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Abstract

We present a new framework for semi-supervised learn-
ing with sparse eigenfunction bases of kernel matrices.
It turns out that when the cluster assumption holds, that
is, when the high density regions are sufficiently sepa-
rated by low density valleys, each high density area cor-
responds to a unique representative eigenvector. Linear
combination of such eigenvectors (or, more precisely,
of their Nystrom extensions) provide good candidates
for good classification functions. By first choosing an
appropriate basis of these eigenvectors from unlabeled
data and then using labeled data with Lasso to select a
classifier in the span of these eigenvectors, we obtain a
classifier, which has a very sparse representation in this
basis. Importantly, the sparsity appears naturally from
the cluster assumption.

Experimental results on a number of real-world data-
sets show that our method is competitive with the state
of the art semi-supervised learning algorithms and out-
performs the natural base-line algorithm (Lasso in the
Kernel PCA basis).

1. Introduction

Semi-supervised learning, i.e., learning from both labeled
and unlabeled data has received considerable attention in re-
cent years due to its potential in reducing the need for expen-
sive labeled data. However, to make effective use of unla-
beled examples one needs to make some assumptions about
the connection between the process generating the data and
the process of assigning labels. There are two important as-
sumptions popular in semi-supervised learning community
the “cluster assumption” (Chapelle, Weston, and Scholkopf
2002) and the “manifold assumption” (Belkin, Niyogi, and
Sindhwani 2006). The cluster assumption can be interpreted
as saying that two points are likely to have the same class
labels if they can be connected by a path passing through
a high density area. In other words two high density areas
with different class labels must be separated by a low density
valley.

In this paper, we develop a framework for semi-
supervised learning when the cluster assumption holds.
Specifically, we show that when the high density areas are
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sufficiently separated, a few appropriately chosen eigen-
functions of a convolution operator (which is the continuous
counterpart of the kernel matrix) represents the high density
areas reasonably well. Under the ideal conditions each high
density area can be represented by a single unique eigen-
function called the “representative” eigenfunction. If the
cluster assumption holds, each high density area will cor-
respond to just one class label and thus a sparse linear com-
bination of these representative eigenfunctions would be a
good classifier. Moreover, the basis of such eigenfunctions
can be learned using only the unlabeled data by constructing
the Nystrom extension of the eigenvectors of an appropriate
kernel matrix.

Thus, given unlabeled data we construct the basis of
eigenfunctions and then apply L1 penalized optimization
procedure Lasso (Tibshirani 1996) to fit a sparse linear com-
bination of the basis elements to the labeled data. We pro-
vide a detailed theoretical analysis of the algorithm and
show that it is comparable to the state-of-the-art on several
common UCI datasets.

Rest of the paper is organized as follows. In section 2.we
provide the proposed framework for semi-supervised learn-
ing and describe the algorithm. In section 3. we provide
an analysis of this algorithm to show that it can consistently
identify the correct model. In section 4.we provide experi-
mental results on synthetic and real datasets and finally we
conclude with a discussion in section 5..

2. Semi-supervised Learning Framework

2.1 Outline of the idea

In this section we present a framework for semi-supervised
learning under the cluster assumption. Specifically we will
assume that (i) data distribution has natural clusters sepa-
rated by regions of low density and (ii) the label assignment
conforms to these clusters.

The recent work of (Shi, Belkin, and Yu 2008a; 2008b)
shows that if the (unlabeled) data is clustered, then for each
high density region there is a unique eigenfunction of a con-
volution operator, which takes positive values for points in
the chosen cluster and whose values are close to zero ev-
erywhere else (no sign change). Moreover, it can be shown
(e.g., (Rosasco, Belkin, and Vito 2008)) that these eigen-
functions can be approximated from the eigenvectors of a
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kernel matrix obtained from the unlabeled data.
Thus if the cluster assumption holds we expect each clus-

ter to have exactly one label assignment. Therefore eigen-
functions corresponding to these clusters should produce a
natural sparse basis for constructing a classification func-
tion.

This suggests the following learning strategy:

1. From unlabeled and labeled data obtain the eigenvectors
of the Gaussian kernel matrix.

2. From these eigenvectors select a subset of candidate
eigenvectors without sign change.

3. Using the Nystrom extension (see (Bengio, Paiement, and
Vincent 2003)), extend these eigenvectors to functions de-
fined everywhere.

