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Abstract

Recent research identifies stochastic dominance as critical for
understanding the relationship between network structure and
diffusion. This paper introduces the concept of stochastic
dominance, explains the theory linking stochastic dominance
and diffusion, and applies this theory to a number of diffu-
sion studies in the literature. The paper illustrates how the
theory connects observations from different disciplines, and
details when and how those observations can be generalized
to broader classes of networks.

Introduction
Network structure affects the speed and extent to which in-
formation, disease, behavior, and innovations diffuse (Abra-
hamson and Rosenkopf 1997; Newman 2002; Sander et
al. 2002; Young 2003; Cowan and Jonard 2004; Centola,
Willer, and Macy 2005; Ohtsuki et al. 2006). Often there
is an abrupt transition from those networks in which the dif-
fusion process dies out completely to those in which it en-
velops the network. Our understanding of the relationship
between network structure and diffusion is built on obser-
vations from different disciplines, which employ different
techniques and consider different families of networks leav-
ing an array of similar results with no formal connection.

Broadly speaking, there seems to be a greater tendency
towards diffusion in networks that are “more random.” Un-
derlying this observation are a range of studies employing
the Watts-Strogatz family of networks (Watts and Strogatz
1998), which interpolate between random and regular net-
works. However, without a general theory we cannot ex-
trapolate from these studies to conclude that “increasing ran-
domness” promotes diffusion in all networks.

Recently, several scholars have demonstrated how
stochastic dominance can be used to order networks accord-
ing to their proclivity to sustain diffusion (Jackson and Yariv
2005; 2007; Jackson and Rogers 2007; López-Pintado 2008;
Galeotti et al. 2009). These results explain the propensity
for diffusion in the more random Watts-Strogatz networks
and provide a means for understanding diffusion in more
general networks. The theory reveals that increasing ran-
domness does not always increase diffusion; instead, the re-
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lationship is conditional on the form of local reinforcement
in the diffusion process.

Use of the concept of stochastic dominance (Rothschild
and Stiglitz 1970) has largely been confined to the theoret-
ical economics and finance literatures, and as such may be
unfamiliar to scholars in many of the growing number of
fields that study networks. Additionally, proofs of the main
results relating stochastic dominance and diffusion rely on
a mean-field approach borrowed from statistical mechanics
which may be unfamiliar to many social scientists. The aim
of this article is threefold. First, we wish to introduce the
concepts of stochastic dominance to a broader audience of
scholars interested in network analysis. Second, we seek
to explain and provide intuition for the recent results relat-
ing stochastic dominance and diffusion without requiring the
technical expertise to parse the mean-field arguments. And
third, we indicate how the stochastic dominance results con-
nect independent observations from a variety of network dif-
fusion studies as well as when and how these observations
can be generalized.

Stochastic Dominance

To impose order on the bewildering number of possible net-
works, theorists have constructed a long list of methods for
measuring and categorizing them. Networks can be bipar-
tite, star-shaped, scale-free, regular, Eulerian, hamiltonian,
small-world, connected, planar, or sparse. Each network
has a girth, diameter, cyclomatic number, chromatic num-
ber, centralization, density, average path length, average de-
gree, clustering coefficient, and fraction of transitive triples.1
Among all of these features, the degree distribution of a net-
work plays a key role in diffusion.

The degree of a node in a network is simply the number of
edges connected to that node. The degree distribution of the
network is the probability distribution P defined by setting
P (d) equal to the fraction of degree d nodes in the network.
We will be interested in ordering degree distributions in two
ways. A distribution P first order stochastically dominates

1See the books by Diestel (2000) and Jackson (2008) for defi-
nitions.
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Figure 1: Two networks, Γ (left) and Γ′ (right) with the same
number of nodes and edges, but different degree distribu-
tions. Γ′ is a mean preserving spread of Γ. Both networks
are Watts-Strogatz networks with N = 250 and k = 3
(see the section Watts-Strogatz Small-worlds below). For Γ
p = .05, and for Γ′ p = .9.

