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Abstract 
Agent adaptability – the ability of agents to change behavioral 
strategies when it is beneficial to do so – is presumed to be an 
important part of the robustness of complex adaptive systems 
(CAS).  But, determining when changing behaviors is 
advantageous for agents has proven quite challenging in CAS 
research, as sometimes behavioral change is necessary, but other 
times it can impose costs that exceed benefits.  I present the 
results from experiments using an agent-based model (ABM) 
designed to discover thresholds after which behavioral flexibility 
leads to improved societal-level outcomes in groups of agents in 
dynamic environments.  The first major result is that there are 
thresholds in both levels of flexibility in agent behavior and in 
levels of turbulence in the environment below and above which 
there are marked differences in utility gains for agents.  In 
particular, relatively high flexibility leads to lower overall utility 
scores, as well as, surprisingly, decreased diversity and increased 
inequality between agents.  The second result is that at very high 
levels of environmental turbulence, the effects of the environment 
alone on agent utility overshadow any benefits to agents from 
flexible behavior strategies.  This suggests, counter-intuitively, 
that the best strategy for agents in very dynamic environments is 
simply to keep behavior constant.  The third major result is that 
there is an interaction between agent behavior and the 
environment: high flexibility of other agents can effectively make 
an environment more “dynamic”, which just fuels more 
flexibility, and leads to a scramble between different strategies 
with no utility gain.  A final theoretical contribution of the paper 
is that the model is able to show drawbacks to flexibility without 
relying on costs to changing behavior, as is done in much of the 
literature on strategy change. 

Introduction 

In biological, ecological, and social systems, behavioral 
flexibility is generally held to be a useful characteristic of 

constituent actors in a population, with flexibility referring 
to the capacity of actors to change their behavior or some 
characteristic of themselves in light of changes in their 
relevant environment.  Work in biology has shown that 
species that are able to perform more diverse sets of 
behaviors outperform species with only one strategy for, 
e.g., finding mates or food (Rossmanith et al. 2006, 
Bundgaard 2000, Lande and Shannon 1996).  Researchers 
have also found that the heterogeneity of species’ habitats 
correlates positively with more diversity in populations 
(Piha et al. 2007, Ehrlich and Murphy 1987, Weiss et al. 
1988, Kindvall 1996).   
 With respect to social systems, March (1991) shows that 
some balance between exploration (trying new procedures 
or looking for new solutions) and exploitation (imitating 
existing strategies) is important for the success of firms.  
This is because exploration is risky: it doesn’t always yield 
performance or utility gains – in fact explorers may fail 
miserably – but the possibility of discovering improved 
strategies makes some degree of exploration desirable.  
Exploitation is less risky, but given that the payoffs are 
guaranteed, this means that as long as there is no 
exploration, there will be a ceiling on how well the firm 
can do beyond its existing performance.  Complementary 
work in institutional analysis (North 2006, Hayek 1945) 
also emphasizes that while institutional stability is 
desirable, there is no guarantee that that particular 
institution will produce growth over time (North 2006, p. 
363); thus, institutions ought also exhibit some degree of 
flexibility in order to be successful in the dynamic social 
environments in which they operate.  Thus, it would seem 
that firms, governments, universities, and other 
organizations would all do well to undertake measures to 
be flexible in the face of change. 
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 To the extent that stability is also valued in biological 
and social systems, it is generally held with regard because 
of the costliness of change; that is, it costs time and 
resources for a firm to come up with a new strategy for 
responding to new market pressures.  Similarly, it costs 
individuals time, resources, and mental exhaustion if they 
need to invent a new strategy each time they confront a 
new scenario (Bednar et al., manuscript).  With respect to 
species’ flexibility, genetic mutation is similarly held in 
check, and for good reason: not all mutations are 
beneficial, and if the population is surviving well, they are 
not likely to benefit from rampant mutations with each 
generation. 
 The brief overview above suggests the following 
implications regarding the relationship between actor 
flexibility (strategic/behavioral or characteristic/genetic) 
and their environment: in constant environments, actors 
generally would do better to exhibit less flexibility.  
Flexibility is costly, and if the current strategy insures 
survival, there is no need to endure that cost.  If the 
environment is heterogeneous (over space or time), 
however, some degree of flexibility should prove to be 
beneficial for actors in that environment.  Finally, an 
environment is more than its physical characteristics (e.g., 
a prairie landscape, or a market), which are effectively 
exogenously given.  An additional important part of what 
distinguishes one particular environment from another is 
the other actors in that environment (e.g., the number of 
predators or competitive firms).  If we are interested in 
understanding the fate of a particular group or individual in 
an environment, these endogenous actor factors are 
certainly as important as the exogenous physical ones. 
 In this paper I present an agent-based model that 
evaluates this relationship between actor flexibility and 
environmental dynamics.  I consider both topological 
sources of environmental turbulence, as well as 
environmental dynamics that come from the changing 
behaviors or other actors in the system.  In my model two 
types of agents attempt to spread themselves according to 
contrary agendas across a lattice.  In the control case, the 
environment (the lattice) is constant and agents are 
confined to staying whatever type they are originally 
assigned.  In subsequent trials, I allow the environment to 
change, then I allow the actors to change from one type to 
the other if it is performing better than their own, and, 
finally, I allow both the environment and actor types to 
change. 
 My core result is that under some conditions flexibility 
can lead to sub-optimality, even in a dynamic environment.  
This is the case when we consider sub-optimality in the 
strict sense of lower utility at the societal level than we 
would see had the agents not exhibited flexible behavior.  
In addition, flexibility can also be suboptimal in a broader 
sense: I find that more flexibility in agents' behavior leads 
to less diversity and more inequality.  As the following 
section details, my model only considers two types of 

