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Abstract 

The Raven’s Progressive Matrices (RPM) test is a 
commonly used test of general human intelligence.  The 
RPM is somewhat unique as a general intelligence test in 
that it focuses on visual problem solving, and in particular, 
on visual similarity and analogy.  We are developing a small 
set of methods for problem solving in the RPM which use 
propositional, imagistic, and multimodal representations, 
respectively, to investigate how different representations 
can contribute to visual problem solving and how the effects 
of their use might emerge in behavior. 

 Introduction     

The Raven’s Progressive Matrices (RPM) test1 is a 
standardized intelligence test that consists of visually 
presented, geometric-analogy-like problems in which a 
matrix of geometric figures is presented with one entry 
missing, and the correct missing entry must be selected 
from a set of answer choices.  Figure 1 shows an example 
of a problem that is similar to one of the problems in the 
Standard Progressive Matrices (SPM).   
 Although the test is supposed to measure only eductive 
ability, or the ability to extract and understand information 
from a complex situation (Raven, Raven, & Court 1998), 
the RPM’s high level of correlation with other multi-
domain intelligence tests have given it a position of 
centrality in the space of psychometric measures (Snow, 
Kyllonen, & Marshalek 1984), and it is therefore often 
used as a test of general intelligence.  Using the RPM as a 
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1 A note on the Raven’s family of tests: We use RPM to denote the 

Raven’s Progressive Matrices paradigm without referring to any 

particular version of the test.  Specific versions that we discuss include the 

original Standard Progressive Matrices (SPM) and the Advanced 

Progressive Matrices (APM), which was developed as a more difficult test 

to reduce the ceiling effects sometimes found with the SPM (Raven, 

Raven, & Court 1998).  Colored Progressive Matrices (CPM) is a simpler 

version of the test often used with children or other less mentally able 

individuals; we do not address the CPM in this work. 

measure of general intelligence, though it consists only of 
problems in a single, nonverbal format, stands in contrast 
to using broader tests like the Wechsler scales, which are 
comprised of subtests across several different verbal and 
nonverbal domains. 
 Despite its widespread use, neither the computational 
nor the cognitive characteristics of the process of solving 
the RPM are well understood.  Hunt (1974) gives a 
theoretical account of the information processing demands 
of certain problems from the Advanced Progressive 
Matrices (APM), in which he proposes two qualitatively 
different solution algorithms—“Gestalt,” which uses visual 
representations and perceptually based operations, and 
“Analytic,” which uses feature-based representations and 
logical operations—that could yield identical results on at 
least portions of the test.  
 Our work expands on Hunt’s idea by asking whether 
qualitatively different systems of representation can lead to 
identical performance on the RPM.  Our question is 
theoretically interesting for the study of cognition and AI 
because the fact that the RPM correlates so well with 
broader tests of intelligence suggests that the specific 
information processing capacities tapped by the RPM may 

 
 

Figure 1.  Example problem similar to one in the Standard 

Progressive Matrices (SPM) test. 
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be central to domain-general processes of reasoning used 
across a variety of cognitive tasks.  If different schemes of 
representation can provide equivalent performance, then 
this raises the issues of 1) whether these broader reasoning 
processes can (or must) also be instantiated with different 
types of representations, 2) to what extent a single 
individual may (or must) draw on these different 
representations for reasoning tasks, and 3) to what degree 
individual differences may (or must) result from variations 
in the underlying representations being used.   
 Our central question is also of immense practical import 
because the RPM family of tests is used extensively in 
clinical, educational, vocational, and scientific settings as 
an accurate assessment of intelligence.  Therefore, 
interpretations of RPM scores should be made only with a 
thorough understanding of what cognitive implications 
these scores do and do not provide. 

