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Abstract 

In many spatial problems, it can be difficult to create a state 
representation that is abstract enough so that irrelevant 
details are ignored, but also accurate enough so that 
important states of the problem can be differentiated. This is 
especially difficult for agents that address a variety of 
problems. A potential way to resolve this difficulty is by 
using two representations of the spatial state of the problem: 
one abstract and one concrete, along with internal (imagery) 
operations that modify the concrete representation based on 
the contents of the abstract representation. In this paper, we 
argue that such a system can allow plans and policies to be 
expressed that can better solve a wider class of problems 
than would otherwise be possible. An example of such a 
plan is described. The theoretical aspects of what imagery 
is, how it differs from other techniques, and why it provides 
a benefit are explored. 

Introduction 

Many AI systems have been developed that use multiple 
internal representations of space to improve efficiency and 
capability. For example, in domains like the blocks world, 
it is possible to represent spatial data both in abstract 
qualitative terms, like “A is on B” and quantitatively, in 
terms of more concrete perceptual data such as pixels or 
continuous coordinates. When multiple representations are 
used, internal operations between them are possible. 
Commonly, the abstract representation is created based on 
the contents of the concrete representation. Moreover, in 
some systems, the reverse of this operation is also possible: 
structures in the concrete representation can be created 
internally based on the contents of the abstract 
representation. This capability is called imagery. 
 Here, we are concerned with examining what role 
imagery can play in a spatial problem-solving agent: an 
agent that issues actions in the world to solve problems 
presented to it (at least chiefly) in spatial terms. This is in 
contrast, for example, to systems that use imagery to make 
inferences about abstractly-presented spatial information, 
such as answering “if A is below C and D is right of C, 
how does A relate to D?” (e.g., Barkowsky, 2002). 
 Reasons for using multiple representations have been 
studied in detail. A common argument is that processing 
over certain types of data is more efficient within 
specialized representations than in a single uniform 

representation. If a representation has a specific structure 
(such as spatiality), inferences that involve properties 
related to that structure can be very efficient (Shimojima, 
1996). For example, it is easier to make inferences related 
to geometry problems in a representation that explicitly 
encodes 2D space than in a purely abstract representation 
(Larkin & Simon, 1987; Lathrop, 2008). In addition, 
spatial representations implicitly encode background 
knowledge about space, mitigating the frame problem 
present in non-spatial representations of action (Huffman 
& Laird, 1992; Glasgow, 1995; Kurup & Chandrasekaran, 
2006).  
 We wish to build on these arguments (and on our work 
in Wintermute and Laird, 2009), presenting a case for a 
different benefit of imagery. We propose that abstract 
representations and concrete representations provide 
different benefits to a problem-solving agent in terms of 
the quality of solutions it is able to achieve, the efficiency 
with which those solutions can be generated and 
represented, and the flexibility the agent has to solve 
multiple problem types. These benefits can be difficult to 
achieve within a single representation. However, it is our 
hypothesis that by using multiple representations with 
imagery, an agent can leverage the positive aspects of 
each, resulting in a system that is able to make better 
decisions across more problems than is possible with either 
representation alone. This imagery benefit is due to 
representing a problem simultaneously at multiple levels of 
abstraction, it is distinct from the previously studied 
benefit of using a spatially structured representation for 
spatial inferences, and in theory could be extended beyond 
spatial representations. 
 A particular form of imagery is considered here: the use 
of imagery to simulate a future world state based on the 
current world state, along with information such as a 
potential action choice. We will call this form of imagery 
simulative imagery. This use is distinct from other ways an 
agent might use imagery, such as recalling a memory, 
imagining a situation based on a text description, or using 
space as an analogy for a non-spatial problem. 
 The plan for this paper is as follows. First, a simple 
definition of simulative imagery will be presented. Then, to 
ground the discussion, an agent using simulative imagery 
will be described. It is then explained how imagery affects 
some of the issues inherent in building a good problem 
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representation. The example is re-examined, and compared 
to alternative approaches: representing the problem purely 
in concrete terms or purely in abstract terms. As it turns 
out, it is possible to represent the problem in purely 
abstract terms. However, this requires the perception 
system to perform internal imagery operations, and it is 
explained why that approach is undesirable in a general-
purpose agent. 

