
Using Defeasible Logic Programming with Contextual Queries
for Developing Recommender Servers

Mariano Tucat and Alejandro J. Garcı́a and Guillermo R. Simari
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)
Artificial Intelligence Research and Development Laboratory (LIDIA)

Department of Computer Science and Engineering (DCIC)
Universidad Nacional del Sur, Bahı́a Blanca, Argentina

{mt, ajg, grs}@cs.uns.edu.ar

Abstract

In this work we introduce a defeasible logic programming
recommender server that accepts different types of queries
from client agents that can be distributed in remote hosts. We
formalize new ways of querying recommender servers con-
taining specific information or preferences, and creating a
particular context for the queries. This special type of queries
(called contextual queries) allows recommender servers to
compute recommendations for any client using its prefer-
ences, and will be answered using an argumentative inference
mechanism. We focus on a particular implementation of rec-
ommended systems that extends the integration of argumen-
tation and recommender systems to a multi-agent setting. Our
approach is based on a DeLP-server that can answer queries
from agents in remote hosts. Since client agents can consult
different domain specific recommender servers, then, multi-
ple configurations of clients and servers can be defined.

Introduction
Recommender systems have become an important research
area in AI over the last decade, and the demand for new
approaches to intelligent product recommendation is in-
creasing. In the last years, approaches that use argumenta-
tion for recommender systems applications have been pro-
posed (Chesñevar, Maguitman, and Simari 2007; 2006).
There, the integration of argumentation and recommender
systems has been established and formalized, and in some of
them Defeasible Logic Programming (DeLP) was proposed
for knowledge representation.

In this paper we focus on a particular implementation
of recommender systems called Recommender Servers that
extends the integration of argumentation and recommender
systems to a multi-agent setting. In our proposal, Recom-
mender Servers are based on a new and more flexible imple-
mentation of DeLP called DeLP-Server (Garcı́a et al. 2007).
A DeLP-server can answer multiple queries received from
several client agents that can be distributed in remote hosts;
and each client agent can consult different domain specific
DeLP-servers. Therefore, multiple configurations of clients
and servers can be defined. To answer client queries, a
DeLP-server uses public knowledge (stored in the proper
server) together with individual knowledge that clients can

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

send along with the query, creating a particular context for
the query.

In this paper, we define different types of Contextual
Queries that a Recommend Server can process. Contex-
tual queries will allow client agents to inquire recommender
servers sending individual knowledge that can represent
preferences or private information. This contextual infor-
mation will be used by Recommender Servers for generat-
ing arguments, and to obtain a warranted recommendation.
As we will show below, since the context sent with a query
represents private information, it can not be used by other
agents.

Recommender Systems usually operate by creating a
model of the users’ preferences in order to guide them in
a personalized way to interesting or useful objects in a
large space of possible options (Resnick and Varian 1997;
Konstan 2004). Many recommender systems attempt to an-
ticipate the user’s needs and are capable of providing assis-
tance proactively, while in many situations the user explic-
itly posts a request for recommendations in the form of a
query. A contextual query represents an alternative way a
user, or an agent on behalf of a user, can use in order to
request a recommendation.

A DeLP based Recommender Server that accepts differ-
ent types of contextual queries, represents one alternative
way of developing Recommender Systems using Content
Based recommendation. In particular, we are interested in
defining different alternatives for querying a recommender
server in order to obtain the desired information. Consid-
ering that recommender systems are a special class of user
support tools which particularly focus on user-dependent fil-
tering and selection of relevant information, our contextual
queries represent one alternative for specifying user prefer-
ences and asking recommender servers for specific informa-
tion.