Evidence for Different RPM Strategies  

While within- and between-individual differences on the 
RPM are generally treated as being those of degree and not 
of type, there is evidence that the use of qualitatively 
different solution strategies may be responsible for some of 
these differences.  Within-individual differences have been 
linked to the presence of different problem types on the 
RPM, i.e. factor analyses and other behavioral markers 
have suggested that different problems may admit distinct 
solution strategies (DeShon, Chan, & Weissbein 1995; 
Dillon, Pohlmann, & Lohman 1981). 
 Recent studies have highlighted the possibility of there 
being qualitative differences in RPM solution strategies 
between individuals with autism and “neurotypical” 
individuals.  Autism is a developmental disorder marked 
by significant language delay and atypical behaviors in 
social interaction, communication, and stereotyped or 
repetitive patterns of behavior and interest (DSM-IV-TR 
2000).  While individuals with autism show impaired 
performance on many cognitive tasks, many studies report 
intact or superior performance on certain visuospatial tasks 
(e.g. Joliffe & Baron-Cohen 1997). 
 Studies of intelligence tests have shown that, unlike 
neurotypical individuals who show correlated scores, 
individuals with autism often demonstrate RPM scores that 

are much higher than their Wechsler scores (Mottron 2004; 
Dawson et al. 2007).  Individuals with Asperger’s 
syndrome show a similar pattern (Hayashi et al. 2008).   
 One possible explanation for these results is that 
individuals with autism might be predisposed towards 
reasoning visually (Kunda & Goel 2008a, 2008b).  In this 
case, they might find the RPM amenable to a visual 
reasoning solution but the verbal Wechsler subtests very 
difficult.  Recent neuroimaging evidence is consistent with 
this possibility (Soulières et al. 2009). 

Building Computational Accounts of the RPM 

Existing computational accounts of problem solving on the 
RPM, with the exception of Hunt’s early work in 1974, use 
propositional representations and assume that individual 
differences result from quantitative differences in the 
problem solving architecture, e.g. number of goals that can 
be managed, types of shapes that can be discriminated, etc. 
(e.g. Carpenter, Just, & Shell 1990; Lovett, Forbus, & 
Usher 2007).  In contrast, we are developing three 
methods for solving RPM problems, each of which uses a 
fundamentally different representational substrate. 
 The first is a purely imagistic method that relies on 
fractal encodings of an RPM matrix.  The fractal 
representations use only grayscale pixel values from an 
image of an RPM problem and are mathematical 
abstractions quite rigorously grounded in the theory of 
fractal image compression (Barnsley & Hurd 1992). 
 The second method uses a multimodal representation in 
which elements from an RPM problem are represented 
using a visuospatial-symbolic scheme, in which the 
elements can be manipulated symbolically but only with 
operations based in visual perception, e.g. translation, 
rotation, scaling, etc.  This representation follows the work 
of Kosslyn, Thompson, and Ganis (2006) on depictive 
mental representations and is similar to representations 
used in our earlier work on visual analogy (Davies & Goel 
2001; Davies, Goel, & Yaner 2008). 
 The third method uses propositional representations 
similar to those in Carpenter, Just, and Shell (1990).    We 
view this chiefly as a control representation with which to 
compare our first and second methods.  We now present 
our first and second methods in greater detail. 

Fractal Representations and the RPM 

An RPM problem can be viewed as a sequence of images 
(ordered in rows and columns), where some unknown 
transformation T can be said to transform one image into a 
corresponding adjacent image.  In a typical two-by-two 
RPM problem, there are four such transformations, as 
shown in Figure 2.  (RPM problems can also have three-
by-three matrices, which we do not address in this paper.)   
 RPM problems are formulated to suggest that these 
transformations are pairwise analogous (i.e. the two row 
transformations are analogous to one another).  We seek to 

 
 

Figure 2.  Illustration of four image transformations implicit 

in a two-by-two RPM problem matrix. 
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solve a problem by determining which of the candidate 
solutions yields the most analogous transformations.  To 
this end, we explored the fractal encoding of one image in 
terms of another as a representational basis for calculating 
and discovering the underlying analogies. 
 The mathematical derivation of fractal encoding 
expressly depends upon the notion of real world images, 
i.e. images that are two dimensional and continuous.  A 
key observation is that all naturally occurring images we 
perceive appear to have similar, repeating patterns. 
Another observation is that no matter how closely you 
examine the real world, you find instances of similar 
structures and repeating patterns.  
 This suggests that it is possible to describe the real world 
in terms other than those of shapes or traditional graphical 
elements—in particular, terms which capture the similarity 
and repetition alone. 
 The theorem at the heart of the fractal encoding 
algorithm can be stated concisely: 
 

 For any particular real world image D, there exists a 
finite set of affine transformations T which, if applied 
repeatedly and indefinitely to any other real world 
image S, will result in the convergence of S into D. 