4. Using the labeled data, apply Lasso (sparse linear regres-
sion) in the constructed basis to obtain a classifier.

We now proceed with the detailed discussion of our algo-
rithm and its analysis.

2.2 Algorithm

The focus of our discussion will be binary classification
in the semi-supervised setting. Given l labeled examples
{(xi, yi)}li=1 sampled from an underlying joint probability

distribution PX ,Y , X ⊂ R
d,Y = {−1, 1}, where xi’s are

the data points (feature vectors or predictors), yi’s are their
corresponding labels (responses) and u unlabeled examples1

{zi}ui=1 drawn iid from the marginal distribution PX , we

choose a Gaussian kernel k(x, z) = exp
(

− ||x−z||2
2ω2

)

with

kernel bandwidth ω to form the Gram matrix Ku where
(Ku)ij = 1

uk(zi, zj). Let (λi,vi)
u
i=1 be the eigenvalue-

eigenvector pair of the Gram matrix Ku sorted by the non-
increasing eigenvalues. The Nystrom extension of the ith

eigenvector is given by,

ψui (x) =
1

λi
√
u

u
∑

j=1

vi(zj)k(x, zj) (1)

Even though ideally the unique eigenvectors will have no
sign change, in real life, depending on the separation among
the high density clusters we allow the unique eigenvectors to
have no sign change up to some small precision ǫ > 0, where
we say that a vector e = (e1, e2, ..., en) ∈ R

n has no sign
change up to precision ǫ if either ∀i ei > −ǫ or ∀i ei < ǫ.
Let Nǫ be the set of indices all eigenvectors that have no
sign change up to precision ǫ. Note that the set Nǫ and the
set {1, 2, ..., |Nǫ|} are not necessarily same. Our goal is to
obtain a function f(x) =

∑

i∈Nǫ
βiψ

u
i (x) that minimizes

classification error for the data-label pairs generated from a
linear regression model, yi =

∑

j∈Nǫ
β∗
jψ

u
j (xi) + εi where

εis represent stochastic noise (zero mean bounded variance
iid random variables) that are independent of yis and xis and
most of the β∗

i s are zeros. Ideally, to get a sparse solution,
we would like to minimize L0 penalized (on βis) convex

1We use the notation z instead of x purely for notational conve-

nience. Now the index goes {zi}
u

i=1 instead of {xi}
l+u

i=l+1
. Also,

note that, we will use the terms data and examples interchangeably.

loss function V
(

{(xi, yi)}li=1,β
)

. Since such an optimiza-
tion problem is NP hard, standard approach is to apply a L1

penalty on βis. If we select V to be square loss function,
we end up solving the L1 penalized least square or so called
Lasso (Tibshirani 1996), whose consistency property were
studied in (Zhao and Yu 2006). Thus we would seek a solu-
tion of the form

argmin
β

(y − Ψβ)T (y − Ψβ) + λ||β||L1 (2)

which is a convex optimization problem, where Ψ is the
l× |Nǫ| design matrix whose ith column is the restriction of
ψuai

, ai ∈ Nǫ to l labeled examples, y ∈ R
l is the label vec-

tor, β is the vector of coefficients and λ is a regularization
parameter. Note that solving the above problem is equivalent
to solving

arg min
β

(y − Ψβ)T (y − Ψβ) s.t.
∑

i∈Nǫ

|βi| ≤ t (3)

because for any given λ ∈ [0,∞), there exists a t ≥ 0
such that the two problems have the same solution, and
vice versa (Tibshirani 1996). We will denote the solution

of Equation 3, by β̂. Let the set T contains indices of all

nonzero β̂is. The classification function is given by, f(x) =
∑

i∈T β̂iψ
u
i (x) =

∑u
i=1 Wik(zi,x), where, W ∈ R

u is a

weight vector whose ith element is given by

Wi =
∑

j∈T

β̂jvj(zi)

λj
√
u

(4)

and can be computed while training.

Algorithm for Semi-supervised Learning

Input: {zi}ui=1, {(xi, yi)}li=1
Parameters: ω, t, ǫ

1. From u unlabeled examples {zi}ui=1, generate the kernel
Matrix Ku.

2. Select the set of indicesNǫ of eigenvectors having no sign
change up to precision ǫ.

3. Extend each vi, i ∈ Nǫ to form ψui s using Equation 1.

4. Using {ψui }i∈Nǫ
and l labeled examples {(xi, yi)}li=1,

form the design matrix Ψ.

5. Solve Equation 3 to get β̂ and calculate weight vector W

using Equation 4.