Thus, the contribution of this paper is to define Recom-
mender Servers that extends argumentative recommender
systems for multi-agent environments, and to define new
types of contextual queries that can be used by this new type
of servers for answering client agents that need a recommen-
dation. The rest of the paper is structured as follows. The
following section gives some preliminaries and introduces a
working example that will be used in the rest of the paper.
Then we formalize the new types of contextual queries, and

64

The Uses of Computational Argumentation:
Papers from the AAAI Fall Symposium (FS-09-06)

recommend(X) –≺available(X), match features(X), match location(X).
match features(X) –≺large liv room, has large liv room(X).
match features(X) –≺two bedrooms, has two bedrooms(X). prefer suburbs(X) –≺car.
match location(X) –≺∼prefer suburbs(X), downtown(X). prefer suburbs(X) –≺∼car, subway(X).
match location(X) –≺prefer suburbs(X), suburbs(X). ∼prefer suburbs() –≺∼car.

large liv room –≺young couple.
ap(ap1, available, suburbs, [has two bedrooms, cheap, subway, ...]) ∼large liv room –≺two bedrooms.
ap(ap2, available, downtown, [has two bedrooms,∼subway, ...]) two bedrooms –≺young couple, children.
ap(ap3, available, suburbs, [large liv room, cheap,∼subway, ...]) two bedrooms –≺young couple, professional.

Figure 1: Part of the DeLP-program of the re-server of Example 1

introduce contextual interrogations. Finally, some conclu-
sions and related work are presented.

DeLP Server
A Defeasible Logic Programming Server (DeLP-server) an-
swers queries received from client agents that can be dis-
tributed in remote hosts. Public knowledge can be stored
in the DeLP-server represented as a Defeasible Logic Pro-
gram. To answer queries, the DeLP-server uses this public
knowledge together with individual knowledge that clients
might send, creating a particular context for the query. These
contextual queries are answered using the defeasible argu-
mentative analysis of DeLP (Garcı́a and Simari 2004). Sev-
eral DeLP-servers can be used simultaneously, each of them
providing a different shared knowledge base. Thus, sev-
eral agents can consult the same DeLP-server, and the same
agent can consult several DeLP-servers. This approach does
not impose any restriction over the type, architecture, or im-
plementation language of the client agents.

In this model, both public knowledge stored in the server
and contextual knowledge sent by the agents are used for an-
swering queries, however, no permanent changes are made
to the stored program. The temporal scope of the contextual
information sent in a query is limited and it will disappear
with the finalization of the process performed by the DeLP-
server to answer that query.

In DeLP, knowledge is represented using facts, strict rules
or defeasible rules. Facts are ground literals representing
atomic information or the negation of atomic information
using the strong negation “∼”. Defeasible Rules are denoted
L0 –≺L1, . . . , Ln and represent defeasible knowledge, i.e.,
tentative information, where the head L0 is a literal and the
body {Li}i>0 is a set of literals. DeLP-servers consider a
restricted form of programs that do not have strict rules. A
restricted DeLP-program (de.l.p. for short) will be denoted
(Π,∆), distinguishing the set of facts Π (that must be non-
contradictory), and the set of defeasible rules ∆.
Example 1. Consider a DeLP-server that implements a
“Real Estate” recommender server (re-server). This re-
server will have a database of apartments for rent (set
of facts ap/4) and, using contextual information that it
will receive from client agents, it will answer queries for

recommending clients which apartment to rent. The re-
server will have knowledge represented with defeasible
rules that will be used for building arguments for and
against each apartment. Figure 1 shows part of the DeLP-
program that can be stored in the re-server. For instance,
the defeasible rule large liv room –≺young couple rep-
resents the fact that usually young couples prefer apart-
ments with large living rooms, and this rule may be used
for building an argument for recommending a young cou-
ple a particular apartment (e.g., ap3). However, if the
recommendation is for a young couple that has children,
then rule two bedrooms –≺young couple, children may
be used for building an argument for recommending an
apartment with two bedrooms (e.g., , ap1); and since nor-
mally apartments with two bedrooms do not have large liv-
ing rooms (∼large liv room –≺two bedrooms), then an
argument against recommending “ap3” can be build. As it
will be clear below, the re-server will recommend an apart-
ment ap if a warrant for the literal recommend(ap) exists,
using both the program stored in the DeLP-server and the
context sent by the client agent.