(FOSD) a distribution P ′ if
D∑
d=0

P (d) ≤
D∑
d=0

P ′(d) (1)

for all D. The dominance is strict if the inequality is strict
for at least some D. Equivalently, P FOSD P ′ if for every
nondecreasing function u : R→ R,

Dmax∑
d=0

u(d)P ′(d) ≤
Dmax∑
d=0

u(d)P (d), (2)

where Dmax is the maximum degree of any node in the net-
work. The notion of stochastic dominance is most familiar
in the context of the valuation of risky assets. If P and P ′
are two lotteries then P FOSD P ′ if the expected payoff
from P is greater than the expected payoff from P ′ for any
nondecreasing utility function u.

We say that a network Γ first order stochastically domi-
nates a network Γ′ if the degree distribution for Γ FOSD the
degree distribution of Γ′. In general, we think of a network
that first order stochastically dominates another as having
more edges. In particular, setting u(d) = d in equation (2)
implies that if Γ FOSD Γ′, then the average degree of Γ is
greater than the average degree of Γ′.

We will also be interested in ordering networks by second
order stochastic dominance. A distribution P second order
stochastically dominates (SOSD) a distribution P ′ if

D∑
C=0

( C∑
d=0

P (d)
)
≤

D∑
C=0

( C∑
d=0

P ′(d)
)

(3)

for all D. The dominance is strict if the inequality is strict
for at least some D. Equivalently, P SOSD P ′ if for every
nondecreasing concave function u : R→ R,

Dmax∑
d=0

u(d)P ′(d) ≤
Dmax∑
d=0

u(d)P (d). (4)
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Figure 2: The degree distributions for the networks Γ (left)
and Γ′ (right) shown in Figure 1.

FOSD implies SOSD, but not vice versa. If P and P ′ have
the same mean then P SOSD P ′ is equivalent to P ′ is a
mean preserving spread of P . As with first order stochastic
dominance, second order stochastic dominance has an inter-
pretation in terms of risk: if a lottery P SOSD a lottery P ′
then any risk averse individual prefers P to P ′.

We say that a network Γ second order stochastically dom-
inates a network Γ′ if the degree distribution for Γ SOSD
the degree distribution of Γ′, and Γ′ is a mean preserving
spread of Γ if the same relationship holds for their degree
distributions. We can think of a network that is a mean pre-
serving spread of another as having the same average degree
but greater variation in the degree.

Figure 1 depicts two networks Γ and Γ′, and Figure 2 plots
their degree distributions.2 Both networks have the same
number of nodes and edges, and thus the same average de-
gree, but Γ′ is a mean preserving spread of Γ. Second order
stochastic dominance can be used to order commonly stud-
ied network families: assuming the same average degree,
a scale-free (or power law) network is a mean preserving
spread of an exponential network, which is a mean preserv-
ing spread of a Poisson network, which is a mean preserving
spread of a regular network.

Diffusion
Many studies address the impact of network structure on
diffusion (Abrahamson and Rosenkopf 1997; Watts 1999;
2002; Chwe 2000; Morris 2000; Pastor-Satorras and Vespig-
nani 2001b; 2001a; Newman 2002; Sander et al. 2002;
Young 2003; Cowan and Jonard 2004; Centola, Willer, and
Macy 2005); however, the critical role of stochastic domi-
nance was identified relatively recently (Jackson and Yariv
2005; 2007; Jackson and Rogers 2007; López-Pintado 2008;
Lamberson and Page 2008; Galeotti et al. 2009). In nearly
all network diffusion studies, individual nodes of a network
are more likely to transition from a status quo state to a new
state of interest when more of their neighboring nodes have
made that transition; there is some type of local reinforce-
ment. For example, a person is more likely to become in-

2Figure 1 and all network computations were made in R using
the statnet package (Handcock et al. 2003).

77



0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0

0.1

0.2

0.3

0.4

0.5

Effective Spreading Rate  λ

A
ve

ra
ge

 F
ra

ct
io

n 
of

 N
od

es
 In

fe
ct

ed

Γ
Γ'

Figure 3: The average fraction of infected nodes for the two
networks, Γ and Γ′, shown in Figure 1 for different values
of the effective spreading rate λ = β

γ from 10 realizations of
the SIS diffusion model with f(d, x) = x.

fected with a disease when more of their contacts have the
disease, or a person is more likely to adopt a new technol-
ogy when more of their friends and family have adopted the
technology. The form of this local reinforcement may differ
across models or appear as a parameter of the model.