6. Given a test point x, predict its label as y =
sign (

∑u
i=1 k(zi,x)Wi)

3. Analysis of the Algorithm

Before starting the actual analysis, we first note that the con-
tinuous counterpart of the Gram matrix is a convolution op-
erator LK : L2(X ,PX ) → L2(X ,PX ) defined by,

(LKf)(x) =

∫

X
k(x, z)f(z)dPX (z) (5)
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The eigenfunctions of the symmetric positive definite oper-
ator LK are denoted by φLi .

Next, we briefly discuss the effectiveness of model selec-
tion using Lasso (established by (Zhao and Yu 2006)) which

will be required for our analysis. Let β̂l(λ) be the solution of
Equation 2 for a chosen regularization parameter λ. In (Zhao
and Yu 2006) a concept of sign consistency was introduced
which states that Lasso is sign consistent if, as l tends to in-

finity, signs of β̂l(λ) matches with that of β∗ with probabil-
ity 1, where β∗ is the coefficients of the correct model. Note
that since we are expecting a sparse model matching zeros

of β̂l(λ) to the zeros of β∗ is not enough, but in addition,
matching the sign of the non zero coefficients ensures that
the true model will be selected. Next, without loss of gener-
ality assume β∗ = (β∗

1 , · · · , β∗
q , β

∗
q+1, · · · , β∗

|Nǫ|) has only

first q terms non-zero, i.e., only q predictors describe the
model and rest of the predictors are irrelevant in describing
the model. Now let us write the first q and |Nǫ| − q columns
of Ψ as Ψ(1) and Ψ(2) respectively. Let C = 1

lΨ
TΨ.

For a random design matrix, sign consistency is equiva-
lent to irrepresentable condition (see (Zhao and Yu 2006)).
When β∗ is unknown, in order to ensure that irrepresentable
condition holds for all possible signs, it requires that L1

norm of the regression coefficients corresponding to the ir-
relevant predictors to be less than 1, which can be written

as µΨ = maxψu
j ∈Ψ(2)

∣

∣

∣

∣

∣

∣

∣

∣

(

ΨT
(1)Ψ(1)

)T

ΨT
(1)ψ

u
j

∣

∣

∣

∣

∣

∣

∣

∣

1

< 1. The

requirement µΨ < 1 is not new and have also appeared in
the context of noisy or noiseless sparse recovery of signal
(Tropp 2004; Wainwright 2006; Zhang 2008). Note that
Lasso is sign consistent if irrepresentable condition holds
and the sufficient condition needed for irrepresentable con-
dition to hold is given by the following result,

Theorem 1. (Zhao and Yu 2006) Suppose β∗
has q nonzero

entries. Let the matrix C′ be normalized version of C such

that C′
ij =

Cij

Cii
and maxi,j,i6=j |C′

ij | ≤ c
2q−1 for a constant

0 ≤ c < 1, then strong irrepresentable condition holds.

In section 3.4, we will show that this sufficient condition
is satisfied with high probability requiring relatively few la-
beled examples, as a result the correct model is identified
consistently which in turn describes a good classification
function.

3.1 Brief Overview of the Analysis

Our analysis lies on three ideas,- (1) sufficient separation
among high density regions ensuring a sparse model that de-
scribes data-label pairs sampled from PX ,Y , (2) finite sam-
ple result describing how well Nystrom extensions approxi-
mate eigenfunctions of LK using unlabeled examples alone
and (3) concentration result ensuring model selection con-
sistency of Lasso with high probability using relatively few
labeled examples. We first provide a brief overview of these
ideas and then present the technical details in the following
subsections. All the proofs have been deferred to the Ap-
pendix for space limitation.

Note that cluster assumption can also be interpreted as
follows,- density function of an individual class has fast tail

decay and there is little overlap among the density functions
representing different classes. It is shown in (Shi, Belkin,
and Yu 2008b) that eigenfunctions of LK , when LK is ap-
plied to individual density functions separately, are almost
preserved when LK is applied to the combined mixture as
well, in case of a mixture of Gaussians, and also in gen-
eral (Shi, Belkin, and Yu 2008a), provided tails of individ-
ual density functions corresponding to each class decay rea-
sonably fast. As a first step of our analysis, in section 3.2
, for a class of probability distributions characterized by fast
tail decay, we estimate the separation requirement among
the high density regions ensuring that each high density re-
gion (class) can be well represented by a unique eigenfunc-
tion, which we call “representative” eigenfunction having
the property that it has no sign change and it has higher
values within a high density region and decays exponen-
tially fast outside the high density region. This allows
us to express the classification task in this eigenfunction
basis where we look for a classification function consist-
ing of linear combination of representative eigenfunctions
only and thus relate the problem to sparse approximation
from the model selection point of view, which is a well
studied field (Wainwright 2006; Zhang and Huang 2006;
Candes and Plan 2007).