In DeLP a query Q is warranted from a program P if
a non-defeated argument 〈A, Q〉 supporting Q exists. To
establish whether an argument 〈A, Q〉 is a non-defeated ar-
gument, defeaters for 〈A, Q〉 are considered, i.e., counter-
arguments that by some criterion are preferred to 〈A, Q〉.
Note that in DeLP the argument comparison criterion is
modular and thus, the most appropriate criterion for the
domain that is being represented can be selected. In
the examples in this paper we will use generalized speci-
ficity (Stolzenburg et al. 2003). For a detailed presentation
of DeLP see (Garcı́a and Simari 2004).

In (Garcı́a et al. 2007), several contextual queries were
defined. These types of queries allow the inclusion of pri-
vate pieces of information related to the agent’s particular
context to be taken into consideration at the moment of com-
puting the answers. There, a Combined Contextual Query
includes all the other contextual queries defined in (Garcı́a
et al. 2007), and allows the client agent to assign priority
either to the knowledge at the server or to the one sent by
it as context. In the next section we will define a new type
of contextual query called Regular Contextual Query that

65

is a simplified version of the Combined Contextual Query
(defined in (Garcı́a et al. 2007)) and assigns priority to the
knowledge (context) sent by the agent.

Contextual Queries
In this section we propose a particular client/server inter-
action that allows client agents to interact with a recom-
mender server sending queries with contextual information.
Our goal is to allow the clients to provide specific contex-
tual information to be used in the resolution of the queries,
and also to efficiently cover different ways of querying the
server. Therefore, we will introduce different types of con-
textual queries.

As will be shown below, each type of query provides a
different kind of interaction. However, they all have in com-
mon that although both, the knowledge stored in the server
and the contextual knowledge sent by the agents, are used
for answering queries, no permanent changes are made to
the stored program. That is, the temporal scope of the con-
textual information sent in a query is limited and it will dis-
appear with the finalization of the process performed by the
server to answer that query.

The simplest type, called regular contextual query, will
be introduced first. Using a regular contextual query a client
agent sends a server a query, a set of facts and a set of defea-
sible rules representing specific information the agent wants
to add for the computation of the answer by the server. The
definition of regular contextual query follows:

Definition 1 (Regular Contextual Query). A regular contex-
tual query for a de.l.p. (ΠS ,∆S) is a triple [Π+,∆,Q] where
the pair (Π+,∆) is a de.l.p. and Q is a DeLP-query.

As already mentioned, the regular contextual query as-
signs priority to the knowledge sent by the agent. Therefore,
following the terminology used in (Garcı́a et al. 2007), and
as can be seen in the previous definition, we use the super-
script + to denote that the set of facts Π+ has priority over
the information stored in the server (see Definition 2).

Example 2. For instance, consider the re-server introduced
in Example 1 and suppose a client agent representing a
young couple wants to obtain a recommendation of whether
an apartment ap1 fulfils their requirements. Considering that
they are both professionals and prefer an apartment far from
downtown only if it is cheap, the agent may submit the fol-
lowing regular contextual query Cq1 = [Π+

1 ,∆1,Q1], where

Π+
1 = {young couple,professionals}

∆1= {prefer suburbs(A) –≺cheap(A)}
Q1 = recommend(ap1).

The context of Cq1 contains a set of facts Π+
1 represent-

ing the client information: young couple and professionals.
Note that Cq1 also involves the set ∆1 that contains a de-
feasible rule representing the fact that the client prefers an
apartment in the suburbs only if it is cheap.

