
Representing Problems (and Plans) Using Imagery

Samuel Wintermute

University of Michigan

2260 Hayward St.

Ann Arbor, MI 48109-2121

swinterm@umich.edu

Abstract

In many spatial problems, it can be difficult to create a state
representation that is abstract enough so that irrelevant
details are ignored, but also accurate enough so that
important states of the problem can be differentiated. This is
especially difficult for agents that address a variety of
problems. A potential way to resolve this difficulty is by
using two representations of the spatial state of the problem:
one abstract and one concrete, along with internal (imagery)
operations that modify the concrete representation based on
the contents of the abstract representation. In this paper, we
argue that such a system can allow plans and policies to be
expressed that can better solve a wider class of problems
than would otherwise be possible. An example of such a
plan is described. The theoretical aspects of what imagery
is, how it differs from other techniques, and why it provides
a benefit are explored.

Introduction

Many AI systems have been developed that use multiple
internal representations of space to improve efficiency and
capability. For example, in domains like the blocks world,
it is possible to represent spatial data both in abstract
qualitative terms, like “A is on B” and quantitatively, in
terms of more concrete perceptual data such as pixels or
continuous coordinates. When multiple representations are
used, internal operations between them are possible.
Commonly, the abstract representation is created based on
the contents of the concrete representation. Moreover, in
some systems, the reverse of this operation is also possible:
structures in the concrete representation can be created
internally based on the contents of the abstract
representation. This capability is called imagery.
 Here, we are concerned with examining what role
imagery can play in a spatial problem-solving agent: an
agent that issues actions in the world to solve problems
presented to it (at least chiefly) in spatial terms. This is in
contrast, for example, to systems that use imagery to make
inferences about abstractly-presented spatial information,
such as answering “if A is below C and D is right of C,
how does A relate to D?” (e.g., Barkowsky, 2002).
 Reasons for using multiple representations have been
studied in detail. A common argument is that processing
over certain types of data is more efficient within
specialized representations than in a single uniform

representation. If a representation has a specific structure
(such as spatiality), inferences that involve properties
related to that structure can be very efficient (Shimojima,
1996). For example, it is easier to make inferences related
to geometry problems in a representation that explicitly
encodes 2D space than in a purely abstract representation
(Larkin & Simon, 1987; Lathrop, 2008). In addition,
spatial representations implicitly encode background
knowledge about space, mitigating the frame problem
present in non-spatial representations of action (Huffman
& Laird, 1992; Glasgow, 1995; Kurup & Chandrasekaran,
2006).
 We wish to build on these arguments (and on our work
in Wintermute and Laird, 2009), presenting a case for a
different benefit of imagery. We propose that abstract
representations and concrete representations provide
different benefits to a problem-solving agent in terms of
the quality of solutions it is able to achieve, the efficiency
with which those solutions can be generated and
represented, and the flexibility the agent has to solve
multiple problem types. These benefits can be difficult to
achieve within a single representation. However, it is our
hypothesis that by using multiple representations with
imagery, an agent can leverage the positive aspects of
each, resulting in a system that is able to make better
decisions across more problems than is possible with either
representation alone. This imagery benefit is due to
representing a problem simultaneously at multiple levels of
abstraction, it is distinct from the previously studied
benefit of using a spatially structured representation for
spatial inferences, and in theory could be extended beyond
spatial representations.
 A particular form of imagery is considered here: the use
of imagery to simulate a future world state based on the
current world state, along with information such as a
potential action choice. We will call this form of imagery
simulative imagery. This use is distinct from other ways an
agent might use imagery, such as recalling a memory,
imagining a situation based on a text description, or using
space as an analogy for a non-spatial problem.
 The plan for this paper is as follows. First, a simple
definition of simulative imagery will be presented. Then, to
ground the discussion, an agent using simulative imagery
will be described. It is then explained how imagery affects
some of the issues inherent in building a good problem

40

Multirepresentational Architectures for Human-Level Intelligence:
Papers from the AAAI Fall Symposium (FS-09-05)

representation. The example is re-examined, and compared
to alternative approaches: representing the problem purely
in concrete terms or purely in abstract terms. As it turns
out, it is possible to represent the problem in purely
abstract terms. However, this requires the perception
system to perform internal imagery operations, and it is
explained why that approach is undesirable in a general-
purpose agent.

