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Abstract

This paper introduces an information theoretic approach to
verification of modular causal probabilistic models. We as-
sume systems which are gradually extended by adding new
functional modules, each having a limited domain knowl-
edge captured by a local Bayesian network. Different mod-
ules originate from independent design processes. We assume
that the local models are correct, which, however does not
guarantee globally coherent inference in composed systems.
The introduced method supports discovery of significant in-
ter module dependencies which are ignored in the assembled
Bayesian network.

Introduction
Relevant classes of contemporary information processing
challenges have been addressed by modular approaches to
Bayesian modeling and inference. For example, Distributed
perception networks (DPN) (Pavlin et al. 2008) support ro-
bust information fusion in domains where constellations of
information sources are not known prior to the operation and
can change frequently at runtime. The multi-agent MSBN
(Xiang 2002), on the other hand, is particularly suitable for
the diagnosis of complex systems consisting of many com-
ponents, such as electronic circuits, chemical processes, etc.
Both, the DPNs and multi-agent MSBNs support efficient
distribution of models and inference processes over mul-
tiple networked devices. In addition, Network Fragments
approach (Laskey and Mahoney 1997) supports creation of
complex monolithic Bayesian networks out of objects repre-
senting simpler Bayesian networks.

All approaches to modular Bayesian modeling and infer-
ence exploit the locality of causal relations, which supports
efficient design and inference. Typically, different modules
originate from independent design processes. Since the cor-
responding local models are relatively small, we can assume
that they correctly capture relations between the local vari-
ables. However, correctness of local models does not guar-
antee globally coherent inference in composed systems. De-
signing such systems is a multidisciplinary field where it
is likely that important dependencies between variables in
different modules are overlooked by the designers, which
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can have negative impact on the inference quality. In other
words, despite correct local models the system does not sup-
port globally correct inference. Such modeling faults can-
not be avoided even if advanced engineering approaches are
used.

In this paper we introduce an information theoretic ap-
proach which is based on constraint-based structure discov-
ery (Spirtes, Glymour, and Scheines 2000, Pearl 2000) and
supports efficient verification of dependencies in modular
systems. Note that the proofs for all propositions in this pa-
per are given in (de Oude and Pavlin 2009). We assume
that domain models are gradually constructed from modules
defined through simple Bayesian networks, each correctly
capturing all relations between the local variables. At each
addition of a new module, the independence tests are exe-
cuted between the variables of the new module and the rest
of the already integrated modules. By considering the prop-
erties of I-maps (Pearl 1988), we can efficiently discover in-
adequately represented dependencies between the variables
from different modules. In particular, we exploit the com-
position/decomposition and weak union relations which are
valid in case of faithful probability distributions (Spirtes,
Glymour, and Scheines 2000). We use a running example
to illustrate the challenges and principles of our approach.

Causal Probabilistic Models
Often we are interested in phenomena which materialize
through causal stochastic processes. Some of the phenom-
ena influenced by a causal process can be observed while
others remain hidden. By understanding the underlying
causal mechanisms and by considering the observations, the
hidden phenomena can be inferred. For example, by observ-
ing certain reports from chemical sensors and humans we
could infer the presence of a harmful gas. Figure 1 shows
a simplified representation of a causal process producing re-
ports from chemical sensors and humans exposed to a par-
ticular gaseous substance. Directed links represent direct
causal dependencies between the phenomena. The existence
of GasX causes certain conditions in the air Cond which will
trigger processes in two different sensors producing reports
R1 and R2, respectively. Similarly, given the presence of
GasX, the exposed people will perceive a certain smell and
develop certain symptoms. More about modeling of moni-
toring processes can be found in (de Oude and Pavlin 2009,
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Figure 1: Causal model of a gas monitoring process.

de Oude and Pavlin 2008).
Stochastic causal processes can be modeled with the help

of Bayesian networks in a rigorous and compact way (Pearl
1988). Each Bayesian network (BN) represents a joint prob-
ability distribution (JPD) P(V) over a set of random vari-
ables defined in V (Pearl 1988). A BN is represented by a
tuple (G,P), where G = (V,E) is a Directed Acyclic Graph
(DAG) with the variables V represented as nodes and di-
rected edges E = (Vi,Vj) between nodes in V, where E ∈ E.
P is the set of conditional probabilities P(Vi|Pa(Vi)) for all
Vi ∈ V, where Pa(Vi) represents the parent nodes of Vi in
DAG G. Conditional probabilities are represented through
conditional probability tables (CPTs).

