sensing failures, and to
respond to such failures appropriately. However the general
problem of guaranteeing safe robot execution in their mo-
bile interaction with humans, is a complex research prob-
lem, which needs to be addressed for complete autonomous
navigation in the environments and interaction with people.
One particular aspect is to enable our robots to recognize
internal and external factors that may interfere with success-
ful motion execution. Even when our robots are equipped
with appropriate obstacle avoidance algorithms, collisions
and other forms of motion interference might be inevitable:
there may be obstacles in the environment that are invisible
to the robot’s sensors, or there may be people who could
interfere with the robot’s motion. We have already started
working on the general safe execution focused on motion in-
terference detection (Mendoza, Veloso, and Simmons 2012).
We have introduced a Hidden Markov Model-based model
for detecting such events in mobile robots that do not include
special sensors for specific motion interference. We have
identified the robot observable sensory data and model the
states of the robot. Our algorithm is motivated and imple-
mented on our omnidirectional CoBot mobile service robot
equipped with a depth-camera. Our experiments have shown
that our algorithm can detect over 90% of motion interfer-
ence events while avoiding false positive detections.
Complete guaranteed safe autonomy of a mobile robot is
our overall target, but we are well aware of the challenges
of such goal, due to the inevitable uncertainty of the robot
interaction with its environment, in particular humans.

Multiple Robots

There are multiple opportunities for multi-robot coordina-
tion, in terms of distributed and shared perception, planning,
execution, and sharing of learned personalized information
about humans and the environment.

For our multiple service robots, we have introduced a task
planning and scheduling for the robots to fulfill all requests
as an instance of the Vehicle Routing Problem (VRP). We
have introduced an interesting extension of the VRP, namely
VRP with Transfers, i.e., which allows for the robots to
transfer items between each other. By having one robot pick
up an object and transfer it to a different robot (or a series
of robots) for delivery, both time and the battery life of the
robots can be conserved. Transferring items makes the prob-
lem significantly harder because this creates exponentially
more possible schedules.

Multiple robots can share all sorts of information that may
be able to enhance their interaction with humans in general
and specific humans in particular. With multiple robots, we
care not only about human-robot interaction, but also about
robot-robot interaction still in the presence of humans. We
need to consider multiple robots with multiple online task
requests, with communication-limited distributed scenarios,
and with a variety of capacity and priority constraints. Fur-
thermore multiple robots can share learned knowledge, and
they can tune their task scheduling and planning to the pos-
sible robots’ capabilities and contexts.



In conclusion, if the future will include multiple au-
tonomous robots capable of asking for help from humans,
and servicing humans in a persistent manner, we will de-
velop novel human-robot interaction approaches involving
past, present, and future time handling, interruptibility, cor-
rection, own task generation from learning, multiple robots,
and safe mobile execution.
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