Example 3. Consider again the re-server introduced in Ex-
ample 1 and suppose that a different young couple with one
child and having no car want to know whether the re-server
recommends the apartments ap1 and ap3. In this case, the

agent representing them may submit two regular contex-
tual queries, Cq2 = [Π+

2 ,∆2,Q2] and Cq3 = [Π+
2 ,∆2,Q3],

where

Π+
2 = {young couple,children,∼car}

∆2= {}
Q2 = recommend(ap1).
Q3 = recommend(ap3).

For answering a regular contextual query [Π+,∆,Q] the
server will try to warrant the literal Q using both the stored
program and the received context. The formal definitions
follow:

Definition 2 (Warrant for a Regular Contextual Query).
The regular contextual query [Π+,∆,Q] is warranted from
(ΠS ,∆S) if Q is warranted from (ΠS⊕Π+,∆S ∪ ∆). Let
Co(Π+) = {L if L ∈ Π+}, then (ΠS⊕ Π+)= (ΠS\ Co(Π+))
∪ Π+.

In Definition 2, the operator⊕ is used for obtaining a non-
contradictory set of facts preferring the information received
in the contextual query. In (Garcı́a et al. 2007), different op-
erators are defined (prioritized, non-prioritized and restric-
tive), however, in this work we will use only the one that
assigns priority to the information send by the agent. Using
other operators is subject of future work.

Definition 3 (Answer for a Regular Contextual Query). The
answer for [Π+,∆,Q] from P=(ΠS ,∆S) can be YES, NO,
UNDECIDED or UNKNOWN. In the case that [Π+,∆,Q] is
warranted from P , then the answer is YES, if [Π+,∆,Q]
is warranted from P , then the answer is NO, if neither
[Π+,∆,Q] nor [Π+,∆,Q] are warranted from P then the an-
swer is UNDECIDED. Finally, if Q is not in the language of
(ΠS⊕Π+,∆S ∪∆), then the answer is UNKNOWN.

Example 4. Consider the re-server introduced in Exam-
ple 1. The answer for the query Cq1 of Example 2 is YES.
In the case of Example 3, the answer of the re-server for the
query Cq2 is YES, whereas the answer for Cq3 is NO.

As already mentioned, for computing the answer of a reg-
ular contextual query [Π+,∆,Q] the context (Π+,∆) tem-
porarily modifies the program stored in the server. Note that
this modification affects neither the answer of other regular
contextual queries that may be processed in parallel with the
computation of [Π+,∆,Q] nor other queries that the server
may receive later (from the same or a different agent).

In this model, a client can execute several queries with
different contexts, each one through a specific regular con-
textual query. Nevertheless, this alternative will require the
exchange of a great number of messages and could be pro-
hibitive in some domains. Therefore, we will define a new
type of query that can contain a sequence of regular contex-
tual queries. Although the effect of this new query will be
the same compared with the execution of a sequence of indi-
vidual regular contextual queries, the advantage of this new
query is an efficient use of the message exchange infrastruc-
ture. A multiple contextual query is defined as an extended
version of a regular contextual query.

Definition 4 (Multiple Contextual Query). A multi-
ple contextual query for a de.l.p. P is the sequence

66

〈[Π+
1 ,∆1,Q1], [Π+

2 ,∆2,Q2], . . . , [Π+
n ,∆n,Qn]〉, in which

each [Π+
i ,∆i,Qi], 1 ≤ i ≤ n, is a regular contextual query.

Example 5. Following with the re-server example, a client
agent may want to know whether this re-server recommends
the apartments ap1 and ap3, considering that it acts on be-
half of a young couple of professionals having no car. Since
they are planning to buy a car, they may also be interested
in the recommendation of the re-server in the case they
have a car. In this case, they will also prefer an apartment
in the suburbs only if it is cheap. Thus, this client agent
may ask the following multiple contextual query: Cq4 =
〈[Π+

4 ,∆4,Q4], [Π+
5 ,∆5,Q5], [Π+

6 ,∆6,Q6], [Π+
7 ,∆7,Q7]〉,

where

Π+
4 = {young couple,professionals,∼car}

∆4= {}
Q4 = recommend(ap1).