Simulative Imagery 

 Many types of AI systems fit the basic pattern on the left 
of Figure 1: perceptions are mapped to a high-level 
problem representation, and decisions are made in terms of 
that representation, resulting in actions. Details of 
perception are often ignored when discussing these 
systems and only the representation is addressed, but a 
perception system is still at least implicitly part of the 
agent. For example, in classical planning in the blocks 
world, the representation consists of predicates like 
on(A,B), and it is implied that, in an embodied agent, some 
sort of vision system would build those predicates. 
 Call the direct output of the agent’s sensors Pl, for low-
level perception. This signal is transformed by the 
perception system to create a higher-level perception 
signal, called Ph.  We will call the highest-level part of the 
agent that receives this signal and decides what to do next 
the “decision system” (although it could be argued that 
decisions are made at many levels in the system). This 
system maintains an internal representation of the problem 
state, R, calculated as a function of Ph, possibly taking into 
account past observations and background knowledge. The 
decision system also typically uses a high-level 
representation of actions: it is rare that actions are 
considered in terms like “set motor voltage to .236”, even 
though that may be the final output of the agent. So, even 
in a simple system, there are typically distinct high- and 
low-level action signals, Ah and Al, and a motor system that 
creates Al from Ah. 
 An imagery architecture is shown on the right of Figure 
1. A box for the imagery system has been introduced. This 
system maintains its own representation of the problem 
state, so the overall architecture now has two 
representations, Ri (in the imagery system) and Rd (in the 
decision system). The imagery system also provides an 
additional level of perceptual and action processing. The 
output of low-level perception is now provided to the 
imagery system, so it is called Pm, for mid-level 
perception. This is the signal from which Ri is derived. 
Processing in the imagery system transforms Ri into Ph, 
which is the perception signal provided to the decision 
system. Note that this happens independently of whether 
the contents of Ri is real or imagined: the form of Ph is the 
same, just possibly annotated as real or imagined. That is, 
the imagery system performs the same high-level 
perception over both real and imagined data. 
 The action system is similarly decomposed. Agents can 
thus be built where the decision system can issue actions 
that either cause actual action in the world, or simulate the 

results of that action in the imagery system.  These 
imagery actions allow the agent to predict the value of Ph 
that a given action would cause if it were to be executed in 
the environment. Through simulative imagery, the agent 
can get information about the state of the world not just via 
Ph directly, but via predictions about future values of Ph. 
These predictions can be based on information not present 
in Rd, but present in Ri. 

Motivating Problem 

For a simple example of how simulative imagery can be 
used to solve a spatial problem, consider a slightly-
modified version of a classic blocks world problem. The 
goal in this problem is to stack four blocks in a particular 
configuration, A on top of B on top of C on top of D. 
Unlike the standard blocks world, the blocks cannot be 
placed freely on a table, rather there are two fixed pegs, 
and each block has a groove down its back that must be 
aligned to one of the pegs—essentially, there can only be 
two towers in the world, and their positions are fixed. 
Blocks can be moved from the top of one tower to the 
other, however, the blocks vary in size, and the pegs are 
close enough that blocks may collide, depending on the 
exact sizes of the other blocks in the towers. Blocks can 
also be moved out of the way to a storage bin.  Assume 
that moves between the towers are cheap (cost 1) and 
moves to and from the bin are expensive (cost 20). In 
addition, collisions are very expensive (cost 1000). So it is 
in the agent’s best interest to solve a problem by moving 
blocks between the towers, using the bin only if absolutely 
necessary, and never causing collisions by attempting to 
move a block where it cannot fit (the same domain was 
used in Wintermute and Laird, 2009).  
 This problem can be represented in terms of both an 
abstract and concrete state. Assume that the agent uses a 
similar abstract state to what is normally used in the blocks 
world. The state includes symbols for the important objects 
in the world (the blocks, bin and pegs). Predicates about 
these objects are also encoded:  on(X,Y), indicating that 
block X is on object Y (which could be the base of a peg, 
the bin, or another block), clear(X), indicating that block X 
can be moved, and collided(X,Y), for when blocks X and 
Y have collided. The initial abstract state of the instances 