Let Nmax = maxi{i : i ∈ Nǫ}. Assuming that the first
Nmax eigenvalues of LK and Ku, sorted in non-increasing
order, are simple and bounded away from zero, in the sec-
ond step, using perturbation results from (Rosasco, Belkin,
and Vito 2008) we show that, with high probability, for

i, j ∈ Nǫ, ‖ψui − φLi ‖L2(X ,PX ) = O
(

1√
u

)

and accord-

ingly 〈ψui , ψuj 〉L2(X ,PX ) = O( 1√
u
) for all i, j, i 6= j and

‖ψui ‖L2(X ,PX ) = 1 + O( 1√
u
) for all i. This implies that

if the number of unlabeled examples u is large enough,
then 〈ψui , ψuj 〉L2(X ,PX ) =

∫

X ψ
u
i (X)ψuj (X)dPX (X) =

E
(

ψui (X)ψuj (X)
)

≈ 0 and 〈ψui , ψui 〉L2(X ,PX ) =
∫

X [ψui (X)]2dPX (X) = E
(

[ψui (X)]2
)

≈ 1. i.e., these

eigenfunctions {ψui }i∈Nǫ
form an orthonormal basis of

L2
Nǫ

(X ,PX ) ⊂ L2(X ,PX ) in the limit as u → ∞, where

L2
Nǫ

(X ,PX ) is the space spanned by the eigenfunctions of
LK having indices in the set Nǫ.

So far we have used only unlabeled examples to learn the
eigenfunctions ψui s. Next, we use the labeled examples to
perform L1 regularized regression to identify the represen-
tative eigenfunctions and their nonzero coefficients. Due
to Theorem 1, it is enough to show that the off-diagonal
terms of C′ are strictly less than 1

2q−1 , where q is the num-

ber of columns that describes the sparse model (in case
of binary classification q = 2, which are the represen-
tative eigenfunctions corresponding to each class). Now,
any off-diagonal term of the matrix C is given by Cij =
1
l

∑l
k=1 ψ

u
ai

(xk)ψ
u
aj

(xk), ai, aj ∈ Nǫ which is empirical

version of the expectation E

(

ψuai
(X)ψuaj

(X)
)

. In the third

step, using standard concentration inequality result we show
thatCij is tightly concentrated around its expected value and
converges in probability to its expectation exponentially fast
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in number of labeled examples. Since for a large enough

u,E
(

ψuai
(X)ψuaj

(X)
)

≈ 0, it is not hard to show that suf-

ficient condition of (Zhao and Yu 2006) is easily satisfied.
In other words, with high probability, only a few labeled ex-
amples will be good enough to ensure model consistency of
Lasso.

3.2 Separation Requirement

To motivate our discussion we consider binary classifica-
tion problem where the underlying assumption is that each
class has its own probability density function, denoted by
p1(x) and p2(x) respectively and corresponding mixing
weights π1, π2. Thus, the density of the mixture is p(x) =
π1p1(x) + π2p2(x). We will use the following results from
(Shi, Belkin, and Yu 2008a) specifying the behavior of the
eigenfunction corresponding to the largest eigenvalue.

Theorem 2. (Shi, Belkin, and Yu 2008a) The top eigen-
function φL0 (x) of LK corresponding to the largest eigen-
value λ0, (1) is the only eigenfunction with no sign change,
(2) has multiplicity one, (3) is non zero on the sup-
port of the underlying density, (4) satisfies |φL0 (x)| ≤
1
λ0

√

∫

k2(x, z)p(z)dz (Tail decay property), where p is the

underlying probability density function.

Note that the last (tail decay) property above is not
restricted to the top eigenfunction alone but is satisfied
by all eigenfunctions of LK . Now, consider applying
LK to the three cases when the underlying probabil-
ity distributions are p1, p2 and p which corresponds
to individual classes respectively and the mixture and
where the largest eigenvalues and corresponding eigen-

functions are λ1
0, λ

2
0, λ0 and φL,10 , φL,20 , φL0 respectively.