Π+
5 = {young couple,professionals,∼car}

∆5= {}
Q5 = recommend(ap3).

Π+
6 = {young couple,professionals,car}

∆6= {prefer suburbs(Ap) –≺cheap(Ap)}
Q6 = recommend(ap1).

Π+
7 = {young couple,professionals,car}

∆7= {prefer suburbs(Ap) –≺cheap(Ap)}
Q7 = recommend(ap3).

The answer for a multiple contextual query is a sequence
of answers, each of them corresponding to a Contextual
Query in the sequence.

Definition 5 (Answer for a Multiple Contextual
Query). An answer for a multiple contextual query
〈[Π+

1 ,∆1,Q1], [Π+
2 ,∆2,Q2], . . . , [Π+

n ,∆n,Qn]〉 from a
de.l.p. P is a sequence 〈Ans1, Ans2,. . .,Ansn〉, where
each Ansi, 1 ≤ i ≤ n, is the answer for the corresponding
regular contextual query [Π+

i ,∆i,Qi] of the sequence.

Example 6. Consider the re-server introduced in Exam-
ple 1. Then, the answer for the query Cq4 of Example 5
is 〈YES,NO,YES,NO〉

It is important to mention that the order in which the
queries are solved by the server does not affect the answers
obtained. That is, the queries are independent of each other,
since the modifications made to the server program to take
into account the context of each query do not affect subse-
quent queries. Therefore, each individual regular contextual
query may be executed in parallel.

Clearly, only two messages are exchanged and the com-
putation is done in the server side. In the particular case that
a client has to execute various queries with the same context,
it may execute several regular contextual queries, or it may
execute a multiple contextual query, repeating the context.
Observe that this alternative will require the same repeated
modifications of the server program. Therefore, we define
a new query (called contextual query sequence), as a partic-
ular case of the multiple contextual query, consisting of a
sequence of queries with only one context.

Definition 6 (Contextual Query Sequence). A contextual
query sequence for a de.l.p. P is a triple [Π+,∆,Qs]
where the pair (Π+,∆) is a de.l.p. and Qs is a sequence
〈Q1, Q2, . . . , Qn〉 in which each Qi, 1 ≤ i ≤ n, is a DeLP-
query.

Example 7. Consider again the re-server example. In this
case, the client agent may need to know whether the re-
server recommends the apartments ap1, ap2 and ap3, con-
sidering that it represents a young couple of professionals,
and they prefer an apartment in the suburbs only if it is
cheap. Therefore, this client agent may ask the contextual
query sequence Cq5 = [Π+

8 ,∆8,Qs] where:

Π+
8 = {young couple,professionals, ∼car}

∆8 = {prefer suburbs(A) –≺cheap(A)}
Qs = 〈recommend(ap1),

recommend(ap2),
recommend(ap3)〉.

In this new query, the modifications needed to consider
the context of a contextual query sequence can be made only
once to the program at the server, and then, these changes
are undone after all the queries of the sequence have been
answered. Therefore, this new definition allows an efficient
implementation of a server answering queries with equal
contexts, avoiding not only an unnecessary overload of the
message exchange infrastructure, but also preventing a reit-
erative modification of the server.

The answer for a contextual query sequence will include a
sequence of answers, each of them corresponding to a query
in the sequence of queries. Each answer will be given by the
server using its program and considering the modifications
needed to take the context included in the contextual query
sequence into account.

Definition 7 (Answer for a Contextual Query Sequence).
Let [Π+,∆,Qs] be a contextual query sequence where Qs is
the sequence 〈Q1, Q2, . . . , Qn〉. An answer for [Π+,∆,Qs]
from a de.l.p. P is a sequence 〈Ans1, Ans2, . . . , Ansn〉,
where each Ansi 1 ≤ i ≤ n is the answer of the regular
contextual query [Π+,∆,Qi] from P .