Figure 1: A simple non-imagery AI architecture (left), 

an imagery architecture (right) 
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we will consider is [on(A,peg1) on(B,peg2) on(C,bin) 
on(D,B)], and the goal state is [on(A,B) on(B,C) on(C,D) 
on(D,peg2)]. In addition to the abstract state, a concrete 
spatial state is present—the exact shapes and positions of 
the blocks are encoded in terms of continuous numbers. 
 In the agent, assume that the move actions can be 
simulated—the agent can use imagery to predict what 
would happen in the concrete state if a given block were 
to be moved, and based on that, can extract a description 
of the (hypothetical) next abstract state.

1
 For now, assume 

that imagery operations have no cost, as they are internal. 
With this capability, a plan for this problem can be 
expressed (Figure 2). The agent makes its move choices 
based on the abstract state, however, instead of acting 
solely in the world, it can also perform imagery actions. 
Then, based on the results of imagery, an external action 
can be chosen. Imagery will sometimes provide differing 
predictions for states that are identical at the abstract 
level: for example, all problem instances have the same 
initial abstract state, but in some instances, moving block 
D to the top of block B will cause a collision, and in some 
instances, it will not. This is represented in the plan as a 
branch: the next abstract state reached and the associated 
action chosen differs based on the results of simulative 
imagery. This happens at several points in the plan, but it 
is not necessary to use imagery before every move (for 
instance, moving a block to the bin is always successful, 
so there is no reason to simulate it). 
 The plan in the figure shows how the agent acts in four 
canonical cases where potential collisions arise at 
different points. In case 1, there is no way to productively 
move blocks between pegs; instead, they must all go into 
the bin before building the goal stack. In case 2, this is 
also true, but the agent cannot determine this until it has 
already made one movement (of D to A). In case 3, block 
D never has to be moved to the bin, and in case 4, neither 
A nor D ever need to be moved to the bin. 
 This plan is an example of how the solution to a 
problem can be represented in a system using simulative 
imagery. This paper does not consider how such a plan 
could be generated. Looking only at how solutions can be 
represented, the discussion here applies independently of 

                                                 
1
 Note that simulative imagery is used here for one-step 

lookahead, but the same mechanisms could be used for arbitrarily 

deep search in this domain. One-step lookahead is used to make 

this agent more representative of agents in domains where aspects 

of the environment are difficult to model (e.g., the actions of 

others, or random events), making deep searches unreliable, while 

the local consequences of the agent’s own actions may still be 

very predictable. 

Figure 2 (right): An imagery-conditional plan for pegged blocks 

world problems. This plan covers instances where the initial abstract 

state is in the upper left of the figure, and the goal is to stack A on B 

on C on D on peg2. Four canonical examples of block sizes that lead 

to four different outcomes are shown. Each path is shown to the 

point that imagery is no longer needed, after which the actions in the 

final box are executed in order to reach the goal. Abstract state 

representations also include “clear” predicates, not shown. 
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how an agent might be programmed to determine a 
solution. In particular, this plan can be considered as a 
subset of an overall policy (an association of states to 
actions), for which the issues involved are the same. 
 An agent using this plan is implemented in the Soar 
cognitive architecture (Laird, 2008) using SVS, a module 
that allows specialized processing for visual and spatial 
information, including imagery. Detailed descriptions of 
this agent and the SVS architecture are contained in 
(Wintermute, 2009). For this discussion, the details of 
implementation are unimportant, other than to demonstrate 
that it is possible to represent and execute the plan. 