Simulative Imagery

 Many types of AI systems fit the basic pattern on the left
of Figure 1: perceptions are mapped to a high-level
problem representation, and decisions are made in terms of
that representation, resulting in actions. Details of
perception are often ignored when discussing these
systems and only the representation is addressed, but a
perception system is still at least implicitly part of the
agent. For example, in classical planning in the blocks
world, the representation consists of predicates like
on(A,B), and it is implied that, in an embodied agent, some
sort of vision system would build those predicates.
 Call the direct output of the agent’s sensors Pl, for low-
level perception. This signal is transformed by the
perception system to create a higher-level perception
signal, called Ph. We will call the highest-level part of the
agent that receives this signal and decides what to do next
the “decision system” (although it could be argued that
decisions are made at many levels in the system). This
system maintains an internal representation of the problem
state, R, calculated as a function of Ph, possibly taking into
account past observations and background knowledge. The
decision system also typically uses a high-level
representation of actions: it is rare that actions are
considered in terms like “set motor voltage to .236”, even
though that may be the final output of the agent. So, even
in a simple system, there are typically distinct high- and
low-level action signals, Ah and Al, and a motor system that
creates Al from Ah.
 An imagery architecture is shown on the right of Figure
1. A box for the imagery system has been introduced. This
system maintains its own representation of the problem
state, so the overall architecture now has two
representations, Ri (in the imagery system) and Rd (in the
decision system). The imagery system also provides an
additional level of perceptual and action processing. The
output of low-level perception is now provided to the
imagery system, so it is called Pm, for mid-level
perception. This is the signal from which Ri is derived.
Processing in the imagery system transforms Ri into Ph,
which is the perception signal provided to the decision
system. Note that this happens independently of whether
the contents of Ri is real or imagined: the form of Ph is the
same, just possibly annotated as real or imagined. That is,
the imagery system performs the same high-level
perception over both real and imagined data.
 The action system is similarly decomposed. Agents can
thus be built where the decision system can issue actions
that either cause actual action in the world, or simulate the

results of that action in the imagery system. These
imagery actions allow the agent to predict the value of Ph
that a given action would cause if it were to be executed in
the environment. Through simulative imagery, the agent
can get information about the state of the world not just via
Ph directly, but via predictions about future values of Ph.
These predictions can be based on information not present
in Rd, but present in Ri.

Motivating Problem

For a simple example of how simulative imagery can be
used to solve a spatial problem, consider a slightly-
modified version of a classic blocks world problem. The
goal in this problem is to stack four blocks in a particular
configuration, A on top of B on top of C on top of D.
Unlike the standard blocks world, the blocks cannot be
placed freely on a table, rather there are two fixed pegs,
and each block has a groove down its back that must be
aligned to one of the pegs—essentially, there can only be
two towers in the world, and their positions are fixed.
Blocks can be moved from the top of one tower to the
other, however, the blocks vary in size, and the pegs are
close enough that blocks may collide, depending on the
exact sizes of the other blocks in the towers. Blocks can
also be moved out of the way to a storage bin. Assume
that moves between the towers are cheap (cost 1) and
moves to and from the bin are expensive (cost 20). In
addition, collisions are very expensive (cost 1000). So it is
in the agent’s best interest to solve a problem by moving
blocks between the towers, using the bin only if absolutely
necessary, and never causing collisions by attempting to
move a block where it cannot fit (the same domain was
used in Wintermute and Laird, 2009).
 This problem can be represented in terms of both an
abstract and concrete state. Assume that the agent uses a
similar abstract state to what is normally used in the blocks
world. The state includes symbols for the important objects
in the world (the blocks, bin and pegs). Predicates about
these objects are also encoded: on(X,Y), indicating that
block X is on object Y (which could be the base of a peg,
the bin, or another block), clear(X), indicating that block X
can be moved, and collided(X,Y), for when blocks X and
Y have collided. The initial abstract state of the instances

Figure 1: A simple non-imagery AI architecture (left),

an imagery architecture (right)

41

we will consider is [on(A,peg1) on(B,peg2) on(C,bin)
on(D,B)], and the goal state is [on(A,B) on(B,C) on(C,D)
on(D,peg2)]. In addition to the abstract state, a concrete
spatial state is present—the exact shapes and positions of
the blocks are encoded in terms of continuous numbers.
 In the agent, assume that the move actions can be
simulated—the agent can use imagery to predict what
would happen in the concrete state if a given block were
to be moved, and based on that, can extract a description
of the (hypothetical) next abstract state.