To be more precise we will consider a variation of the ba-
sic susceptible-infected-susceptible (SIS) model of infection
(Bailey 1975). In this model every individual is in one of two
states, susceptible or infected. Susceptible agents that come
into contact with infected agents run the risk of becoming
infected. An individual can recover from the infection, but
once she does she is immediately susceptible to becoming
infected again. There is no mortality in the model.

In an SIS model with no network structure, if each contact
between an infected individual and a susceptible individual
leads to a new infection with probability β, and the proba-
bility that an infected individual recovers in each time step
is γ, then the disease will spread from an initial infection if

β

γ
>

1
N
, (5)

where N is the total population size.
To add network structure to the model, we adjust the prob-

ability of infection to reflect the agents’ number of neigh-
bors and number of infected neighbors. The probability that
a susceptible agent of degree d with x infected neighbors
becomes infected in each small time step is β · f(d, x). Fol-
lowing López-Pintado (2008), we call the function f the dif-
fusion function and the ratio λ = β

γ the effective spreading
rate. As in the SIS model without network structure, there is

a diffusion threshold λ∗ such that if λ > λ∗ then the infec-
tion will spread from an initial infection to a non-zero steady
state; if λ ≤ λ∗ then the infection will die out. Figure 3 il-
lustrates the diffusion threshold for the two networks shown
in Figure 1. The figure plots the average percent infected
nodes of each network for different values of the effective
spreading rate. The diffusion threshold for Γ′ is lower than
the diffusion threshold for Γ, and so diffusion occurs more
easily in Γ′.

The main result relating stochastic dominance and diffu-
sion is as follows.3

Theorem 1 (López-Pintado 2008). The diffusion threshold
for a network Γ will be lower than that for a network Γ′ (and
thus an infection is more likely to spread through Γ than Γ′)
if

• Γ FOSD Γ′, or
• Γ is a MPS of Γ′ and d2f(d, 1) is convex for all d ≥ 1, or
• Γ′ is a MPS of Γ and d2f(d, 1) is concave for all d ≥ 1.

The theorem says that diffusion is more likely to occur
in networks with more connections or those with more vari-
ability in the number of connections if d2f(d, 1) is convex
or less variability in connections if d2f(d, 1) is concave.

To give some intuition behind the theorem, notice that in-
creasing the degree of an agent in the network increases not
only the probability that she is infected, but also the prob-
ability that she infects someone else. This leads to the d2

term. Thus, the effect of one degree d agent with one in-
fected neighbor on the total infected population varies like
βd2f(d, 1). Since we are interested in the diffusion rate in
Γ relative to the rate in Γ′, and the β term appears in both,
we can ignore it and consider only d2f(d, 1). Now, we care
about the expectation of this measure of infectivity over all
agents in the network, so we integrate this against the degree
distribution to obtain

Dmax∑
d=1

d2f(d, 1)P (d). (6)

If Γ FOSD Γ′ (as in the first bullet of the theorem), since
d2f(d, 1) is increasing in d, by equation (2) if P FOSD P ′,
equation (6) will be smaller if we replace P by P ′ i.e. the
infection spreads more in Γ than Γ′. By equation (4), if
d2f(d, 1) is concave and Γ′ is a mean preserving spread of
Γ (as in the third bullet of the theorem), then equation (6)
is smaller if we replace P with P ′ i.e. the infection spreads

3We wish to emphasize that this result relies on a mean-field ap-
proach, which requires several implicit assumptions regarding the
diffusion dynamics. Here, we focus on the qualitative implications
of the theorem and the broad similarities between the many diffu-
sion models to which it applies in one form or another, so we will
not digress into these technical conditions. For a precise statement
of the second and third bullets of this theorem and the assumptions
it requires see the article by López-Pintado (2008). The first bul-
let does not appear in the article by López-Pintado (2008), but the
proof is straightforward from the results there. For similar results
under different models of diffusion see the articles by Jackson and
Yariv (2005, 2007), Jackson and Rogers (2007), Lamberson and
Page (2008) and Galeotti et al. (2009).
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more in Γ than Γ′. The logic for the second bullet is sim-
ilar, noting that if d2f(d, 1) is convex then −d2f(d, 1) is
concave.