A Tradeoff in Problem State Representation 

 An imagery system includes two parallel representations 
of problem state, and the problem is solved through 
interactions between them. The example above shows how 
this can be done, but the question remains as to why it is an 
appropriate approach—why is a single representation 
inadequate? To get at this question, some issues involved 
in problem representation need to be examined in detail.  
 For our purposes, a problem type can be defined as a 
criterion on a desired state of the world (a goal), and a 
problem instance as a specific initial state in the world for 
a given problem. For example, the problem type in Figure 
2 has a goal of stacking the blocks in a certain tower, and 
the figure shows four representative instances of the type. 
 To connect with existing work, we will consider the 
problem of creating a unitary state representation of the 
pegged blocks world task above as a Markov Decision 
Process (MDP, Sutton & Barto, 1998). An MDP is a set of 
states, actions, state transition probabilities for each action 
in each state, and rewards for those transitions. Note that 
the agent above solves an entire problem type, not just a 
single instance: this is also desired of the MDP. Consider 
representing the state here in terms of spatial information: 
coordinates describing the locations and shapes of the 
blocks in space. This state information is sufficient such 
that an optimal action sequence can be determined given 
an initial state. If there is a finite number of possible 
blocks, it is possible to induce a complete MDP for the 
problem with this representation. Call this spatial MDP Ms. 
Note that Ms has a very large state space: each instance 
with the slightest difference in a block dimension is in its 
own region of that space. To learn or explicitly encode the 
transitions of this MDP (let alone a policy) would require 
each possible instance to be separately considered. 
 However, there is a great similarity across instances of 
the problem: indeed, as explained above, all instances can 
be grouped into four cases where the optimal action 
sequence differs. It is possible to describe a “reduced” 
version of Ms (Givan et al., 2003). This MDP, which we 
will call Mr, represents the same problem as Ms, but with 
fewer states. Essentially, Mr is constructed by grouping 
together states of Ms that are functionally equivalent

2
. 

                                                 
2
 Formally, what is meant here is equivalence under bisimulation 

(Givan et al., 2003). 

Here, we call the reduced MDP for a particular spatial 
problem type with the minimal number of states the ideal 
MDP representation of that problem.

3
 

 While such an ideal representation can be theoretically 
described, computing it is another matter. Building Mr 
automatically by first constructing and explicitly analyzing 
Ms would be intractable due to the huge state space of Ms. 
A more feasible approach often followed is to come up a 
set of predicates (by hand) that capture the same state 
distinctions that would be the outcome of an MDP 
reduction, and design the perception system of the agent to 
directly provide state information in terms those predicates. 
For example, in a standard blocks world problem, a set of 
on predicates may be sufficient to capture the state in an 
ideal representation. A programmer can design a 
perception system to directly calculate those predicates, 
rather than relying on an algorithm to automatically infer 
equivalent states based on a more concrete representation.  
 Indeed, much work in agent development goes into 
designing predicates that can create ideal (or close to ideal) 
representations of spatial problems. Further breaking down 
what makes an ideal representation can be helpful to 
understand why this is difficult. Informally, a problem 
representation can be considered as trading off between 
two properties: problem accuracy and abstraction. 
Problem accuracy corresponds to the degree to which the 
representation makes all useful distinctions between the 
states of a problem, and abstraction corresponds to the 
degree to which the representation maps many states of the 
world to fewer internal states. An ideal spatial 
representation is maximal in both of these dimensions: it 
has all of the accuracy of a concrete spatial representation, 
but with much more abstraction. 
 Non-ideal representations are lacking in one (or both) of 
these properties. A representation low in abstraction is 
inefficient:  if raw spatial information is used, repeated 
states will rarely be encountered. Minor changes between 
instances will result in a completely different set of 
reachable states. With no abstraction, a policy would have 
to encode actions for each instance separately, or planning 
rules would have to be written separately for each instance.  
 Having an abstract representation with fewer states can 
then lead to faster learning and easier encoding of planning 
knowledge across instances, since more states of the world 
will appear similar to the agent.  As details are discarded to 
make a more abstract representation, though, it is difficult 
to maintain accuracy—it becomes more likely that 
important problem states will be aliased. This can then lead 
to a loss in the solution quality possible for the agent to 
achieve with the representation. 
 A reasonable aim is to attempt to come up with a 
representation of space that is more abstract than a 