The Fractal Encoding Algorithm 

Given an image D, the fractal encoding algorithm seeks to 
discover the set of transformations T.  The algorithm is 
considered “fractal” for two reasons: first, the affine 
transformations are generally contractive, which leads to 
convergence, and second, the convergence of S into D can 
be shown to be the mathematical equivalent of considering 
D to be a strange attractor. 
 Here are the general steps of the algorithm for encoding 
an image D in terms of another image S: 
 
1) Decompose D into a set of N smaller images {d1, d2, 

d3, ..., dn}. These individual images are sets of points. 
2) For each image di:  

a) Examine the entire source image S for an 
equivalent image si such that an affine 
transformation of si will result in di. This affine 
transformation will be a 3x3 matrix, as the points 
within si and di under consideration can be 
represented as the 3-D vector <x, y, c> where c is 
the (grayscale) color of the 2-D point <x,y>. 

b) Let Ti represent the compact representation of the 
discovered affine transformation. 

3) The set T = {T1, T2, T3, ..., Tn} is the fractal encoding 
of the image D. 

 
The fractal transforms we construct are sets of specific 
affine transformations which describe the alteration and 
colorization of fragments of the source image that will 
collage into the destination image.  These fragments are 
generally blocks of pixel data inferior in size to the whole 
image.  The fractal encoding indicates compactly 1) from 
where the source material originates and 2) how to 

manipulate it geometrically (copy, rotation, or flip) and 
photometrically (altering the block’s luminosity).   
 While it is tempting to treat contiguous subsets of these 
transformations as features, note that their derivation does 
not follow strictly Cartesian notions (e.g. adjacent material 
in the destination might arise from strongly non-adjacent 
source material).  With this in mind, we consider (in our 
present implementations) each of these block-level 
transformations to be independent of one another, and we 
only construct candidate fractal features for matching from 
single block-level transformations.  Each such transform 
yields a very small finite set of fractal features. 
 We generate fractal solutions to RPM problems by 
examining all possible pairwise transforms and calculating 
a measure of similarity for each pair.  This metric reflects 
similarity as a comparison of the number of fractal features 
shared between candidate pairs taken in contrast to the 
joint number of fractal features found in each pair member 
(Tversky 1977).   The solution is chosen as the answer that 
results in the highest measured similarity for both row and 
column pairs in the RPM problem.  

Affine Symbolic Reasoning and the RPM 

As described at the start of the fractal section above, pairs 
of images in a two-by-two RPM problem can be viewed as 
having some unknown transformations T that apply either 
across a row or down a column.  Following the view of 
mental imagery as supporting operations on depictive 
representations (Kosslyn, Thompson, & Ganis 2006), we 
designed our second method around affine transformations 
(such as rotation and reflection) and other depictive 
operations such as image addition and subtraction (and so 
we call this method “affine-extended”).   
 In particular, this method seeks to explicitly characterize 
the transformation across any given row or column of an 
RPM problem matrix as being one of (or a composition of) 
these types of transformations.   Unlike the fractal method, 
the affine method then applies this transformation to the 
row or column with the empty entry to generate a predicted 
value for the missing image.   
 Only after a prediction has been made does the 
algorithm examine the set of answer choices.  It chooses an 
answer based on some measure of visual similarity, for 
instance choosing the answer that minimizes the sum-
squared-difference between the intensity (grayscale) values 
of the predicted image and the answer image. 

The Affine-Extended Algorithm 

The affine-extended algorithm seeks to discover a single 
transformation T that holds across any of the complete 
rows or columns of the RPM problem matrix.  In 
particular, the algorithm has access to a memory store 
containing a set of basic transformations along with a finite 
subset of possible compositions of such transformations, 
from which it can draw specific candidate transformations 
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to test on the matrix.  The algorithm proceeds as follows, 
in the case of a two-by-two RPM matrix problem: 
 
1) For each transformation Ti in memory: 

a) For the top row, check to see if Ti holds.   
i) If so, apply Ti to the bottom row to generate a 

guess for the missing image.  Go to step 2. 
ii) If not, continue to step 1b. 

b) For the left column, check to see if Ti holds.   
i) If so, apply Ti to the right column to generate 

a guess for the missing image.  Go to step 2. 
ii) If not, repeat step 1 with the next Ti.   
iii) If there are no more transformations in 

memory, then the algorithm halts. 
2) For each answer choice Ai: 

a) Compute the sum-squared-difference (SSD) 
between the predicted image and Ai. 