BNs explicitly capture conditional independence between
random variables. A variable X is conditionally indepen-
dent of variable Y given variable Z when P(X|Y, Z) =
P(X|Z). Conditional independences are represented through
d-separation (Xiang 2002, Pearl 1988) relations in DAG G.

The representational explicitness of conditional indepen-
dence in BNs means that every represented d-separation in
a DAG G should have a valid corresponding conditional in-
dependence relation in P(V). Consequently, the following
implication should hold:

(X � Y|Z)G ⇒ (X � Y|Z)P (1)
Whenever the implication in (1) for DAG G holds we say

that G is an I-map of P(V) (Pearl 1988).
Note that, the implication in (1) allows us to model super-

fluous dependencies between nodes in model G which are
not true in P(V). Ideally, no superfluous dependencies are
captured by the model. In other words, every conditional in-
dependence in P corresponds to a certain d-separation in G
and vice versa:

(X � Y|Z)G ⇔ (X � Y|Z)P (2)
Whenever Equation (2) holds we say that P(V) is faithful

(Spirtes, Glymour, and Scheines 2000) to DAG G (or G is
a perfect map (Pearl 1988) of P). If a probability distribu-
tion is faithful then there exist a DAG G for it that faithfully
represents all (conditional) dependencies and independences
between the variables in this probability distribution. In this
paper we only assume faithful probability distributions.

Parameters in a BN (i.e. conditional probabilities) can be
estimated with the help of the maximum likelihood principle
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Figure 2: Modular model of the gas monitoring process in
Figure 1. Dashed arrows denote the message flow between
the collaborating modules.

by considering relative frequencies in some data set D of
data sample size m. A single data sample di ∈ D, i ≤ m is
represented as a configuration of states v = (x, y, . . . , z) for
the domain variables V = {X, Y, . . . ,Z}.

In this paper we assume that the data samples di = v
are sampled from a generative probability distribution P(V)
which can faithfully be represented by a BN with DAG G.

bsectionTesting conditional independence
Let’s assume that a BN models a distribution P(V) from

which data set D was sampled. Moreover, we can use
the conditional mutual information (CMI) measure between
mutually exclusive sets of variables X ⊂ V, Y ⊂ V and
Z ⊂ V to test conditional independence (X � Y|Z)P:

I(X,Y|Z) =
∑

x,y,z
P(x, y, z) log

P(x, y|z)
P(x|z)P(y|z)

(3)

Note that the probabilities P(x, y|z), P(x|z) and P(y|z) in
Equation 3 are estimated using data samples inD.

By considering (2) we know that a BN correctly captures
the true distribution P(V) iff for every (X � Y|Z)G the mu-
tual information I(X,Y|Z) = 0 and vice versa. In other
words, by using the CMI measure we can use data samples
fromD to test I-mapness of causal probabilistic models. In-
stead of CMI measure also other measures can be used, such
as χ2 or G2 independence test.

Modular Bayesian Network
The causal model of the gas monitoring process given in Fig-
ure 1 can be represented by a system of collaborating mod-
ules implementing smaller BNs shown in Figure 2. Local
BNs can, for example, be constructed by using the design
rules described in (Pavlin et al. 2008). The modules are
defined as follows:

Definition 1 (BN Module). A BN module ψi = (Gi,Pi) is a
Bayesian network with DAG Gi = (Vi,Ei), where Vi are the
variables in Gi and Ei is a set of directed edges E = (X, Y),
where E ∈ Ei, X ∈ Vi and Y ∈ Vi. Pi is a set of (conditional)
probability distributions defined for each variable in Vi.