Example 8. Consider the re-server introduced in Exam-
ple 1. Then, the answer for the contextual query sequence
Cq5 of Example 7 is 〈YES,YES,NO〉

Depending on the implementation, the sequence of an-
swers generated by the server will be buffered at the server
side and sent to the inquirer in only one message, or they
may be sent as soon as they are obtained, requiring the ex-
change of one message per query. There exists a trade off
between the number of messages exchanged and response
time.

So far, we have defined three different kinds of queries.
The first and simpler one, the regular contextual query al-
lows the clients to execute one query with a specific context.
In the case of the multiple contextual query, it allows the
execution of several regular contextual queries grouped in
just one message, providing an efficient use of the network.
Therefore, this type of query provides the client the alter-
native of presenting multiple scenarios in the same query,

67

obtaining specific answers for all of them. Finally, the con-
textual query sequence allows an efficient execution of sev-
eral queries with the same context, since the server is only
modified once to answer all the queries.

Contextual Interrogation
There exist situations in which a client needs to execute
several queries with different contexts (e.g., [Π+

a ,∆a,Qa],
[Π+

b ,∆b,Qb], [Π+
c ,∆c,Qc]). In order to reduce mes-

sage exchange, it may use the multiple contextual query
〈[Π+

a ,∆a,Qa], [Π+
b ,∆b,Qb], [Π+

c ,∆c,Qc]〉. Nevertheless, if
the contexts of the queries overlap almost entirely, the client
has to repeat great part of them and this alternative may turn
into an inefficient one. For example if Π+

a has 50 facts and
Π+

b = Π+
a ∪ {f51} then the set Π+

a is sent twice and also
the server has to add and remove the same 50 facts twice.
In order to both, reduce traffic congestion and server pro-
cessing, we will introduce the concept of contextual inter-
rogation where the context modifications made at the server
by the queries may hold for subsequent queries of the same
interrogation. Using this new type of query, in our previ-
ous example, Π+

b may be just {f51}, avoiding the repeated
transmission and modification at the server required by Π+

a .
Next, we define a contextual interrogation as a sequence

of special regular contextual queries. As it will become clear
below, this new kind of query is a generalization of the three
ones defined in the previous section and it will allow incre-
mental context modifications.
Definition 8 (contextual interrogation). A contex-
tual interrogation for a de.l.p. P is the sequence
〈Cq1, Cq2, . . . , Cqn〉, in which each Cqi (1 ≤ i ≤ n)
is one of:
• Starting Contextual Query, noted [Π+

i ,∆i,Qi)
• Continued Contextual Query, noted (Π+

i ,∆i,Qi)
• Closing Contextual Query, noted (Π+

i ,∆i,Qi]
• Regular Contextual Query, noted [Π+

i ,∆i,Qi]
Note that in Definition 8 the symbols “ [”, “] ”, “ (”

and “) ” specify how the server has to process each part
of the contextual interrogation. The symbol “)” specifies
that changes made to the program at the server will be kept
for subsequent queries from the same contextual interroga-
tion, whereas the symbol “]” means that all the temporary
changes that were made by queries in the same contextual
interrogation will not hold for subsequent queries. The sym-
bol “[” specifies that previous changes will not be consid-
ered (i.e., the query will behave as if it were the first in the
contextual interrogation).