actors.  Thus, I treat diversity as the ratio of one type to 
another – a 50/50 system is the most diverse, while a 99/1 
system is the least diverse, which is reasonable if we 
consider diversity as the probability of running into 
someone unlike oneself if we interact with others in our 
society randomly.  Inequality here refers to the proportion 
of wealth (utility, or “contentment”, in this model) held by 
members of each type – an equal system is one in which 
each type earns about equal utility, while an unequal 
system is one in which one group earns much higher utility 
than the other.  Another interesting and related result from 
the model is that, contrary to what we might expect, the 
group with the higher utility does not necessarily have 
more members. 
 A second result is that the model shows that 
environment plays a very prominent role in social 
outcomes.  This in itself is not radically novel, but the 
effect does seem stronger than the literature might lead us 
to expect.  The power of the environment exerts itself in 
two directions: on one hand, there are simply some 
situations in which no amount of flexibility can help agents 
overcome environmental disadvantage.  On the other hand, 
even in situations where the physical environment would 
allow one group of agents to do well, the presence of a 
second groups can significantly derail the first’s success – 
even if in the early rounds the first group was the more 
successful of the two groups.  In this particular model, we 
are also able to observe evidence of some disadvantages 
from early success.  If such derailing takes place after 
enough members of the first group have reached a 
particular satisficing threshold, they won’t change 
strategies even if there are additional gains to doing so.   
 Finally, this model also contributes to the exploration 
versus exploitation literature in that it is able to generate 
sub-optimality in flexibility without relying on costs to 
exploring or changing.  Risks are still embedded implicitly 
in the model, as the agents do not know when they are 
switching behaviors what the best behavior actually is, but 
the actual act of changing bears no cost in the model.  
Much of the literature on cognition, bounded rationality, 
and decision-making under uncertainty turns on the 
understanding that it is difficult for individuals to change 
their behavior (and even more so for groups).  This model 
produces suboptimal outcomes from changing behavior 
without this stipulation. 
 Below, I explain the model in detail and identify several 
hypotheses about the behavior we might expect to observe.  
Then, I present evidence for the results I’ve described, 
after which follows a discussion of the results and 
comments on directions for further research.  In the 
Appendix the reader will find tables and graphs to support 
the results.  The java code for the model is currently 
available by emailing the author and will in the future be 
available for download directly from her website. 
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The Model 

The model is very simple.  This offers the advantage of 
being very generalizable, as it is readily applicable to a 
variety of social and ecological systems.  The model has 
also been specifically designed so that that the addition of 
context-specific features is straightforward.  

In this model 100 agents of two different “Types” live 
on a 5x5 non-wrapping lattice and attempt to allocate that 
space among themselves in a way that maximizes their 
individual utility.  One type of agent is more content when 
it is surrounded by as many other agents as possible, while 
the other type is less content the more agents are around it.
 Two important features to note about the setup are, first, 
the lattice is non-wrapping in order to more closely 
approximate reality.  In this model agents are concerned 
with how many neighbors they have, and in most towns 
and neighborhoods, there are borders, outskirts, and dead 
ends, to which individuals who want to be more isolated 
can move.  We will see in the results that the existence of 
corners for agents to move indeed leads to some interesting 
outcomes that would not be possible in a toroidal lattice.  
 The second feature is the size of the lattice and the 
number of agents in the environment.  At the setting I will 
use for all of my results in this paper, the population 
density of the model is 100 agents over 25 units of space, 
which means 4 agents per unit, or cell.  The model is 
robust to most variations in density levels except for very 
high and low ones.  This is because, as we will see below, 
a very dense environment will favor the group of agents 
that prefer to cluster, while a very sparsely populated 
environment will mean that the group of agents who prefer 
to spread will do best. 
 The features of the agents are as follows.  Agents in this 
world take on one of two possible Types – clustering or 
spreading –  with some probability (P).  An agent’s Type 
defines the criteria by which the agent earns utility.  In this 
way, Type is like a strategy, in that agents want to use the 
space in the lattice in a way that earns them the highest 
utility, and the Type defines the rules by which they do so.  
The first Type is Type C, which earns utility, or 
“Contentment” (K), by clustering agents together.  As the 
number of other agents occupying a single agent’s 
neighborhood (defined below) increases, the K for a Type 
C agent increases.  The second Type is Type S, which, 
opposite to C, earns utility by spreading out over the 
lattice.  As the number of agents occupying the 
neighborhood in which an agent lives decreases, the K for 
a Type S agent decreases.  Specifically, Contentment 
scores for each type are given by the following, 
 