530



A BN module encodes probabilistic knowledge over a
subset of variables Vi ⊂ U, where U represents all variables
in the domain under investigation. Therefore, a BN module
is a subgraph of the monolithic BN.

In this paper we assume that every BN module is a local
I-map over the variables Vi:
Definition 2 (Local I-mapness). A BN module ψi = (Gi,Pi)
where DAG Gi = (Vi,Ei) is a local I-map of P(Vi) =∑

U\Vi
P(U), where Vi ⊂ U and U contains all the variables

in the domain, if all d-separation relations between the vari-
ables in Vi correspond to valid conditional independencies
in P(Vi).

For example, ψ1 in Figure 2 has the local I-map prop-
erty, because all the represented d-separations, such as
(Cond � S mell|GasX)G, ({GasX, S ympt} � M|∅)G,
(Cond � S ympt|{GasX, M, S mell})G etc. correspond to
valid conditional independencies in P(V1) captured by the
ground truth model in Figure 1. Moreover, BN modules can
form a modular Bayesian network:
Definition 3 (Modular Bayesian networks). A Modular
Bayesian network Ω is defined as a tuple (M,R), where
M is the set of BN modules defined in Ω. R is a finite set
of BN module pairs {〈ψi, ψ j〉|i ≥ 1, j ≥ 1, i � j} with ψi =
((Vi,Ei),Pi) ∈ M, ψ j = ((V j,E j),P j) ∈ M and Vi∩V j � ∅.
Every module pair 〈ψi, ψ j〉 represents a link between the two
BN modules ψi and ψ j over which partial reasoning results
can be shared. A modular BN must satisfy a set of properties
(see de Oude and Pavlin 2009).

For example, the monolithic gas detection fusion model
shown in Figure 1 is partitioned into five different BN mod-
ules: ψ1, ψ2, ψ3, ψ4 and ψ5 in Figure 2. The modular
BN is then defined as M = {ψ1, ψ2, ψ3, ψ4, ψ5} and R =
{〈ψ1, ψ2〉, 〈ψ1, ψ3〉, 〈ψ1, ψ4〉, 〈ψ1, ψ5〉}.

Reasoning in the modular BN in Figure 2 is equivalent
to reasoning in the monolithic BN in Figure 1. I.e. we can
map the structure of the modular BN Ω to its corresponding
monolithic graph version, which we call GΩ. The graph in
Figure 1 is the GΩ of the modular BN in Figure 2 (for read-
ability we will write G instead of GΩ in the rest of the paper).
As next we define the global I-mapness property of modular
networks:
Definition 4 (Global I-mapness). Let a modular BNΩ cor-
respond to a monolithic DAG G = (V,E). The modular BN
Ω is a global I-map if all d-separations represented in G
correspond to valid conditional independencies in the true
distribution P(V).

Constructing modular Bayesian networks
We assume that the construction of a modular BN Ω =
(M,R) is accomplished through a certain integration order
of BN modules. In each extension step a new BN module ψi
is added to Ω = (M,R), which is denoted by Ω∗ ← Ω � ψi.
Module ψi is connected to another BN module ψ j ∈ M to
form the new modular BN Ω∗ = (M∪ ψi,R ∪ 〈ψ j, ψi〉).

