
Enhancing Constraint Models for Planning Problems
Roman Barták*, Daniel Toropila*†

{roman.bartak, daniel.toropila}@mff.cuni.cz
*Charles University, Faculty of Mathematics and Physics
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic

†Charles University, Computer Science Center
Ovocný trh 5, 116 36 Praha 1, Czech Republic

Introduction
Planning deals with finding a (shortest) sequence of actions
transferring the world from its initial state to a state
satisfying the goal condition. We assume that each state is
specified by values of multi-valued state variables that can
be changed only by actions (SAS+ formalism). Each action
consists of preconditions specifying required values of
certain state variables and effects of setting the values of
state variables. The planning problem is given by values of
all state variables in the initial state and by required values
of certain state variables as the goal condition.
 The planning problem can be solved by translation into
formalisms such as constraint satisfaction. The idea is that
the problem of finding a plan of given length is encoded as
a constraint satisfaction problem (CSP). If the CSP has a
solution then we decode back the plan, otherwise the
length of sought plan is extended by one and the process is
repeated. There exists a straightforward constraint model
of this type but more advanced constraint models exploit
the structure of a so called planning graph, namely GP-
CSP and CSP-PLAN. In (Barták and Toropila 2008), we
presented reformulations of above mentioned approaches
to state-variables formalism and we showed that a much
better efficiency can be achieved by encapsulating the
logical constraints describing changes of state variables by
actions into combinatorial constraints with an extensionally
defined set of admissible tuples. The best results were
obtained by the reformulated modal à la CSP-PLAN
(Lopez and Bacchus, 2003) – called the base model here.

Model Enhancements
It is rare that a direct constraint model is enough to solve
complex problems and frequently some extensions are
necessary. In this paper we propose three improvements of
the base model. In particular, we suggest using singleton
consistency to prune more of the search space by
eliminating certain unreachable actions, using dominance
rules to break plan permutation symmetries in the problem,
and finally using lifting (called domain splitting in
constraint satisfaction) to decrease the branching factor.

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Lifting
The search strategy used for the base model resembles the
labeling technique in constraint satisfaction. At each step,
we select an action that contributes to the current goal
(regression/backward planning is used). As noted in
(Ghallab et al. 2004) this strategy may be overcommitted,
for example, when requiring a robot to be at certain
location by selecting the move action we are also deciding
from which location the robot will go. There might be
many such actions (depending on the number of locations)
so it seems more appropriate to postpone some particular
decision to later. This is called lifting as instead of
selecting a particular action we lift the decision by
assuming a set of “similar” actions reaching the same goal.
In terms of constraint satisfaction, this is realized by
splitting the domain of action variable rather than
instantiating the variable.
 Let us now describe the process of lifting more formally.
Let PrecVars(a) be the state variables appearing in the
precondition of action a and EffVars(a) be the state
variables changed by action a (these variables appear in
effects of a). We say that actions a and b have the same
scope if and only if PrecVars(a) = PrecVars(b) and
EffVars(a) = EffVars(b). Let the base search procedure
select action a to be assigned to variable As; in other words
we split the search space by resolving the disjunction
As = a � As � a. In the lifted version, we are resolving the
following disjunction:

As � SameScope(a) � As � SameScope(a),
where SameScope(a) = { b | b has the same scope as a }.

Dominance Rules (a.k.a. Symmetry Breaking)
Recall, that we are looking for sequential plans. Assume
that we have two actions a1 and a2 such that these actions
do not interfere, for example, move action of a robot and
load action of a different robot. If we have a valid plan
where a1 is right before a2 then a plan where we swap both
actions is also valid. This feature, called plan permutation
symmetry (Long and Fox 2003) can be exploited during
search in the following way.
 First, we need to define formally what it means that two
actions do not interfere. Recall, that our motivation is that
two actions a1 and a2 can be swapped without influencing
validity of the plan. Swapping of actions a1 and a2 can be
realized if for any state s the following condition holds:

213

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

�(�(s,a1),a2) = �(�(s,a2),a1), where �(s,a) is a state obtained
by applying action a to state s. Such situation happens if
actions a1 and a2 are independent (Ghallab et al. 2004). We
suggest the following two conditions for action
independence in the multi-valued state representation:

EffVars(a2) � (PrecVars(a1) � EffVars(a1)) = 	,
EffVars(a1) � (PrecVars(a2) � EffVars(a2)) = 	.