A useful corollary to Theorem 1 is:

Corollary 1 (López-Pintado 2008). If Γ is a mean preserv-
ing spread of Γ′ and f depends only on x (not on d), then
the diffusion threshold for Γ is lower than that for Γ′.

Thus, if the likelihood that any agent becomes infected
depends only on the number of infected contacts she has,
independent of her total number of contacts, increasing the
variation of the degree distribution makes diffusion easier.
This follows immediately from Theorem 1 by setting f
equal to a positive constant c in the second bullet and ob-
serving that d2 · c is convex.

Figure 3 illustrates an example of Corollary 1. The diffu-
sion function f(d, x) = x depends only on x, so Corollary
1 applies. Since Γ′ is a mean preserving spread of Γ, Corol-
lary 1 implies that the diffusion threshold for Γ′ is lower than
that for Γ, as the computations depicted in Figure 3 confirm.

Network Structure and Diffusion
In this section we describe several models and results on net-
work diffusion and demonstrate how they can be understood
through the lens of stochastic dominance and in particular as
versions of Theorem 1 or Corollary 1.4

Watts-Strogatz Small-worlds
Some of the most commonly modeled networks are the
Watts-Strogatz small-worlds (Watts and Strogatz 1998).
This family of networks is parameterized by a single vari-
able p ranging from zero to one. To construct the network
corresponding to a given value of p, begin with a ring lat-
tice in which each of N nodes is connected to its k closest
neighbors. For each node n of the network, consider each
edge connected to that node and with probability p discon-
nect the opposite end of that edge and reconnect it to another
node chosen uniformly at random from all of the nodes not
already connected to n. For p = 0, the corresponding net-
work is the original regular ring lattice and for p = 1 the
network is random. For intermediate levels of p the resulting
network exhibits two characteristics of many empirical net-
works, low average path length (the so-called “small-world”
phenomenon) and high clustering. The corresponding de-
gree distributions range from a delta distribution when p = 0
to a Poisson distribution when p = 1. The networks depicted
in Figure 1 are Watts-Strogatz networks with N = 250 and
k = 3; Γ (left) has p = .05, and Γ′ (right) has p = 1. Figure
2 plots their degree distributions.

Since for every p the number of nodes and the number
of edges remains the same, the average degree is constant,
and thus all of the networks in the family are equal under
the first order stochastic dominance relation. However, if
p > p′ then the Watts-Strogatz network with parameter p is a

4Theorem 1 does not prove all of the results from the papers
discussed, since in many cases minor modifications must be made
in order to fit the relevant model to the conditions of the theorem
or vice versa.

mean preserving spread of the Watts-Strogatz network with
parameter p′. In light of this ordering and Theorem 1, many
properties of networks that vary monotonically with p in the
Watts-Strogatz family may hold more generally for arbitrary
networks under the mean preserving spread relation.

For example, in the seminal paper by Watts and Strogatz
(1998) in which the small-world family is introduced, the
authors consider a standard diffusion model as an illustra-
tion of the significance of their construction for dynamic
processes. Initially all of the population is healthy and at
time zero one infected individual is introduced. Individu-
als recover at a fixed rate and during each unit of time in-
fect each of their neighbors with probability r. Watts and
Strogatz observe through simulation that the critical infec-
tiousness, above which an epidemic sweeps the network and
below which the disease vanishes, decreases with p. We can
see this as a consequence of stochastic dominance. Since in
this case the likelihood that an agent becomes infected de-
pends only on the number of her neighbors that are infected,
independent of her total number of neighbors, Corollary 1
implies that the Watts-Strogatz networks with a higher pwill
have a lower diffusion threshold and thus be more prone to
diffusion of the infection.