3) Choose the answer choice Ai that minimizes the SSD 
value. 

 
Unlike the fractal method, the affine-extended method will 
not always produce a solution.  The memory set is 
restricted to a finite set of possible relations in order to 
prevent the algorithm from stalling indefinitely on a single 
problem.  Despite this limitation, we hypothesize that the 
affine-extended method will in fact be able to solve a large 
fraction of the SPM problems. 

Ambiguity and the Affine-Extended Method 

Notice, in the algorithm above, that there are two biases in 
searching for the correct transformation.  First, there is a 
bias in examining rows first and then columns.  Second, 
there is a bias in the order in which transformations are 
retrieved from memory.   
 These biases would not matter if there were exactly one 
transformation from memory that held for a given matrix 
problem.  However, the presence of ambiguity in some 
problems means that, if two or more transformations hold, 

or if a transformation holds for both rows and columns, the 
algorithm will use the first one that crosses its path, which 
may or may not be the correct one. 
 Figure 3 gives an example of a problem with this kind of 
ambiguity; this problem is analogous to one in the actual 
SPM test.  One transformation that could hold in this 
problem would be, across the top row, reflection about a 
vertical axis.  Using this transformation on the bottom row, 
the predicted answer would be identical to answer #5. 
 However, one could also have a transformation across 
the top row that consists of a rotation 90° to the left and 
then a scaling along the vertical axis (i.e. “squishing” the 
figure down vertically).  Applying this transformation to 
the bottom row would predict an image identical to answer 
#6.  So which is correct? 
 There are several ways, which we are currently 
investigating, in which this conflict could be resolved.  
First, the algorithm could just stick with its first prediction, 
and sometimes its biases would result in the correct answer 
being chosen, and sometimes not.  Another option is to 
explicitly assign biases to the transformations in memory, 
where, for example, a transformation comprised of a single 
operation (e.g. reflection) would be examined before 
transformations comprised of multiple operations (e.g. 
rotation plus scaling).  This approach puts additional 
requirements on the memory store and assumes that such 
rankings of transformations are somehow justified. 
 A third approach is to add an additional step to the 
algorithm that examines the final matrix (with the 
predicted answer choice in place) for qualities of symmetry 
or other global measures.  If symmetry were the measure, 
then the algorithm would choose answer #5 over answer #6 
in the example problem shown in Figure 3.    
 This approach raises questions as to what precisely the 
RPM tests are measuring, if such problem ambiguities are 
resolved by a fixed, global scale of optimal answers.  It 
could be that aspects of symmetry play a key role, in which 
case it would be interesting to compare the demands of 
computing symmetry on the RPM to the requirements for 
recognizing symmetry in other cognitive tasks. 

Contrasts with Propositional Representations 

Carpenter, Just, and Shell (1990) describe a computational 
model that simulates solving RPM problems using 
propositional representations.  Their model is based on the 
traditional production system architecture, with a long-
term memory containing a set of productions and a 
working memory containing the current state of problem 
solving (e.g. current goals).  Productions are based on the 
relations among the entities in a RPM problem, for 
example, the location of the dark component in a row, 
which might be the top half in the top row of a problem, 
bottom-half in the bottom row, and so on.  
 Their computer model is able to emulate human problem 
solving on most RPM problems (from the Advanced 
Progressive Matrices test) up to the performance levels of 
the highest scoring subjects in their study.  However, as 

 
 

Figure 3.  Example problem similar to one in the Standard 

Progressive Matrices (SPM), illustrating ambiguity in possible 

solutions when using the affine-extended method. 
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described in their paper, the model “operates on a hand-
coded, symbolic description of each matrix entry.”  Thus, 
visual information is encoded implicitly in their coded 
matrix entries and also in the set of production rules but is 
nowhere explicitly accessed or used by the model. 