To show explicit dependency on the underlying prob-
ability distribution, we will denote the corresponding
operators as Lp1K , L

p2
K and LpK respectively. Clearly,

LpK = π1L
p1
K + π2L

p2
K . Then we can write, LpKφ

L,1
0 (x) =

∫

k(x, z)φL,10 (z)p(z)dz = π1

∫

k(x, z)φL,10 (z)p1(z)dz+

π2

∫

k(x, z)φL,10 (z)p2(z)dz =

π1λ
1
0φ
L,1
0 + π2

∫

k(x, z)φL,10 (z)p2(z)dz =

π1λ
1
0

(

φL,10 + π2

π1λ1
0

∫

k(x, z)φL,10 (z)p2(z)dz
)

=

π1λ
1
0

(

φL,10 + T1(x)
)

where, T1(x) =

π2

π1λ1
0

∫

k(x, z)φL,10 (z)p2(z)dz. In a similar way we

can write, LpKφ
L,2
0 (x) = π2λ

2
0

(

φL,20 + T2(x)
)

where,

T2(x) = π1

π2λ2
0

∫

k(x, z)φL,20 (z)p1(z)dz. Thus, when

T1(x) and T2(x) are small enough then φL,10 and φL,20 are
eigenfunctions of LpK with corresponding eigenvalues π1λ

1
0

and π2λ
2
0 respectively. Note that “separation condition”

requirement refers to T1(x), T2(x) being small, so that
eigenfunctions corresponding to the largest eigenvalues
of convolution operator when applied to individual high
density bumps can be preserved when convolution operator
applied to the mixture. Clearly, we can not expect T1(x),
T2(x) to arbitrarily small if there is sufficient overlap

between p1 and p2. Thus, we will restrict ourselves to
the following class of probability distributions for each
individual class which has reasonably fast tail decay.

Assumption 1. For any 1/2 < η < 1, let M(η,R) be the
class of probability distributions such that its density func-
tion p satisfies
1)

∫

R p(x)d(x) = η where R is the minimum volume ball
around the mean of the distribution.
2) For any positive t > 0, smaller than the radius of R,
and for any point z ∈ X \ R with dist(z,R) ≥ t, the

volume S = {x ∈ (X \R) ∩B(z, 3t/
√

2)} has total prob-

ability mass
∫

S p(x)dx ≤ C1η exp
(

− dist2(z,R)
t2

)

for some

C1 > 0.

where the distance between a point x and set D is defined
as dist(x,D) = infy∈D ||x − y||. With a little abuse of
notation we will use p ∈ M(η,R) to mean that p is the
probability density function of a member of M(η,R). Now
a rough estimate of separation requirement can be given by
the following lemma.

Lemma 1. Let p1 ∈ M(η,R1) and p2 ∈ M(η,R2) and
let the minimum distance between R1,R2 be ∆. If ∆ =

Ω∗
(

ω
√
d
)

then T1(x) and T2(x) can be made arbitrarily

small for all x ∈ X .

The estimate of ∆ in the above lemma, where we hide
the log factor by Ω∗, is by no means tight, nevertheless, it
shows that separation requirement refers to existence of a
low density valley between two high density regions each
corresponding to one of the classes. This separation require-
ment is roughly of the same order required to learn mixture
of Gaussians (Dasgupta 1999). Note that, provided separa-

tion requirement is satisfied, φL,10 and φL,20 are not neces-
sarily the top two eigenfunctions of LK corresponding to
the two largest eigenvalues but one of them can be quite far
down the spectrum of LpK depending on the mixing weights
π1, π2. Next, the following lemma suggests that we can say
more about the eigenfunction corresponding to the largest
eigenvalue.

Lemma 2. For any e
1+e < η < 1, let q ∈ M(η,R). If

φL0 is the eigenfunction of LqK corresponding to the largest
eigenvalue λ0 then there exists a C1 > 0 such that
1) For all x ∈ X \ R, |φL0 (x)| ≤√

(C1+η)

λ0
exp

(

− dist2(x,R)
2ω2

)

2) For all z ∈ R and x ∈ X \ R, |φL0 (z)| ≥ |φL0 (x)|
Thus, top eigenfunctions corresponding to the largest

eigenvalues of each class represent high density region rea-
sonably well, outside high density region they have a lower
absolute value decays exponentially fast and provided sep-
aration requirement is satisfied they are pretty much pre-
served in the mixture. These are the eigenfunctions that we
will refer to as representative eigenfunction.