A modular BN Ω obtained through a sequence of ad-
ditions of BN modules might correspond to a monolithic
graph G which violates the global I-map property; i.e. the
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Figure 3: (a) Extending Ω = (M = {ψ1},R = ∅) with
BN module ψ2 to form the modular BN Ω∗ = (M =
{ψ1, ψ2},R = 〈ψ2, ψ1〉). (b) Variable pairs E which failed
the pairwise CI test are added as undirected edges to modu-
lar BN Ω∗, where the superfluous edges are shown as light
gray dotted undirected edges.

d-separations in graph G violate certain dependencies in the
data. Consider a modular causal model in Figure 3a, where
two BN modules ψ1 and ψ2 describe a part of the monitor-
ing causal process. Note that ψ2 from Figure 2 does not
contain variable M. Thus, in this modular BN the direct de-
pendence between humidity M and the sensor component C1
is missing. This dependency is captured in the true model
in Figure 1. Both BN modules in Figure 3a are local I-
maps, but when connected together the global I-map prop-
erty does not hold anymore. For example, say we want to
extend Ω = (M = {ψ1},R = ∅) with the BN module ψ2. In
this case, ψ2 is connected to the already integrated ψ1 ∈ M
resulting in Ω∗ = (M = {ψ1, ψ2},R = 〈ψ2, ψ1〉). The cor-
responding monolithic graph G∗ is not an I-map anymore,
because it encodes the d-separations (M � C1|Cond)G∗ ,
(M � R1|Cond)G∗ , (S mell � C1|Cond)G∗ and (S mell �
R1|Cond)G∗ . These d-separations are not valid in the ground
truth model shown in Figure 1. Consequently, the impli-
cation in (1) does not hold and graph G∗ is not an I-map.
Thus, the modular BN Ω∗ does not support correct reason-
ing. Namely, the dependence between M and C1 is not cap-
tured by the BN Ω∗ in Figure 3a correctly.

Important Observation: given that all BN modules have
the local I-map property does not, in general, imply that the
modular BN constructed out of these BN modules is a global
I-map.

Verification of Global I-mapness in Modular
Bayesian Networks

The CMI measure (3) can be used to test global I-mapness of
a modular BN; i.e. we verify whether a modular BNΩ corre-
sponds to a monolithic BN which is an I-map of the variables
contained in Ω. We facilitate further analysis by introducing
the concept of pairwise Conditional Independence (pairwise
CI) between the variables from different modules in a mod-
ular BN.
Definition 5 (Pairwise CI). Let’s assume a modular BN Ω
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with a set of modules M defined over variables V which
is extended by adding a new module ψi with variables Vi,
where Vi � V. In addition, Ω contains module ψ j ∈ M
with variables V j, such that S = Vi ∩ V j � ∅. For any
pair of variables X ∈ {Vi\S} and Y ∈ {V\S} a pairwise
conditional independence (CI) is defined as (X � Y |S)P.

Note that expression (X � Y |S)P can be tested with
the help of the CMI measure in Equation (3). We il-
lustrate pairwise CI with the help of the modular BN in
Figure 2. Let’s assume that we wish to extend modular
BN Ω = (M,R), where M = {ψ1, ψ3, ψ4, ψ5} and R =
{〈ψ1, ψ3〉, 〈ψ1, ψ4〉, 〈ψ1, ψ5〉}), with BN module ψ2. In this
case we could identify intersection set S = V1 ∩ V2 =
{Cond, M}. Given that the extended modular BN corre-
sponded to the ground truth model shown in Figure 1, we
could detect several pairwise CIs between variables from
different modules, such as for example (C1 � RS mell|S)P,
(R1 � RS mell|S)P, (C1 � S mell|S)P, etc. Moreover, it turns
out that Pairwise CI tests can be used for efficient verifica-
tion of global I-mapness of modular BNs.

Proposition 1 (Pairwise CIs & I-mapness). Assume a
modular BN Ω = (M,R) with the corresponding global
I-map G = (V,E) and a BN module ψi with the local I-
map Gi = (Vi,Ei). Also assume that the JPD P(V ∪ Vi)
is faithful. By extending Ω with ψi we get the modular BN
Ω∗, i.e. Ω∗ ← Ω � ψi where Ω∗ corresponds to the mono-
lithic graph G∗. G∗ is an global I-map if and only if all
pairwise CIs of the sets {V\S} and {Vi\S} are valid, where
S = V ∩ Vi. The proof of this proposition is based on the
composition/decomposition axiom (Pearl 1988).

