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Introduction   
Planning deals with finding a (shortest) sequence of actions 
transferring the world from its initial state to a state 
satisfying the goal condition. We assume that each state is 
specified by values of multi-valued state variables that can 
be changed only by actions (SAS+ formalism). Each action 
consists of preconditions specifying required values of 
certain state variables and effects of setting the values of 
state variables. The planning problem is given by values of 
all state variables in the initial state and by required values 
of certain state variables as the goal condition. 
 The planning problem can be solved by translation into 
formalisms such as constraint satisfaction. The idea is that 
the problem of finding a plan of given length is encoded as 
a constraint satisfaction problem (CSP). If the CSP has a 
solution then we decode back the plan, otherwise the 
length of sought plan is extended by one and the process is 
repeated. There exists a straightforward constraint model 
of this type but more advanced constraint models exploit 
the structure of a so called planning graph, namely GP-
CSP and CSP-PLAN. In (Barták and Toropila 2008), we 
presented reformulations of above mentioned approaches 
to state-variables formalism and we showed that a much 
better efficiency can be achieved by encapsulating the 
logical constraints describing changes of state variables by 
actions into combinatorial constraints with an extensionally 
defined set of admissible tuples. The best results were 
obtained by the reformulated modal à la CSP-PLAN 
(Lopez and Bacchus, 2003) – called the base model here. 

Model Enhancements 
It is rare that a direct constraint model is enough to solve 
complex problems and frequently some extensions are 
necessary. In this paper we propose three improvements of 
the base model. In particular, we suggest using singleton 
consistency to prune more of the search space by 
eliminating certain unreachable actions, using dominance 
rules to break plan permutation symmetries in the problem, 
and finally using lifting (called domain splitting in 
constraint satisfaction) to decrease the branching factor. 
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Lifting 
The search strategy used for the base model resembles the 
labeling technique in constraint satisfaction. At each step, 
we select an action that contributes to the current goal 
(regression/backward planning is used). As noted in 
(Ghallab et al. 2004) this strategy may be overcommitted, 
for example, when requiring a robot to be at certain 
location by selecting the move action we are also deciding 
from which location the robot will go. There might be 
many such actions (depending on the number of locations) 
so it seems more appropriate to postpone some particular 
decision to later. This is called lifting as instead of 
selecting a particular action we lift the decision by 
assuming a set of “similar” actions reaching the same goal. 
In terms of constraint satisfaction, this is realized by 
splitting the domain of action variable rather than 
instantiating the variable. 
 Let us now describe the process of lifting more formally. 
Let PrecVars(a) be the state variables appearing in the 
precondition of action a and EffVars(a) be the state 
variables changed by action a (these variables appear in 
effects of a). We say that actions a and b have the same 
scope if and only if PrecVars(a) = PrecVars(b) and 
EffVars(a) = EffVars(b). Let the base search procedure 
select action a to be assigned to variable As; in other words 
we split the search space by resolving the disjunction 
As = a � As � a. In the lifted version, we are resolving the 
following disjunction: 

As � SameScope(a) � As � SameScope(a), 
where SameScope(a) = { b | b has the same scope as a }. 

Dominance Rules (a.k.a. Symmetry Breaking) 
Recall, that we are looking for sequential plans. Assume 
that we have two actions a1 and a2 such that these actions 
do not interfere, for example, move action of a robot and 
load action of a different robot. If we have a valid plan 
where a1 is right before a2 then a plan where we swap both 
actions is also valid. This feature, called plan permutation 
symmetry (Long and Fox 2003) can be exploited during 
search in the following way. 
 First, we need to define formally what it means that two 
actions do not interfere. Recall, that our motivation is that 
two actions a1 and a2 can be swapped without influencing 
validity of the plan. Swapping of actions a1 and a2 can be 
realized if for any state s the following condition holds: 
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�(�(s,a1),a2) = �(�(s,a2),a1), where �(s,a) is a state obtained 
by applying action a to state s. Such situation happens if 
actions a1 and a2 are independent (Ghallab et al. 2004). We 
suggest the following two conditions for action 
independence in the multi-valued state representation: 

EffVars(a2) � (PrecVars(a1) � EffVars(a1)) = 	, 
EffVars(a1) � (PrecVars(a2) � EffVars(a2)) = 	. 

Once we know how to recognize independent actions, we 
propose to include the following dominance rule to the 
search procedure. We choose arbitrary ordering of actions 
such that action ai is before action ai+1 in the ordering (this 
ordering has nothing in common with the ordering of 
actions in the plan). Assume that action ai has been 
assigned to state variable As (action at position s). Then, 
when selecting action for state variable As-1, we only 
consider actions aj for which at least one of the following 
conditions holds: either aj and ai are not independent, or 
j > i. This way, we prevent the solver from exploring 
permutations of mutually independent actions. 

Singleton Consistency 
So far, we discussed improvements of the search strategy. 
Another way to improve efficiency of constraint solving is 
incorporating a stronger consistency technique. Singleton 
arc consistency (SAC) would be a good candidate because 
it is easy to implement on top of arc consistency. However, 
it is computationally expensive to make the problem SAC 
so we suggest applying SAC in a restricted form. 
 When a new layer is added to the constraint model we 
check whether the newly assumed actions have a support 
in the previous layer. Formally, let P be a constraint model 
describing the problem of finding a plan of length n+1 and 
a be an action that appears in the domain of An but not in 
the domain of An-1 (a newly introduced action). For any 
precondition Vi=v of a, if there is no action b such that Vi=v 
is among its effects, and P|An=a, An-1=b is arc consistent, 
then a can be removed from the domain of An. The reason 
for filtering out action a is that there is no plan of length n 
giving the preconditions of a (the n-th layer is the first 
layer where action a appeared so the precondition cannot 
be provided by actions before layer n-1). 

Conclusions 
The paper proposed three enhancements of the base 
constraint model for solving sequential planning problems. 
Common feature of these enhancements is an attempt to 
reduce search space, large size of which is a major obstacle 
when solving planning problems. We implemented the 
proposed enhancements in SICStus Prolog 4.0.2 and 
compared them using selected planning problems from 
past International Planning Competitions (STRIPS 
versions). The experiments ran on Pentium M 730 1.6 GHz 
processor with 1GB RAM under Windows XP. Figure 1 
shows a comparison of several combinations of the 
methods and it clearly demonstrates that they significantly 
outperformed (orders of magnitude) the base model, 
especially when the problems become hard. 
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Fig. 1.  Comparison of runtimes (logarithmic scale) for selected problems from IPC 1-5 when the methods are combined. 
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