Once we know how to recognize independent actions, we
propose to include the following dominance rule to the
search procedure. We choose arbitrary ordering of actions
such that action ai is before action ai+1 in the ordering (this
ordering has nothing in common with the ordering of
actions in the plan). Assume that action ai has been
assigned to state variable As (action at position s). Then,
when selecting action for state variable As-1, we only
consider actions aj for which at least one of the following
conditions holds: either aj and ai are not independent, or
j > i. This way, we prevent the solver from exploring
permutations of mutually independent actions.

Singleton Consistency
So far, we discussed improvements of the search strategy.
Another way to improve efficiency of constraint solving is
incorporating a stronger consistency technique. Singleton
arc consistency (SAC) would be a good candidate because
it is easy to implement on top of arc consistency. However,
it is computationally expensive to make the problem SAC
so we suggest applying SAC in a restricted form.
 When a new layer is added to the constraint model we
check whether the newly assumed actions have a support
in the previous layer. Formally, let P be a constraint model
describing the problem of finding a plan of length n+1 and
a be an action that appears in the domain of An but not in
the domain of An-1 (a newly introduced action). For any
precondition Vi=v of a, if there is no action b such that Vi=v
is among its effects, and P|An=a, An-1=b is arc consistent,
then a can be removed from the domain of An. The reason
for filtering out action a is that there is no plan of length n
giving the preconditions of a (the n-th layer is the first
layer where action a appeared so the precondition cannot
be provided by actions before layer n-1).

Conclusions
The paper proposed three enhancements of the base
constraint model for solving sequential planning problems.
Common feature of these enhancements is an attempt to
reduce search space, large size of which is a major obstacle
when solving planning problems. We implemented the
proposed enhancements in SICStus Prolog 4.0.2 and
compared them using selected planning problems from
past International Planning Competitions (STRIPS
versions). The experiments ran on Pentium M 730 1.6 GHz
processor with 1GB RAM under Windows XP. Figure 1
shows a comparison of several combinations of the
methods and it clearly demonstrates that they significantly
outperformed (orders of magnitude) the base model,
especially when the problems become hard.

Acknowledgments
The research is supported by the Czech Science
Foundation under the project 201/07/0205.

References
Barták, R. and Toropila D. 2008. Reformulating Constraint
Models for Classical Planning. Proceedings of the 21st
International Florida AI Research Society Conference
(FLAIRS 2008). AAAI Press, pp. 525-530.
Ghallab, M., Nau, D., Traverso P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Long, D. and Fox. M. 2003. Plan Permutation Symmetries
as a Source of Planner Inefficiency. Proceedings of 22nd
Workshop of UK Planning and Scheduling Special Interest
Group (PlanSIG-22).
Lopez, A. and Bacchus, F. 2003. Generalizing GraphPlan
by Formulating Planning as a CSP. Proceedings of IJCAI,
954-960.

10

100

1000

10000

100000

1000000

tpp
-p
01

ze
no
tra
ve
l-p
1

ele
va
to
r-p
-2
-1

tpp
-p
02

blo
ck
s-p
-4
-1

my
ste
ry
-p1

ps
r-p
14

ze
no
tra
ve
l-p
2

tpp
-p
03

ps
r-p
10

sc
he
du
le-
p-
2-1

pip
es
wo
rld
-p0
1

log
ist
ics
-o
ld-
p4

ze
no
tra
ve
l-p
3

sc
he
du
le-
p-
2-4

ro
ve
rs
-p0
2

my
ste
ry
-p3

ele
va
to
r-p
-3
-0

ro
ve
rs
-p0
4

ele
va
to
r-p
-3
-2

dr
ive
rlo
g-
p1

ps
r-p
12

sc
he
du
le-
p-
3-7

sc
he
du
le-
p-
3-9

ele
va
to
r-p
-3
-1

blo
ck
s-p
-5
-1

ps
r-p
13

ro
ve
rs
-p0
1

ps
r-p
11

tpp
-p
04

ro
ve
rs
-p0
3

de
po
ts-
p1

gr
ipp
er-
p1

air
po
rt-
p0
3

ps
r-p
15

ze
no
tra
ve
l-p
4

sc
he
du
le-
p-
4-0

blo
ck
s-p
-5
-0

sc
he
du
le-
p-
3-8

ele
va
to
r-p
-4
-1

log
ist
ics
-o
ld-
p5

blo
ck
s-p
-6
-0

blo
ck
s-p
-6
-1

blo
ck
s-p
-5
-2

sc
he
du
le-
p-
4-1

pip
es
wo
rld
-p0
2

tim
e

(m
s)

base
base+lift+dom
base+lift+dom+sing

Fig. 1. Comparison of runtimes (logarithmic scale) for selected problems from IPC 1-5 when the methods are combined.

214