In other words, verification based on pairwise CIs is suffi-
cient for determining whether an extended modular BN cor-
responds to a global I-map.

Discovery of Missing Inter Module
Dependencies

Verification of global I-mapness of modular BNs can be used
as a basis for discovery of modeling faults. Whenever one of
these pairwise CIs fail then we know that the modular BN is
incorrect and, consequently, certain dependencies between
BN modules are missing. In fact, with the help of pairwise
CI tests we can discover all pairs of variables whose depen-
dency is not correctly captured in the modular BN.

Proposition 2 (Edge Discovery). Assume that we extend
Ω = (M,R) corresponding to global I-map G = (V,E) with
module ψi corresponding to the local I-map Gi = (Vi,Ei) to
form the new modular BN Ω∗ corresponding to graph G∗,
i.e. Ω∗ ← Ω � ψi. Moreover, the pairwise CIs for the
sets V of Ω and Vi of ψi are tested using the conditioning
set S = Vi ∩ V � ∅. We test each possible pair of vari-
ables. For every test failure between a pair of tested vari-
ables X ∈ Vi\S and Y ∈ V\S we add the pair (X, Y) to a set
of pairs E. The set E is guaranteed to contain at least all the
pairs of variables which are directly dependent in the true
distribution P(V ∪ Vi) but this dependence is not correctly
captured by the corresponding modular BN.

Pairs of variables correspond to edges in a graph, there-
fore the aforementioned procedure is called edge discovery.

Superfluous Edges
The set E might contain also pairs which are not directly
dependent according to P(V ∪ Vi). Such superfluous edges
are not needed to restore global I-mapness and should be
removed, since they introduce additional parameters which
make the parameter estimation and inference unnecessarily
complex.

For example, consider the situation in Figure 3a where
Ω∗ = ({ψ1, ψ2}, {〈ψ2, ψ1〉}) would be obtained through addi-
tion of ψ2 to Ω = ({ψ1}, ∅). Applying the edge discovery
described in Proposition 2 will result in the following vari-
able pairs E = {(M,C1), (M,R1), (S mell,C1), (S mell,R1)},
because the four pairwise CIs, which assumed the condi-
tional independencies (M � C1|Cond)P, (M � R1|Cond)P,
(S mell � C1|Cond)P and (S mell � R1|Cond)P, failed the
test. The unanticipated dependence between the variables
M and C1 induces dependencies also between variable pairs
(M,R1), (S mell,R1) and (S mell,C1) corresponding to super-
fluous edges shown in Figure 3b (shown as light gray dotted
undirected edges). This figure corresponds to a monolithic
pattern (Pearl 2000) G∗E where the set E represents the undi-
rected edges which are added to the monolithic BN G∗.

The variable pairs in E found by applying the pairwise CI
test are often conditionally independent given a conditioning
set that differs from the conditioning set used in the pairwise
CIs. Therefore, for every variable pair in an undirected edge
Ei = (X, Y), where Ei ∈ E, we try to find a set S of variables
that renders X and Y conditionally independent. If we find
such a set S, then the edge (X, Y) is superfluous and is re-
moved from the pattern G∗E. It turns out that we can limit the
search over the number of variables in the modular BN that
can make the variables X and Y conditionally independent.
Namely, we can find the Markov Blanket (Neapolitan 2003)
of X or Y by only considering the pattern G∗E and try to find
a minimum conditioning set S within this Markov blanket.
We can show that a Markov blanket can be found in a pattern
as follows:

Proposition 3 (Markov Blanket in Pattern). Given a pat-
tern G = (V,E ∪ E) with variables V, directed edges E and
undirected edges E. Let at least one BN in the set of BNs
represented by this pattern be an I-map w.r.t. P(V); then a
Markov blanket for a variable X ∈ V, i.e. MB(X), is the
union of the following sets:

(i) All children of X denoted by Ch(X). If X is connected
to another variable Vi ∈ V through an undirected edge
X − Vi then Vi is considered a child of X and is included
in the set Ch(X);

(ii) For each Yk ∈ Ch(X) take the parents of Yk denoted by
Pa(Yk). If Yk is connected to another variable Vj ∈ V
through an undirected edge Yk − Vj then Vj � X is con-
sidered a parent of Yk and is included in the set Pa(Yk);

(iii) All parents of X denoted by Pa(X). A variable Yk is parent
of X if there exist a directed link from Yk to X.
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In short, MB(X) = Ch(X) ∪ (⋃k Pa(Yk)
) ∪ Pa(X) and, con-

sequently, (X � V\(X ∪ MB(X))|MB(X))P holds. The proof
is based on the weak union axiom (Pearl 1988).

We can find a Markov blanket in a given pattern G∗E if at
least one BN in the set of BNs, represented by G∗E, is an I-
map. It can be shown that G∗E indeed contains an I-map if
G∗E is obtained by adding variable pairs E to G∗ following
Proposition 2:

Proposition 4 (I-map in Pattern). Given a monolithic
graph G∗ = (V,E) corresponding to the modular BN Ω∗
which is obtained by extending Ω with ψi, i.e. Ω∗ ← Ω � ψi.
Let G∗E be the pattern, where E is a set of variable pairs that
failed the pairwise CI tests and are added to G∗ as undi-
rected edges. If E is obtained following Proposition 2 then
G∗E includes at least one BN that is an I-map w.r.t. P(V).

By considering Proposition 3 and 4 we can eliminate any
superfluous undirected edge corresponding to a variable pair
(X, Y) ∈ E in the pattern G∗E. We compute the Markov
blanket either for X or Y from the pattern G∗E\(X,Y) following
Proposition 3; i.e. we use the pattern G∗E without the edge
(X, Y). Whenever X and Y are conditionally independent
w.r.t. P(V) then there exists some minimum conditioning
set S ⊆ MB(X) or S ⊆ MB(Y) that renders X conditionally
independent of Y .

Moreover, we can show the following property:

Proposition 5 (Direct Dependence). Whenever variable X
and Y cannot be made conditionally independent on any
subset S of the Markov blanket for X or Y then we can con-
clude that X and Y must be directly dependent and an edge
is justified between X and Y in the modular BN Ω∗.

Thus, the Markov blanket provides a maximum condi-
tioning set needed for unambiguous dependency tests. Of-
ten it makes sense to test conditional independence between
variables X or Y by initially using small conditioning sets
S ⊆ MB(X) and then gradually increase the size of S un-
til the test indicates independence or S = MB(X). Smaller
conditioning setsS require lower order statistics and are thus
more reliable, given limited data sets.

Dealing with Limited Data Sets
Due to noise in the data the empirically determined
I(X,Y|Z) will never be exactly 0, even if a finite data set D
is sampled from a distribution for which (X � Y|Z)P holds.
Therefore, a threshold δ is needed for independence tests.
This δ can be used as a decision threshold for deciding if
two variables are (conditionally) dependent or independent.

In our approach δ is based on the CMI corresponding
to pairs of variables in local models for which we know
that are (conditionally) independent because of the local I-
map assumption (see Definition 2): the inner BN module d-
separations correspond to valid conditional independences
in the underlying probability distribution. Therefore we can
compute the threshold as follows: δ = max(I), where I
is a list of computed CMIs based on the valid conditional
independencies, represented as d-separations, in local BN
modules.

Data Size Precision Recall Precision Recall
gradual prior

1000 0.25013 0.10800 0.22152 0.09900
3000 0.72400 0.68100 0.70400 0.66700
10000 0.99833 0.99900 0.99833 0.99900
50000 1.00000 1.00000 1.00000 1.00000

Table 1: Average precision and recall for GDN

Experiments
The discovery algorithm∗ based on Propositions 1, 2, 3,
4 and 5 was experimentally validated. We experimented
with a gas detection network (GDN) and the well known
ALARM network. The GDN was similar to the BN used in
the running example (see Figure 1), except that it was more
complex.