Preliminary Results 

In this section, we will describe solutions based upon each 
of our two novel computational methods. 

Example Using the Fractal Method 

As an example, we shall use the “arrow” problem shown in 
Figure 4.  Also, while the complete fractal method 
examines each of the problem’s analogies, we shall restrict 
this detailed discussion to just one of these transformations 
(T1, as labeled in Figure 2). 
 The initial transformation T1 is the fractal encoding of 
the transformation from the upper left arrow into the upper 
right arrow.  When encoded using a block size of 32 x 32 
pixels, this encoding generates 39 distinct fractal features.   
 Each candidate answer is encoded likewise, from the 
upper left arrow into the candidate, each resulting in 
between 27 and 45 distinct features.  On the determination 
of the set of fractal features for each candidate, a measure 
of similarity S between the candidate transform C and the 
target transform T1 is calculated using the following 
formula, also known as the ratio model (Tversky 1977):  
 
S(T,C) = f(T ∩ C) / [ f(T ∩ C) + α f(T - C) + β f(C - T) ] 

 
where f(A) is the number of features in the set A.  For our 
initial work, we have chosen values of α = β = 1.0, which, 
according to Tversky, results in this simplification: 
 

S(T,C) = f(T ∩ C) /  f(T ∪ C) 
 

The answer with the highest calculated similarity is 
deemed correct.  For the arrow problem, using a 32 x 32 
block size, the similarity measures for each answer are: 
 
 S(T,C1) = 21 / (21+18+24) ≅ 0.333333 
 S(T,C2) = 15 / (15+24+30) ≅ 0.217391 
 S(T,C3) = 16 / (16+23+11) ≅ 0.32 
 S(T,C4) = 14 / (14+25+29) ≅ 0.205882 
 
Therefore, the fractal method chooses as its answer #1. 

Example Using the Affine-Extended Method 

For this example, we used a limited version of the affine-
extended method that holds in memory the following 
image transformations, in this order:  
 

1) identity 
2) horizontal reflection 
3) vertical reflection 
4) rotate 90° 
5) rotate 180° 
6) rotate 270° 

 
These transformations are successively tested against the 
images in the top row and then left column to see if they 
hold.  To check each transformation, the first entry in the 
row or column is transformed accordingly and compared to 
the second entry using the sum-squared-difference (SSD) 
of the pixel intensity values.  A threshold value determines 
whether the transformation holds, and the algorithm stops 
testing transformations once a valid one has been found. 
 For the example shown in Figure 4, the SSD values for 
each of the first three transformations were around 150 
million, which fell well above the threshold, and the SSD 
for the fourth transformation was exactly zero (due to the 
noiselessness of the input images).  So, the fourth 
transformation was chosen as the correct one.  
 Once a valid transformation is found, the first entry in 
the remaining row or column is transformed according to 
this rule and compared to the answer choices, again using 
the sum-squared difference of the pixel values.  The 
answer with minimum difference is chosen as correct. 
 In this example problem, the SSD values calculated for 
each answer choice were as follows: 
 

1) 0.0 
2) 3.19 × 108 
3) 3.57 × 108 
4) 3.54 × 108 

 
Thus, the affine-extended method also chooses as its 
answer #1. 

Discussion 

Presently, we are engaged in defining, implementing, and 
testing our three systems of representation on subsets of 

 
 

Figure 4.  Example problem for illustrating the execution of 

the fractal and affine-extended methods. 
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the RPM.  We expect to answer these questions concerning 
accuracy, efficiency, and behavioral effects: 
 
• Can these different methods produce the same 

(correct) behavior on RPM problems, and if so, on 
which of the problems and why?  Are there intrinsic 
aspects of the various problems that make them 
amenable to solution using particular methods? 

• Do these different methods confer processing speed 
advantages for certain RPM problems? 

• What behavioral markers can we determine to 
distinguish among these three methods, and given 
these markers, how might we test for their presence 
in human subjects? 

 
With the answers to these questions in hand, we propose to 
have established the first firm cognitive and computational 
account of the Raven’s Progressive Matrices test using 
multiple-representation methods. 
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