                                                 
3
 Of course, this definition only holds relative to a more primitive 

(unreduced) MDP. We are looking at spatial problems, so “ideal” 

in this context means with respect to a concrete spatial MDP of 

the same problem (that is, an MDP with states encoding the exact 

polyhedrons involved in 3d space).  
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concrete representation, but still accurate for all problems 
the agent must solve. However,  the poverty conjecture of 
Forbus et al. (1991), that “there is no purely qualitative, 
general-purpose, representation of spatial properties”— 
can be interpreted as saying that there is no representation 
for spatial problems that is highly abstract, accurate, and 
problem-independent. This conjecture, if true, implies that 
there is no ideal representation that covers all problem 
domains: a cause for concern if we are designing the 
perception system of what is intended to be a general-
purpose AI system. Any abstract representation of spatial 
properties that might be built by such a perception system 
will be inaccurate in at least some problem types. 
 In many classical AI problems, the world is constrained 
such that an ideal representation is possible, and systems 
are built to address a single problem type, or a small family 
of problem types, so generality is not a concern. In the 
standard blocks world, on predicates concisely capture all 
important aspects of the world and the problem can be 
solved with planning solely in terms of those predicates. A 
state representation based on those same predicates will not 
work as well (will have less accuracy) in the pegged blocks 
world, and will have very little accuracy for other spatial 
problems, like pathfinding, where those predicates do not 
capture important states of the problem. 
 Classical AI systems usually cannot deal well with 
inaccurate state representations. More modern AI systems 
can model inaccuracy as nondeterminism. If there are two 
states that appear the same at the abstract level, but in 
which a given action might lead to two different successor 
states, that transition can be considered probabilistic. 
However, this approach is still problematic. There are 
many cases where the environment and the nature of the 
agent’s sensors or effectors do not allow the problem to be 
considered deterministic, but those are distinct from the 
case where the agent’s own perception system introduces 
that aspect to the problem as it builds an abstract 
representation. In those cases, we may be able to do better, 
since the information needed to properly differentiate 
states is present within the agent (in Pl), just not in Ph.  
 Imagery provides the capability for an agent to use 
multiple parallel representations, which differ from each 
other in terms of abstraction and accuracy. In particular, an 
imagery system has a decision-level representation that is 
highly abstract (and possibly inaccurate), and an imagery 
representation that is not very abstract, but highly accurate. 
Decisions are made in terms of the abstract representation, 
aided by predictions made in terms of the imagery 
representation. The central hypothesis of this work is that, 
taken as a whole, the behavior of such a system can be 
reflect the best of both of these representations, while 
maintaining generality across problems. 

Revisiting the Example 

These principles can be clarified by taking another look at 
the example plan above. Consider the problem of 
designing a system to achieve the same performance on the 
same problem instances, but without using imagery. 

 One option is to use only an abstract representation, for 
example, representing each state as simply a set of on and 
clear predicates. A plan to stack the blocks without 
collision in all instances can be expressed: always move all 
of the blocks to the bin, and restack them into the goal 
configuration. This treats every instance as case 1. This 
will work, but this representation clearly lacks accuracy: it 
does not distinguish between states well enough to separate 
the cases where less expensive solutions are possible 
(specifically, cases 3 and 4). Across all problem instances, 
the agent will not perform as well as the imagery agent. 
 A similar naïve approach is to not bother with an 
abstract representation, and simply use concrete spatial 
information as the problem state. For any given problem 
instance, a collision-free solution plan can be expressed. 
However, each plan applies reliably only in that exact same 
instance: a minor change to a block’s size can change the 
solution to the problem. To cover all of the instances the 
imagery agent is able to cover requires a huge number of 
plans. Again, this is inferior to using imagery. 
 Perhaps the problem here is that the above abstract 
representation is too simplistic. Maybe an abstract 
representation is still possible, but more predicates are 
needed, such as wider-than(X,Y) and taller-than(X,Y). 
This is very difficult, though: consider differentiating 
between cases 3 and 4. To determine whether or not C will 
collide with A, the width of C is important, along with 
both the width and height of A, the height of a third block, 
D, and the distance between the two pegs. If determining 
an abstract representation of this still is not hard enough, 
the shapes of the “blocks” could be changed in arbitrary 
ways (perhaps by giving them puzzle-piece edges). The 
imagery agent can take these manipulations in stride – its 
behavior is conditional on whether or not things intersect, a 
property that is easy to compute based on the imagery 
representation, but is extremely difficult to capture in an 
abstract representation. 