For the GDN network the BN modules were manually
created, such that two edges were not correctly captured
by the assembled modular BN. On the other hand, for the
ALARM network the BN modules were automatically gen-
erated from the ALARM network form which a single ran-
domly selected edge was removed. Each modular BN was
gradually constructed out of the BN modules and we ran
the discovery algorithms for each extension step. Each set
of modules was assembled several times in a random or-
der, where for each set of modules a new data set D of a
given size was used. The data D used in the dependency
tests was sampled from the ground truth monolithic GDN
and ALARM networks.

The adaptive threshold δ used for dependency tests was
computed in two different ways. Therefore for each net-
work and data size two experiments are performed: (i) an
experiment where the threshold is recomputed whenever a
new local BN module is added to the modular BN by only
considering the local conditional independences in the cur-
rent modular BN (gradual threshold); (ii) the threshold is
computed prior to the operation by using all the local con-
ditional independences in all local BN modules before they
are assembled into a modular BN (prior threshold).

The performance of the discovery algorithm was mea-
sured using the precision and recall of the missing edges.
Precision is defined as the fraction of discovered missing
edges divided by all discovered edges in E. Recall is the
fraction of discovered missing edges divided by the miss-
ing edges. For each modular BN precision and recall of
the discovery algorithm were determined for different data
sizes. For each monolithic network we created several mod-
ular BNs and computed the average precision and recall for
each data size and threshold type (gradual or prior). Table 1
and Table 2 show the discovery results for the GDN and the
ALARM network, respectively.

From the results it is evident that for both networks no sig-
nificant difference between the gradual and the prior thresh-
old exists. The difference in recall between ALARM and
GDN for large data sizes is attributed to the difference in
complexity of the networks, i.e. the ALARM network is

∗More details can be found in (de Oude and Pavlin 2009).
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Data Size Precision Recall Precision Recall
gradual prior

1000 0.65976 0.45556 0.65976 0.45556
3000 0.85087 0.65556 0.83937 0.65556
10000 0.76944 0.66667 0.76944 0.66667
50000 0.66839 0.77778 0.66839 0.77778

Table 2: Average precision and recall for ALARM

more complex compared to the GDN and, consequently,
more data is needed for edge discovery in the ALARM net-
work. However, given the results, it seems that for small data
sizes the discovery on the ALARM performs better. This is
a consequence of the strength of the missing dependencies.
Namely, strong dependencies are easier to detect than the
weak ones. Contrary to the GDN, the ALARM network has
a significant set of dependencies which are strong. Conse-
quently, the presence of such dependencies can have a favor-
able effect on the recall for small data sizes.

Discussion
The experimental results demonstrate that the introduced
method supports tractable runtime discovery of missing
causal dependencies in complex Bayesian models, despite
the used information theoretic analysis, which is computa-
tionally demanding. This is possible in cases where com-
plex Bayesian causal models are gradually assembled out
of simpler modules which correctly capture causal relations
between smaller sets of variables; i.e. prior knowledge of
the relations over subsets of variables exists and global de-
pendencies are checked for each module before it is added
to the overall model. By using the theory on I-maps we
show that the missing dependencies in the assembled model
are detected by dependency tests on pairs of variables from
different modules, which is a small fraction of conditional
dependency checks between all possible variable subsets of
local models. The efficiency is further improved by using
Markov blankets defined over patterns, which describe sub-
sets of variables that are sufficient for the discovery of miss-
ing dependencies in assembled models. Such Markov blan-
kets limit the sets of variables in which we have to search
for combinations of conditioning variables required for the
reliable decision, whether an edge resulting from the pair-
wise dependency tests is superfluous or genuine. Our future
work will focus on a systematic validation of the presented
method by using a greater variety of probabilistic models
and investigation of the impact the true underlying distribu-
tions have on the performance of the discovery algorithms.
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