1
 For now, assume

that imagery operations have no cost, as they are internal.
With this capability, a plan for this problem can be
expressed (Figure 2). The agent makes its move choices
based on the abstract state, however, instead of acting
solely in the world, it can also perform imagery actions.
Then, based on the results of imagery, an external action
can be chosen. Imagery will sometimes provide differing
predictions for states that are identical at the abstract
level: for example, all problem instances have the same
initial abstract state, but in some instances, moving block
D to the top of block B will cause a collision, and in some
instances, it will not. This is represented in the plan as a
branch: the next abstract state reached and the associated
action chosen differs based on the results of simulative
imagery. This happens at several points in the plan, but it
is not necessary to use imagery before every move (for
instance, moving a block to the bin is always successful,
so there is no reason to simulate it).
 The plan in the figure shows how the agent acts in four
canonical cases where potential collisions arise at
different points. In case 1, there is no way to productively
move blocks between pegs; instead, they must all go into
the bin before building the goal stack. In case 2, this is
also true, but the agent cannot determine this until it has
already made one movement (of D to A). In case 3, block
D never has to be moved to the bin, and in case 4, neither
A nor D ever need to be moved to the bin.
 This plan is an example of how the solution to a
problem can be represented in a system using simulative
imagery. This paper does not consider how such a plan
could be generated. Looking only at how solutions can be
represented, the discussion here applies independently of

1
 Note that simulative imagery is used here for one-step

lookahead, but the same mechanisms could be used for arbitrarily

deep search in this domain. One-step lookahead is used to make

this agent more representative of agents in domains where aspects

of the environment are difficult to model (e.g., the actions of

others, or random events), making deep searches unreliable, while

the local consequences of the agent’s own actions may still be

very predictable.

Figure 2 (right): An imagery-conditional plan for pegged blocks

world problems. This plan covers instances where the initial abstract

state is in the upper left of the figure, and the goal is to stack A on B

on C on D on peg2. Four canonical examples of block sizes that lead

to four different outcomes are shown. Each path is shown to the

point that imagery is no longer needed, after which the actions in the

final box are executed in order to reach the goal. Abstract state

representations also include “clear” predicates, not shown.

42

how an agent might be programmed to determine a
solution. In particular, this plan can be considered as a
subset of an overall policy (an association of states to
actions), for which the issues involved are the same.
 An agent using this plan is implemented in the Soar
cognitive architecture (Laird, 2008) using SVS, a module
that allows specialized processing for visual and spatial
information, including imagery. Detailed descriptions of
this agent and the SVS architecture are contained in
(Wintermute, 2009). For this discussion, the details of
implementation are unimportant, other than to demonstrate
that it is possible to represent and execute the plan.

A Tradeoff in Problem State Representation

 An imagery system includes two parallel representations
of problem state, and the problem is solved through
interactions between them. The example above shows how
this can be done, but the question remains as to why it is an
appropriate approach—why is a single representation
inadequate? To get at this question, some issues involved
in problem representation need to be examined in detail.
 For our purposes, a problem type can be defined as a
criterion on a desired state of the world (a goal), and a
problem instance as a specific initial state in the world for
a given problem. For example, the problem type in Figure
2 has a goal of stacking the blocks in a certain tower, and
the figure shows four representative instances of the type.
 To connect with existing work, we will consider the
problem of creating a unitary state representation of the
pegged blocks world task above as a Markov Decision
Process (MDP, Sutton & Barto, 1998). An MDP is a set of
states, actions, state transition probabilities for each action
in each state, and rewards for those transitions. Note that
the agent above solves an entire problem type, not just a
single instance: this is also desired of the MDP. Consider
representing the state here in terms of spatial information:
coordinates describing the locations and shapes of the
blocks in space. This state information is sufficient such
that an optimal action sequence can be determined given
an initial state. If there is a finite number of possible
blocks, it is possible to induce a complete MDP for the
problem with this representation. Call this spatial MDP Ms.
Note that Ms has a very large state space: each instance
with the slightest difference in a block dimension is in its
own region of that space. To learn or explicitly encode the
transitions of this MDP (let alone a policy) would require
each possible instance to be separately considered.
 However, there is a great similarity across instances of
the problem: indeed, as explained above, all instances can
be grouped into four cases where the optimal action
sequence differs. It is possible to describe a “reduced”
version of Ms (Givan et al., 2003). This MDP, which we
will call Mr, represents the same problem as Ms, but with
fewer states. Essentially, Mr is constructed by grouping
together states of Ms that are functionally equivalent

2
.