Imagery vs. More Complex Perception  

However complex it may be, it is still possible to create a 
problem-specific abstract representation of the pegged 
blocks world problem without sacrificing accuracy. 
Consider if the perception system in the agent provided 
problem-specific predicates that exactly distinguish 
between the four cases, like collision-if-X-on-peg1-and-
Y-on-Z-on-peg2(X,Y,Z).  
 Such an abstract representation can capture the same 
aspects of the problem as the imagery-conditional plan, 
and could achieve the same performance on the same 
problem instances.

4
 Using imagery requires complicating 

the architecture, adding in extra modules and connections, 
whereas the alternative just requires a smarter perception 
system. Why then should we bother with the architectural 
overhead of imagery, when good perception results in the 
same performance? 

                                                 
4 It could achieve slightly better performance if cases 1 and 2 could be 
distinguished before taking any actions. 
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 Vision, as it is usually considered, is a process of 
combining local information from sensors, such as edges 
and textures, and building up to progressively higher-level 
representations, such as objects and relationships between 
them. This is a process that likely must have both parallel, 
bottom-up aspects, and serial, top-down aspects (Ullman, 
1984). However, there is an important question as to 
whether those top-down aspects should be under the direct 
control of the decision-making part of the agent. If simple 
top-down operations (such as tracing the boundary of a 
region) are needed for task-independent object recognition, 
there is not likely to be a huge need for this level of 
control: the agent would always choose to recognize the 
objects around it. In our problem, to extract the complex 
collision predicate above, a perception system could 
internally use a spatial representation, and explicitly copy 
the block to the peg location and check for intersections, 
just as imagery does. Should this procedure then also be 
automatic and hidden from the decision-making part of the 
agent, just like those procedures that might be used to 
recognize the block?  
 When designing an architecture to cover many 
problems, this is not an appropriate approach. The needed 
result of perception here is very problem-specific. If the 
agent’s task is not to stack blocks on pegs, but instead is to 
arrange them in the bin by color, the complex collision 
predicate introduced above would be useless. Imagery 
allows the same information to be extracted from the 
perception system through a sequence of simple operations 
over time, rather than relying on complicated problem-
specific perception processes. This means that plans and 
policies for very different problems can be represented 
within the same system, without requiring changes to the 
lower-level parts of the system. For example, agents have 
been implemented in Soar/SVS both to cover the problem 
here and very different problems, such as nonholonomic 
car motion planning (Wintermute, 2009). These agents 
differ only in their abstract decision-level knowledge (and 
in their action systems). They use the same basic 
operations for imagery and high-level perception.  
 There are also reasons to prefer imagery to more 
complex perception even in single-problem agents, such as 
the pegged blocks world agent in Figure 2. Imagery allows 
complex properties of the state to be extracted only when 
they are needed. In Cases 1 and 2, for example, the 
information equivalent to collision-if-X-on-peg1-and-Y-
on-Z-on-peg2(X,Y,Z) that separates cases 3 and 4 is never 
extracted by the agent, as the imagery operations are in a 
part of the plan that is never reached. And in no case is that 
information extracted about blocks for which it is not 
directly relevant. Decomposing complex perception into 
atomic steps of imagery and simple perception allows the 
decision system to exercise precise control over it, 
avoiding unnecessary steps.  

Conclusion 

In this paper, we have presented an argument for how 
representing a spatial problem using simulative imagery 

can allow for better agent behavior. Using imagery, 
behavior can be dependent both on an abstract description 
of the world, and on internally-generated predictions about 
the abstract consequences of actions. This allows plans to 
be expressed that leverage the benefits of abstract 
representation, while counteracting problems that can 
occur when different states are aliased together. An 
alternative to this approach is to require the perception 
system to build a problem-specific abstract representation. 
However, this is not appropriate in an agent that addresses 
multiple problems, and even for some single-problem 
agents, there are good reasons to prefer using imagery.  
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