In a contextual interrogation, a starting contextual query
[Π+

i ,∆i,Qi) will be answered by the server using the orig-
inal program, however the modifications made to the pro-
gram at the server will be kept for subsequent queries from
the same contextual interrogation. The continued contex-
tual query (Π+

i ,∆i,Qi) is answered by the server using the
program already modified by previous queries. In the case
of the closing contextual query (Π+

i ,∆i,Qi], it allows the
client to obtain an answer considering the program already
modified, but returning the program at the server to its orig-
inal state after the query have been answered. Note that, by

original state we mean the state of the program before it was
first modified by the contextual interrogation. Finally, a reg-
ular contextual query [Π+

i ,∆i,Qi] will be answered by the
server using the original program and it will return the pro-
gram at the server to its original state once the query have
been answered.
Example 9. Considering our re-server example, a client
may ask the following contextual interrogation: Cq6 =
〈[Π+

9 ,∆9,Q9), (Π+
10,∆10,Q10), (Π+

11,∆11,Q11),
(Π+

12,∆12,Q12]〉, where
Π+

9 = {young couple,professionals,∼car}
∆9= {}
Q9 = recommend(ap1).

Π+
10 = {}

∆10= {}
Q10 = recommend(ap3).

Π+
11 = {car}

∆11= {prefer suburbs(A) –≺cheap(A)}
Q11 = recommend(ap1).

Π+
12 = {}

∆12= {}
Q12 = recommend(ap3)

This example shows another alternative for Cq4 of exam-
ple 5. However, this alternative avoids the repeated trans-
mission of the facts young couple and professionals and
their modification at the server.

The answer for a Contextual Interrogation is a sequence of
answers for each specific regular contextual query, using not
only the context given with the query, but also, depending on
the type of query and the context of previous queries.
Definition 9 (Answer for a Contextual Interrogation). An
answer for a contextual interrogation 〈Cq1, Cq2, . . . , Cqn〉
from a de.l.p. P=(ΠS ,∆S) is a sequence of answers
〈Ans1, Ans2, . . . , Ansn〉. Each answer Ansi will depend
on both the type of Cqi and those changes that have been
accumulated by previous queries in the same interrogation.
Here follows how Ansi is computed for each type of query
and also how this query will affect the accumulated program
Pi for subsequent queries in the same interrogation. Ob-
serve that Pi−1 = (Πa

i−1, ∆a
i−1) is the de.l.p. with the con-

textual modifications accumulated for answering a previous
query Cqi−1.

• If Cqi = [Π+
i ,∆i,Qi) then

Ansi is the answer for [Π+
i ,∆i,Qi] in P ,

and Pi =(Π⊕Π+
i ,∆∪∆i)

• if Cqi = (Π+
i ,∆i,Qi) then

Ansi is the answer for [Π+
i ,∆i,Qi] in Pi−1,

and Pi =(Πa
i−1 ⊕Π+

i ,∆a
i−1 ∪∆i)

• if Cqi = (Π+
i ,∆i,Qi] then

Ansi is the answer for [Π+
i ,∆i,Qi] in Pi−1,

and Pi = P .
• if Cqi = [Π+

i ,∆i,Qi] then
Ansi is the answer for [Π+

i ,∆i,Qi] in P ,
and Pi = P .

68

Example 10. Consider the re-server introduced in Exam-
ple 1. The answer for the contextual interrogation Cq6 of
Example 9 is 〈YES,NO,YES,NO〉. In this example, the first
query of the sequence, a Starting Contextual Query, adds the
fact ∼car. Then, the following query, a Continued Contex-
tual Query, just queries whether the re-server recommends
ap3, using the program at the server with the modifications
made to answer the previous query. Next, another Contin-
ued Contextual Query sends the fact car as part of the con-
text. Since the fact ∼car is still part of the program at the
server (for the current Contextual Interrogation), the addi-
tion of the fact car will turn our set of facts in a contradic-
tory set. In this case, the operator ⊕ removes the fact at
the server (∼car), since it prefers the information sent as
part of the context. Finally, the last query of the sequence,
a Closing Contextual Query, queries whether the re-server
recommends ap3.

This latter type of query includes all the queries defined
in previous section and it also provides new alternatives for
querying the servers. There exist several ways of imple-
menting these contextual queries, and the different behav-
iors and opportunities that these queries provide will depend
on the way in which they are implemented. However, the se-
mantics of the queries will remain the same as well as their
corresponding answers.