Concurrency and Disease Spread
Kretzschmar and Morris (1996) investigate the effect of con-
current partnerships on the spread of sexually transmitted
diseases. In their model the network of connections repre-
sents sexual partnerships and is constantly in flux as new
partnerships are formed and old partnerships are dissolved.
However, while specific partnerships change, the degree dis-
tribution remains relatively unchanged (coincidentally this
more closely fits the assumptions of the mean-field approx-
imation than a static network). When an infected individual
is in a sexual relationship with a susceptible individual the
disease is transmitted with a fixed probability.

Kretzschmar and Morris consider a population level mea-
sure of concurrency (the number of relationships that an in-
dividual carries on simultaneously) which they call the index
of concurrency and denote κ3. Since any two edges that con-
nect to the same node in the sexual contact graph at a given
time correspond to concurrent relationships, concurrency is
related to the degree distribution of the graph. In particular,
their measure is approximately

κ3 =
σ2

µ
+ µ− 1, (7)

where µ and σ are the mean and standard deviation of the
degree distribution respectively. They examine the effect of
varying the level of concurrency on the extent that a simu-
lated disease spreads from a single infection and find that
the number of agents infected in a fixed time grows expo-
nentially with κ3.

The relationship between varying levels of κ3 and
stochastic dominance is ambiguous because κ3 is not mono-
tonically related to µ; however, for the family of networks
that Kretzschmar and Morris examine, µ remains fixed.
Thus, increases in κ3 can be accounted for by increases
in σ and therefore correspond to mean preserving spreads.
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Because the probability that an agent becomes infected de-
pends only on the number of her infected partners, Corollary
1 applies, so the increased diffusion with increased concur-
rency is explained by the stochastic dominance relation.

Increasing Returns and Winner-take-all Markets
Besides the spread of disease, diffusion models are often
used to represent the adoption of products or innovations.
In many situations an agent might prefer a product that has
been purchased more by other consumers. When this oc-
curs, the market is said to exhibit increasing returns (Arthur
1994). For example, a consumer can expect that more soft-
ware will be developed for a more popular hardware plat-
form, thus making that hardware platform more desirable.
In this case, the increasing returns are global; it is the overall
level of adoption in a population that affects the availability
of hardware. In other cases, the increasing returns may be lo-
cal. For example, a professor might prefer to use a computer
with the same operating system as her coauthors so that she
can more easily share files with them. In this case it is only
the choices of the individuals that are “near” the agent in
some social sense that affect the agent’s purchasing deci-
sion, so we call the returns local.5 Arthur (1989) shows that
when consumers choose among a set of products based on
global increasing returns eventually one of the products will
come to dominate the market completely. This outcome is
popularly referred to as the winner-take-all outcome (Frank
and Cook 1996).

When consumers choose based on local increasing re-
turns, multiple products can split the market (Janssen and
Jager 2003; Lee, Lee, and Lee 2006; Lamberson 2008). We
observe this “local bias” in reality when, for example, most
professors in one field use Macintosh computers while most
in another use PCs. The tendency of the market to converge
to a winner-take-all outcome or a shared market depends on
the structure of the social network. For example, consider
the model developed by Lee, Lee and Lee (2006). A new
technology is introduced in two variants, A and B. Con-
sumers choose whether to adopt the new technology at all,
and when they do, whether to adopt variant A or variant B.
Both global and local increasing returns (Lee, Lee and Lee
refer to them as indirect and direct network effects) drive
consumer adoptions. Specifically, an agent i’s utility from
choosing variant A is

Ui(A) = ai + αxi,A + βπA, (8)

where ai is an agent specific preference for variant A, xi,A
is the number of i’s neighbors using variant A and πA is the
proportion of all adopters in the population choosing vari-
ant A. The α and β terms are weights to adjust the relative
strength of the global and local returns. The analogous util-
ity for variant B is

Ui(B) = bi + αxi,B + βπB . (9)

A consumer adopts the new technology when her utility
from one of the variants is greater than 0 (one can think of

5Increasing returns can also be local in the product space as
opposed to the social space (Lamberson 2008).

ai and bi as costs of adoption, so a consumer adopts when
her utility overcomes these costs), and then she chooses
whichever variant offers her the greatest utility. Agents are
allowed to periodically switch variants if they find that their
preference ordering has reversed. Lee, Lee and Lee simulate
the purchases of a population of agents on a Watts-Strogatz
family of networks and examine the effect of the network
parameter p on the probability that the market converges to
a winner-take-all outcome.