3.3 Finite Sample Results

We start with the following assumption.
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Assumption 2. The Nmax largest eigenvalues of LK and
Ku, where Nmax = maxi{i : i ∈ Nǫ}, are simple and
bounded away from zero.

Note that Nystrom extension ψui s are eigenfunctions of
an operator LK,u : H → H (see Appendix), where H is
the unique RKHS defined by the chosen Gaussian kernel
and all the eigenvalues of Ku are also eigenvalues of LK,u.
There are two implications of Assumption 2. The first one
is due to the bounded away from zero part, which ensures
that if we restrict to ψui ∈ H corresponding to the largest
N eigenvalues, then each of them is square integrable and
thus is an element of L2(X ,PX ). The second implication
due to the simple part, ensures that the Nmax eigenfunctions
corresponding to the Nmax largest eigenvalues are uniquely
defined and so is the orthogonal projection on them. Note
that if any eigenvalue has multiplicity greater than one then
the corresponding eigenspace is well defined but not the in-
dividual eigenfunctions. Thus, Assumption 2 enables us to
compare how close each ψui is to some other function in
L2(X ,PX ) in L2(X ,PX ) norm sense. Let gNmax be the
N th

max eigengap when eigenvalues of LK are sorted in non
increasing order. Then we have the following results.

Lemma 3. Suppose Assumption 2 holds and the top Nmax

eigenvalues of LK and Ku are sorted in the decreasing
order. Then for any 0 < δ < 1 and for any i ∈ Nǫ,
with probability at least (1 − δ), ‖ψui − φLi ‖L2(X ,PX ) =

2
gNmax

√

2 log(2/δ)
uλi

Corollary 1. Under the above conditions, for any
0 < δ < 1 and for any i, j ∈ Nǫ, with probability at least
(1 − δ) the following holds,

1)
∣

∣〈ψui , ψuj 〉L2(X ,PX )

∣

∣ ≤
(

8 log(2/δ)

g2Nmax

√
λiλj

)

1
u +

(√
8 log(2/δ)

gNmax

(

1√
λi

+ 1√
λj

))

1√
u

2) 1 −
(

√

8 log(2/δ)
g2

Nmax
λi

)

1√
u

≤ ‖ψui ‖L2(X ,PX ) ≤

1 +

(
√

8 log(2/δ)
g2

Nmax
λi

)

1√
u

3.4 Concentration Results

Having established that {ψui }i∈Nǫ
form an orthonormal ba-

sis in L2
Nǫ

(X ,PX ) in the limit, next, we need to con-
sider what happens when we restrict each of the ψui s to
finite labeled examples. Note that the design matrix Ψ ∈
R
l×|Nǫ| is constructed by restricting the {ψuj }j∈Nǫ

to l la-

beled data points {xi}li=1 such that the ith column of Ψ is
(

ψuai
(x1), ψ

u
ai

(x2), · · · , ψuai
(xl)

)T ∈ R
l, ai ∈ Nǫ. Now

consider the |Nǫ| × |Nǫ| matrix C = 1
lΨ

TΨ where, Cij =
1
l

∑l
k=1 ψ

u
ai

(xk)ψ
u
aj

(xk). First, applying Hoeffding’s in-

equality we establish,

Lemma 4. For all i, j ∈ Nǫ and ǫ1 > 0 the following two
facts hold.

P

(∣

∣

∣

1
l

∑l
k=1[ψ

u
i (xk)]

2 − E
(

[ψui (X)]2
)

∣

∣

∣
≥ ǫ1

)

≤

2 exp
(

− lǫ21λ
2
i

2

)

P

(∣

∣

∣

1
l

∑l
k=1 ψ

u
i (xk)ψ

u
j (xk) − E

(

ψui (X)ψuj (X)
)

∣

∣

∣
≥ ǫ1

)

≤

2 exp
(

− lǫ21λiλj

2

)

Next, consider the |Nǫ| × |Nǫ| normalized matrix C′

where C′
ij =

Cij

Cii
, ensuring that the diagonal elements

C′
ii = 1. To ensure that Lasso will consistently choose

the correct model we need to show (see Theorem 1) that
maxi6=j |C′

ij | < 1
2q−1 with high probability. Applying the

above concentration result and finite sample results we have,

Theorem 3. Let q be the minimum number of columns of
the design matrix Ψ ∈ R

l×|Nǫ|, constructed from l labeled
examples, that describes the sparse model. Then for any
0 < δ < 1, if the number of unlabeled examples u satisfies

u >
2048q2 log( 2

δ )
g2

Nmax
λ2

Nmax

, then with probability greater than 1−δ−

4 exp
(

− lλ2
Nmax

50q2

)