Conclusions and Related Work
In this work, we propose a particular implementation of rec-
ommender systems, called Recommender Servers, that uses
argumentation for supporting its recommendations, and can
be used in multi-agent scenarios. A Recommender Server
(re-server) allows several client agents to ask for recommen-
dations, and a client agent can consult several re-servers.
Client agents can be implemented in any programming lan-
guage.

In order to generate a warranted recommendation, a re-
server computes arguments using both the knowledge stored
in the server and also private knowledge that client agents
can send as context with the queries. The knowledge stored
in the server and the private knowledge sent by agents are
restricted DeLP-programs, that consist of facts and defea-
sible rules. The way that the server integrates its proper
knowledge with the information provided by client agents
was defined as different types of contextual queries. These
different types of contextual queries provide a declarative
way of representing users’ preferences.

We have defined four different kinds of queries. The first
one, the regular contextual query allows the clients to ex-
ecute one query with a specific context. Then, the multiple
contextual query allows the execution of several regular con-
textual queries grouped in just one message, providing an ef-
ficient use of the network. In the case of the contextual query
sequence, it allows an efficient execution of several queries
with the same context, since the server is only modified once
to answer all the queries. Finally, in order to reduce traffic
congestion and server processing, we introduced the concept
of contextual interrogation where the context modifications
made at the server by the queries may hold for subsequent

queries of the same interrogation.
In (Chesñevar, Maguitman, and Simari 2007)

and (Chesñevar, Maguitman, and Simari 2006) the in-
tegration of argumentation and recommender systems
has been established and formalized. There, DeLP was
proposed for knowledge representation, and examples for
different domains applications were shown. As in those
frameworks, we use arguments and a dialectical analysis
for warranting recommendations, however, in contrast with
them, we focus on a particular framework that extends the
integration of argumentation and recommender systems to
a multi-agent setting. Since in our proposal, Recommender
Servers are based on a new and more flexible implemen-
tation of DeLP called DeLP-Server (Garcı́a et al. 2007),
a Recommender Server can answer multiple contextual
queries from agents that can be distributed in remote hosts;
and each client agent can consult different domain specific
DeLP-servers. Therefore, multiple configurations of clients
and servers can be defined.

References
Chesñevar, C. I.; Maguitman, A. G.; and Simari, G. R.
2006. Argument-Based Critics and Recommenders: A
Qualitative Perspective on User Support Systems. Journal
of Data and Knowledge Engineering 59(2):293–319.
Chesñevar, C.; Maguitman, A.; and Simari, G. 2007.
Emerging Artificial Intelligence Applications in Computer
Engineering, volume 160 of Frontiers in Artificial Intel-
ligence and Applications. IOS Press (Amsterdam, Nether-
lands). chapter Recommender Systems based on Argumen-
tation, 53–70.
Garcı́a, A., and Simari, G. 2004. Defeasible logic pro-
gramming: An argumentative approach. Theory Practice
of Logic Programming 4(1):95–138.
Garcı́a, A.; Rotstein, N.; Tucat, M.; and Simari, G.
2007. An argumentative reasoning service for delibera-
tive agents. In Zhang, Z., and Siekmann, J., eds., LNAI
4798 Proceedings of the 2nd. International Conference on
Knowledge Science, Engineering and Management (KSEM
2007), 128–139. Springer-Verlag.
Konstan, J. A. 2004. Introduction to recommender sys-
tems: Algorithms and evaluation. ACM Trans. Inf. Syst
22(1):1–4.
Resnick, P., and Varian, H. R. 1997. Recommender sys-
tems. Communications of the ACM 40(3):56–58.
Stolzenburg, F.; Garcı́a, A. J.; Chesñevar, C. I.; and Simari,
G. R. 2003. Computing generalized specificity. Journal of
Applied Non-Classical Logics 13(1):87–.

69