2
 Formally, what is meant here is equivalence under bisimulation

(Givan et al., 2003).

Here, we call the reduced MDP for a particular spatial
problem type with the minimal number of states the ideal
MDP representation of that problem.

3

 While such an ideal representation can be theoretically
described, computing it is another matter. Building Mr
automatically by first constructing and explicitly analyzing
Ms would be intractable due to the huge state space of Ms.
A more feasible approach often followed is to come up a
set of predicates (by hand) that capture the same state
distinctions that would be the outcome of an MDP
reduction, and design the perception system of the agent to
directly provide state information in terms those predicates.
For example, in a standard blocks world problem, a set of
on predicates may be sufficient to capture the state in an
ideal representation. A programmer can design a
perception system to directly calculate those predicates,
rather than relying on an algorithm to automatically infer
equivalent states based on a more concrete representation.
 Indeed, much work in agent development goes into
designing predicates that can create ideal (or close to ideal)
representations of spatial problems. Further breaking down
what makes an ideal representation can be helpful to
understand why this is difficult. Informally, a problem
representation can be considered as trading off between
two properties: problem accuracy and abstraction.
Problem accuracy corresponds to the degree to which the
representation makes all useful distinctions between the
states of a problem, and abstraction corresponds to the
degree to which the representation maps many states of the
world to fewer internal states. An ideal spatial
representation is maximal in both of these dimensions: it
has all of the accuracy of a concrete spatial representation,
but with much more abstraction.
 Non-ideal representations are lacking in one (or both) of
these properties. A representation low in abstraction is
inefficient: if raw spatial information is used, repeated
states will rarely be encountered. Minor changes between
instances will result in a completely different set of
reachable states. With no abstraction, a policy would have
to encode actions for each instance separately, or planning
rules would have to be written separately for each instance.
 Having an abstract representation with fewer states can
then lead to faster learning and easier encoding of planning
knowledge across instances, since more states of the world
will appear similar to the agent. As details are discarded to
make a more abstract representation, though, it is difficult
to maintain accuracy—it becomes more likely that
important problem states will be aliased. This can then lead
to a loss in the solution quality possible for the agent to
achieve with the representation.
 A reasonable aim is to attempt to come up with a
representation of space that is more abstract than a

3
 Of course, this definition only holds relative to a more primitive

(unreduced) MDP. We are looking at spatial problems, so “ideal”

in this context means with respect to a concrete spatial MDP of

the same problem (that is, an MDP with states encoding the exact

polyhedrons involved in 3d space).

43

concrete representation, but still accurate for all problems
the agent must solve. However, the poverty conjecture of
Forbus et al. (1991), that “there is no purely qualitative,
general-purpose, representation of spatial properties”—
can be interpreted as saying that there is no representation
for spatial problems that is highly abstract, accurate, and
problem-independent. This conjecture, if true, implies that
there is no ideal representation that covers all problem
domains: a cause for concern if we are designing the
perception system of what is intended to be a general-
purpose AI system. Any abstract representation of spatial
properties that might be built by such a perception system
will be inaccurate in at least some problem types.
 In many classical AI problems, the world is constrained
such that an ideal representation is possible, and systems
are built to address a single problem type, or a small family
of problem types, so generality is not a concern. In the
standard blocks world, on predicates concisely capture all
important aspects of the world and the problem can be
solved with planning solely in terms of those predicates. A
state representation based on those same predicates will not
work as well (will have less accuracy) in the pegged blocks
world, and will have very little accuracy for other spatial
problems, like pathfinding, where those predicates do not
capture important states of the problem.
 Classical AI systems usually cannot deal well with
inaccurate state representations. More modern AI systems
can model inaccuracy as nondeterminism. If there are two
states that appear the same at the abstract level, but in
which a given action might lead to two different successor
states, that transition can be considered probabilistic.
However, this approach is still problematic. There are
many cases where the environment and the nature of the
agent’s sensors or effectors do not allow the problem to be
considered deterministic, but those are distinct from the
case where the agent’s own perception system introduces
that aspect to the problem as it builds an abstract
representation. In those cases, we may be able to do better,
since the information needed to properly differentiate
states is present within the agent (in Pl), just not in Ph.
 Imagery provides the capability for an agent to use
multiple parallel representations, which differ from each
other in terms of abstraction and accuracy. In particular, an
imagery system has a decision-level representation that is
highly abstract (and possibly inaccurate), and an imagery
representation that is not very abstract, but highly accurate.
Decisions are made in terms of the abstract representation,
aided by predictions made in terms of the imagery
representation. The central hypothesis of this work is that,
taken as a whole, the behavior of such a system can be
reflect the best of both of these representations, while
maintaining generality across problems.