, maxi6=j |C′
ij | < 1

2q−1 .

where λNmax is the N th
max largest eigenvalue and gNmax

is the N th
max eigengap. Note that role played by the labeled

and unlabeled examples in our framework follows similar
trend in reducing classification error as reported in the litera-
ture (Castelli and Cover 1996; Ratsaby and Venkatesh 1995;
Sinha and Belkin 2007; Singh, Nowak, and Zhu 2008),
specifically, unlabeled examples help only polynomially fast
in estimating the eigenfunctions and labeled examples help
exponentially fast in identifying the sparse model consisting
of representative eigenfunctions.

4. Experimental Results

4.1 Toy dataset

Here we present a synthetic example in 2-D. Consider a bi-
nary classification problem where the positive examples are
generated from a Gaussian distribution with mean (0, 0) and
covariance matrix [2 0; 0 2] and the negative examples are
generated from a mixture of Gaussians having means and
covariance matrices (5, 5), [2 1; 1 2] and (7, 7), [1.5 0; 0 1.5]
respectively. The corresponding mixing weights are 0.4, 0.3
and 0.3 respectively. Left panel in Figure 1 shows the proba-
bility density of the mixture in blue and representative eigen-
functions of each class in green and magenta respectively us-
ing 1000 examples (positive and negative) drawn from this
mixture. It is clear that each representative eigenfunction
represents high density area of a particular class reasonably
well. So intuitively a linear combination of them will repre-
sent a good decision function. In fact, the right panel of Fig 1
shows the regularization path for L1 penalized least square
regression with 20 labeled examples. The bold green and
magenta lines shows the coefficient values for the represen-
tative eigenfunctions for different values of regularization
parameter t. As can be seen, regularization parameter t can
be so chosen that the decision function will consist of a lin-
ear combination of representative eigenfunctions only. Note
that these representative eigenfunctions need not be the top
two eigenfunctions corresponding to the largest eigenvalues.
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Figure 1: Left panel: Probability density of the mixture in blue and representative eigenfunctions in green and magenta. Right
panel: Regularization path. Bold lines correspond to regularization path associated with representative eigenfunctions.
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Figure 2: Classification results for USPS dataset

4.2 UCI datasets

In this set of experiment we tested the effectiveness of
our algorithm on some common UCI datasets. We com-
pared our algorithm with state of the art semi-supervised
learning (manifold regularization) method Laplacian SVM
(LapSVM) (Belkin, Niyogi, and Sindhwani 2006), fully su-
pervised SVM and also two other kernel sparse regression
methods. In KPCA+L1 we selected top |Nǫ| eigenvectors,
and applied L1 regularization, where as in KPCA F+L1 we
selected the top 20 (fixed) eigenvectors of Ku and applied
L1 regularization2. For both SVM and LapSVM we used
RBF kernel. In each experiment a specified number of ex-
amples (l) were randomly chosen and labeled and the rest
(u) were treated as unlabeled test set. Such random splitting
was performed 20 times and the average is reported.

The results are reported in Table 1. As can be seen, for
small number of labeled examples our method convincingly
outperform SVM and is comparable to LapSVM. The re-
sult also suggests that instead of selecting top few eigenvec-
tors, as is normally done in KPCA, selecting them by our
method and then applyingL1 regularization yields better re-
sult. Table 2 shows that the solution obtained by our method
is very sparse, where average sparsity is the average num-

2We also selected 100 top eigenvectors and applied L
1 penalty

but it gave worse result.

ber of non-zero coefficients. The notation A/B represents
average sparsity A and number of eigenvectors (|Nǫ| or 20).

4.3 Handwritten Digit Recognition

In this set of experiments we applied our method to the 45 bi-
nary classification problems that arise in pairwise classifica-
tion of handwritten digits and compare its performance with
LapSVM. For each pairwise classification problem, in each
trial, 500 images of each digit in the USPS training set were
chosen uniformly at random out of which 20 images were
labeled and the rest were set aside for testing. This trial was
repeated 10 times. For the LapSVM we set the regulariza-
tion terms and the kernel as reported by (Belkin, Niyogi, and
Sindhwani 2006) for a similar set of experiments, namely

we set γAl = 0.005, γI l
(u+l)2 = 0.045 and chose a polyno-

mial kernel of degree 3. The results are shown3 in Figure2.
As can be seen our method is comparable to LapSVM.