For the moment, consider only the diffusion of a single
variant, sayA, and ignore the global increasing returns βπA.
In this case, the probability of an agent adopting depends
only on the number of her neighbors that adopt, so applying
Corollary 1, we would expect diffusion to occur more easily
for higher values of p. The same argument can be applied
to variant B, which causes the market to be more unstable
when p is higher. The effect is exacerbated by the global
increasing returns making a winner-take-all outcome more
likely in networks with a higher value of p.6

This is exactly the result that Lee, Lee and Lee find by
simulation. With their parameter choices, moving from net-
works with values of p < .2 to those with p > .5 changes the
frequency of a winner take all outcome from close to zero
to nearly one. The theory implies that these results would
also hold for other types of networks ordered by second or-
der stochastic dominance. Moreover, we would expect the
same argument to apply to networks ordered by first order
stochastic dominance, which Lee, Lee and Lee’s simulations
alone cannot suggest since all of the networks in the Watts-
Strogatz family they employ have the same average degree.

Reversing the Inequality
In all of the examples we have discussed and most of the ex-
amples we have encountered in the literature, moving from
one network to a mean preserving spread of that network
increases the likelihood of diffusion. Based on these obser-
vations alone, one might conclude that a mean preserving
spread of the degree distribution always leads to greater dif-
fusion, but with the theory of stochastic dominance in hand
we can see that the effect is conditional on the form of the
diffusion function.

Corollary 1 partially explains the observations. In order
to find a case where a mean preserving spread of the de-
gree distribution decreases diffusion, the diffusion function
must depend not only on the number of infected contacts
that an individual has, but also on the degree of the indi-
vidual. Moreover, suppose that the diffusion function is of
the form f(d, x) = xd−α. A mean preserving spread re-
sults in a decrease in diffusion when d2f(d, 1) = d2−α is
concave for all d ≥ 1, which only holds for values of α be-
tween one and two. This is illustrated in Figure 4, which
plots the percent change in the critical threshold between a
Watts-Strogatz network with p = 0 (N = 1000, k = 10)

6While qualitatively Lee, Lee and Lee’s results fit the predic-
tions of Theorem 1 and Corollary 1, the threshold model that they
consider better matches the model and similar results on stochastic
dominance and diffusion of Jackson and Yariv (2005, 2007) than
those of the SIS model discussed here and in López-Pintado (2008).
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Figure 4: The difference in the critical threshold between a
Watts-Strogatz network with p = 0 (N = 1000, k = 10)
and with p = 1 as the exponent α in the diffusion function
f(d, x) = xd−α is varied. When α is between one and two,
increasing the randomness of the network raises the diffu-
sion threshold and thus makes diffusion less likely. For all
other values of α, increasing randomness lowers the diffu-
sion threshold.

and with p = 1 as the exponent α in the diffusion function
is varied.7 For values of α between one and two, moving
from a regular lattice to a random network increases the dif-
fusion threshold (by .47% at the most). For any other value
of α, the diffusion threshold is lower in a random network
than in a regular one, and there is no limit on the magni-
tude of this effect as α is increased. Of course the diffusion
function may not be of the form f(d, x) = xd−α, but in a
sense there are many fewer diffusion functions under which
a mean preserving spread decreases diffusion than there are
under which the opposite relationship holds.

Conclusion
Stochastic dominance helps to explain, connect, and gen-
eralize the many observations relating network structure to
diffusion. Ongoing research continues to expand our un-
derstanding of these relationships and their implications for
different and more general diffusion mechanisms (Galeotti
et al. 2009) as well as policies for exploiting these relation-
ships (Galeotti and Goyal 2008).
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