Revisiting the Example

These principles can be clarified by taking another look at
the example plan above. Consider the problem of
designing a system to achieve the same performance on the
same problem instances, but without using imagery.

 One option is to use only an abstract representation, for
example, representing each state as simply a set of on and
clear predicates. A plan to stack the blocks without
collision in all instances can be expressed: always move all
of the blocks to the bin, and restack them into the goal
configuration. This treats every instance as case 1. This
will work, but this representation clearly lacks accuracy: it
does not distinguish between states well enough to separate
the cases where less expensive solutions are possible
(specifically, cases 3 and 4). Across all problem instances,
the agent will not perform as well as the imagery agent.
 A similar naïve approach is to not bother with an
abstract representation, and simply use concrete spatial
information as the problem state. For any given problem
instance, a collision-free solution plan can be expressed.
However, each plan applies reliably only in that exact same
instance: a minor change to a block’s size can change the
solution to the problem. To cover all of the instances the
imagery agent is able to cover requires a huge number of
plans. Again, this is inferior to using imagery.
 Perhaps the problem here is that the above abstract
representation is too simplistic. Maybe an abstract
representation is still possible, but more predicates are
needed, such as wider-than(X,Y) and taller-than(X,Y).
This is very difficult, though: consider differentiating
between cases 3 and 4. To determine whether or not C will
collide with A, the width of C is important, along with
both the width and height of A, the height of a third block,
D, and the distance between the two pegs. If determining
an abstract representation of this still is not hard enough,
the shapes of the “blocks” could be changed in arbitrary
ways (perhaps by giving them puzzle-piece edges). The
imagery agent can take these manipulations in stride – its
behavior is conditional on whether or not things intersect, a
property that is easy to compute based on the imagery
representation, but is extremely difficult to capture in an
abstract representation.

Imagery vs. More Complex Perception

However complex it may be, it is still possible to create a
problem-specific abstract representation of the pegged
blocks world problem without sacrificing accuracy.
Consider if the perception system in the agent provided
problem-specific predicates that exactly distinguish
between the four cases, like collision-if-X-on-peg1-and-
Y-on-Z-on-peg2(X,Y,Z).
 Such an abstract representation can capture the same
aspects of the problem as the imagery-conditional plan,
and could achieve the same performance on the same
problem instances.

4
 Using imagery requires complicating

the architecture, adding in extra modules and connections,
whereas the alternative just requires a smarter perception
system. Why then should we bother with the architectural
overhead of imagery, when good perception results in the
same performance?