We also performed multi-class classification on USPS
dataset. In particular, we chose all the images of digits 3, 4
and 5 from USPS training data set (there were 1866 in total)
and randomly labeled 10 images from each class. Rest of
the 1836 images were set aside for testing. Average predic-
tion accuracy of LapSVM, after repeating this procedure 20

3It turned out that the cases where our method performed very
poorly, the respective distances between the means of correspond-
ing two classes were very small.
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DATA SET
IONOSPHERE HEART WINE BREAST-CANCER VOTING

d=32, l+u=351 d=75, l+u=303 d=13, l+u=178 d=32, l+u=569 d=16, l+u=435

# Labeled Data l=10 l=20 l=30 l=10 l=20 l=30 l=5 l=10 l=15 l=5 l=10 l=5 l=10

Our Method
76.55 78.98 79.14 75.40 77.38 79.05 82.29 96.57 98.65 96.88 99.66 83.62 88.49

±7.42 ±7.2 ±7.05 ±6.18 ±6.04 ±1.11 ±14.07 ±6.73 ±4.36 ±6.92 ±1.56 ±9.33 ±1.66

LapSVM
73.25 77.64 79.94 76.14 77.21 77.29 82.40 95.33 98.28 95.68 99.05 88.05 88.62

±6.42 ±7.40 ±6.35 ±5.20 ±2.63 ±2.85 ±14.22 ±7.66 ±1.33 ±8.82 ±3.52 ±5.79 ±2.66

SVM
65.16 72.09 79.8 64.61 73.16 76.55 63.47 83.98 88.12 72.83 97.32 81.53 88.51

±10.87 ±10.04 ±9.94 ±11.63 ±5.95 ±4.29 ±11.57 ±10.25 ±11.68 ±17.56 ±8.65 ±16.05 ±5.88

KPCA+L1 67.24 74.38 75.23 61.07 67.43 73.11 81.41 90.59 95.18 59.77 73.59 82.61 88.23

±7.72 ±8.53 ±7.55 ±8.82 ±6.60 ±5.59 ±14.01 ±9.52 ±6.74 ±17.37 ±12.66 ±10.32 ±2.13

KPCA F+L1 63.98 67.42 72.29 59.38 66.66 72.33 63.64 76.41 79.07 61.83 73.83 65.12 73.59

±8.10 ±8.28 ±7.56 ±8.07 ±7.01 ±4.91 ±15.44 ±12.37 ±13.08 ±17.96 ±14.28 ±12.08 ±8.09

Table 1: Classification Accuracies for different UCI datasets

DATA SET IONOSPHERE HEART WINE BREAST-CANCER VOTING

Our Method 4.42 / 11 6.33 / 13 3.63 / 7 2.10 / 3 2.00 / 3

KPCA+L1 6.20 / 11 8.18 / 13 4.27 / 7 2.25 / 3 2.00/ 3

KPCA F+L1 8.05 / 20 9.32 / 20 7.25 / 20 4.48 / 20 3.05 / 20

Table 2: Average sparsity of our method for different UCI datasets

times, was 90.14% as compared to 87.53% of our method.

5. Conclusion

In this paper we have presented a framework for spectral
semi-supervised learning based on the cluster assumption.
We obtain experimental results comparable to the state of
the art.

Since our method is closely related to Kernel PCA
(KPCA), we would like to point out the important differ-
ence. In the case of KPCA, data is projected onto the space
spanned by the top eigenvectors corresponding of the ker-
nel matrix and the classification or regression task is per-
formed in that space. For example, this approach was taken
in the classification setting in (Blanchard et al. 2004). We
note, that since the kernel matrix is computed without any
knowledge of the labels, this approach lends itself to a natu-
ral semi-supervised algorithm. However, as our experiments
confirm, this algorithm does not benefit from the unlabeled
data and shows no improvement over a purely supervised
algorithm, such as SVM.

Unlike Kernel PCA, our method takes a carefully selected
small subset of eigenvectors in an unsupervised manner as a
basis, corresponding to the cluster assumption. This selec-
tion is crucial to the performance of our method. We then
use Lasso with the labeled data to form a classifier that ends
up being very sparse in the basis of kernel eigenvectors and
benefits significantly from unlabeled data.
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