4 It could achieve slightly better performance if cases 1 and 2 could be
distinguished before taking any actions.

44

 Vision, as it is usually considered, is a process of
combining local information from sensors, such as edges
and textures, and building up to progressively higher-level
representations, such as objects and relationships between
them. This is a process that likely must have both parallel,
bottom-up aspects, and serial, top-down aspects (Ullman,
1984). However, there is an important question as to
whether those top-down aspects should be under the direct
control of the decision-making part of the agent. If simple
top-down operations (such as tracing the boundary of a
region) are needed for task-independent object recognition,
there is not likely to be a huge need for this level of
control: the agent would always choose to recognize the
objects around it. In our problem, to extract the complex
collision predicate above, a perception system could
internally use a spatial representation, and explicitly copy
the block to the peg location and check for intersections,
just as imagery does. Should this procedure then also be
automatic and hidden from the decision-making part of the
agent, just like those procedures that might be used to
recognize the block?
 When designing an architecture to cover many
problems, this is not an appropriate approach. The needed
result of perception here is very problem-specific. If the
agent’s task is not to stack blocks on pegs, but instead is to
arrange them in the bin by color, the complex collision
predicate introduced above would be useless. Imagery
allows the same information to be extracted from the
perception system through a sequence of simple operations
over time, rather than relying on complicated problem-
specific perception processes. This means that plans and
policies for very different problems can be represented
within the same system, without requiring changes to the
lower-level parts of the system. For example, agents have
been implemented in Soar/SVS both to cover the problem
here and very different problems, such as nonholonomic
car motion planning (Wintermute, 2009). These agents
differ only in their abstract decision-level knowledge (and
in their action systems). They use the same basic
operations for imagery and high-level perception.
 There are also reasons to prefer imagery to more
complex perception even in single-problem agents, such as
the pegged blocks world agent in Figure 2. Imagery allows
complex properties of the state to be extracted only when
they are needed. In Cases 1 and 2, for example, the
information equivalent to collision-if-X-on-peg1-and-Y-
on-Z-on-peg2(X,Y,Z) that separates cases 3 and 4 is never
extracted by the agent, as the imagery operations are in a
part of the plan that is never reached. And in no case is that
information extracted about blocks for which it is not
directly relevant. Decomposing complex perception into
atomic steps of imagery and simple perception allows the
decision system to exercise precise control over it,
avoiding unnecessary steps.

Conclusion

In this paper, we have presented an argument for how
representing a spatial problem using simulative imagery

can allow for better agent behavior. Using imagery,
behavior can be dependent both on an abstract description
of the world, and on internally-generated predictions about
the abstract consequences of actions. This allows plans to
be expressed that leverage the benefits of abstract
representation, while counteracting problems that can
occur when different states are aliased together. An
alternative to this approach is to require the perception
system to build a problem-specific abstract representation.
However, this is not appropriate in an agent that addresses
multiple problems, and even for some single-problem
agents, there are good reasons to prefer using imagery.

Acknowledgements

John Laird provided guidance on this project, and helped
edit the paper. This research was funded by a grant from
US Army TARDEC.

References

Barkowsky, T. (2002). Mental Representation and Processing of

Geographic Knowledge: A Computational Approach.

Springer.

Forbus, K. D., Nielsen, P., & Faltings, B. (1991). Qualitative

spatial reasoning: the CLOCK project. Artificial

Intelligence, 51(1-3), 417-471.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions

and model minimization in Markov decision processes.

Artificial Intelligence, 147(1) 163–224.

Glasgow, J. (1995). A formalism for model-based spatial

planning. In Spatial Information Theory A Theoretical

Basis for GIS (pp. 501-518).

Huffman, S., & Laird, J. E. (1992). Using Concrete, Perceptually-

Based Representations to Avoid the Frame Problem. In

AAAI Spring Symposium on Reasoning with

Diagrammatic Representations.

Kurup, U., & Chandrasekaran, B. (2006). Multi-modal Cognitive

Architectures: A Partial Solution to the Frame Problem.

In Proceedings of CogSci 2006.

Laird, J. E. (2008). Extending the Soar Cognitive Architecture. In

Proceedings of AGI-08.

Larkin, J.H. & Simon, H.A. (1987). Why a Diagram is

(Sometimes) Worth Ten Thousand Words. Cognitive

Science, 11(1), 65-100.

Lathrop, S. D. (2008). Extending Cognitive Architectures with

Spatial and Visual Imagery Mechanisms. PhD Thesis,

University of Michigan.

Shimojima, A. (1996). On the efficacy of representation. PhD

Thesis, Indiana University.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An

Introduction. MIT Press.

Ullman, S. (1984). Visual routines. Cognition, 18(1-3), 97.

Wintermute, S., (2009). An Overview of Spatial Processing in

Soar/SVS. Technical Report, University of Michigan

Center for Cognitive Architecture.

Wintermute, S., & Laird, J. E. (2009). Imagery as Compensation

for an Imperfect Abstract Problem Representation. In

Proceedings of CogSci 2009.

45