 KC = (Number of Agents in Neighborhood)/100 
 KS = (100 – Number of Agents in Neighborhood)/100 
 
where “Neighborhood” refers to the space of the lattice 
that is visible to each agent.  This will be explained in 

detail below, as it is the aspect of the environment that will 
change when I introduce habitat heterogeneity into the 
model.  
 Thus, we see that Type C agents get higher K the more 
neighbors they have, while Type S get higher K the fewer 
neighbors they have.  For example, if a Type C has 65 
other agents in its relevant neighborhood, that agent earns a 
K score of 0.5.  If a Type S has 65 other agents in its 
relevant neighborhood, however, it earns a K score of 0.35.  
This contentment is evaluated at each timestep of the 
model, with the maximum score able to be earned by any 
agent being 1.  The K scores are averaged across all agents 
of each type at each timestep, and then I evaluate them 
cumulatively over 50 timesteps, which constitutes one 
“run”.  Thus, the maximum “Social Contentment” that can 
be earned by a group is 50 (a score of K = 1 each timestep 
for 50 timesteps) 
 Action in the model proceeds as follows.  At each 
timestep every agent has the opportunity to move to a 
neighboring cell if it will increase its own utility.  There 
can be more than one agent per cell.  In principle, all 100 
agents could end up in one cell.  Thus, there are two Types 
with two different agendas that move simultaneously 
around the lattice.  Moves are simultaneous to reflect the 
uncertainty in real life decisions.  When we make a 
decision about where to go or what to do, we consider what 
we think other actors will do; however, we do not ever 
know for certain what the other actors will do.  Even if 
other people have promised or otherwise made clear their 
intentions, we never know until after the fact what the 
outcome is with certainty.  By having all agents make 
decisions simultaneously, this means they are fully taking 
into account the situation at present and making their 
decision based on that – which, with few exceptions, is the 
best most actors can usually do.  (Again, promises or 
signaling might guide our expectations, but not to 100% 
certainty.  Here, the present moment distribution proxies 
for promises/signaling – if a cell is very full at present, it’s 
more likely to have agents during the next time step than a 
cell that is currently empty.) 
 This setup of two Types also suggests that the 
proportions of one Type over another will matter.  For 
example, if Type C agents are a minority, their utility 
scores will be limited, because there will only be so many 
agents with which they can cluster.  If Type S agents are a 
minority, depending on where in the lattice the cluster of 
Type C agents is located, and the size of the neighborhood, 
Type S agents may be stuck in a neighborhood with many 
neighbors, and thus will also face an upward limit on the K 
score they can earn. 
 This concludes the description of the basic model.  The 
next steps are to incorporate a dynamic environment and 
behavioral flexibility.  First, we make the environment 
dynamic.  Recall that the agents are on a 5x5 lattice.  To 
simulate a heterogeneous environment, I allow the “vision” 
of agents to vary over three possible values: 0, 1, and 2.  
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When vision = 0 agents can only see within their own cell.  
When vision = 1 agents can see their own cell plus one cell 
further in every direction (for 9 cells total).  When vision = 
2 agents can see their own cell plus two cells further in 
every direction (for 25 cells total for any agent in the 
middle of the grid, and fewer for those toward the edges).  
Importantly, when contentment is calculated, it is only with 
regard to the “neighborhood” that the agent can see.  If 
vision = 0, then the K expressions given above will only 
include the number of agents sharing a cell with the agent 
whose contentment is being calculated. 
 The three lattices below illustrate this “vision” feature. 
The shaded grey areas are the relevant neighborhoods to 
Agent X, positioned in the center, at different levels of 
vision. 

Vision = 0 
     
     
  X   
     
     

Vision = 1 
     
     
  X   
     
     

Vision = 2 
     
     
  X   
     
     

 
 Clearly, Type C agents will do best when Vision = 2 

and Type S agents will do best when Vision = 0. (Indeed, 
30 runs of each scenario with all C Types and the all S 
Types confirms: the average cumulative score for Type C 
is 50 (perfect) when Vision =2, and approximately 47 for 
Type S when Vision = 0.  This is because when vision = 0 
agents are restricted in their movement, so it is sensitive to 
initial conditions.)  To further illustrate, consider the 
lattices below, where Vision = 0 on the left, and Vision = 2 
on the right: 
0 0  0 0 
0 0  0 0 
0   0 0 
     
 0  0 X 

 
If Agent X is Type S, then it receives a K score of 1 

when Vision = 0 because it is the only agent in its relevant 

neighborhood (where the relevant neighborhood refers to 
as far as the agent can see), and (100-0)/100 = 1.  If the 
environment changes to Vision = 2, however, Agent X’s 
score decreases to 0.97, because now there are three other 
agents in its relevant neighborhood. 
 When I run trials of the model where vision changes, I 
allow it to change with some probability (PV), where PV = 
1 means the vision changes at each timestep and PV = 0 
means the environment is static.  An additional major 
parameter that we vary is the probability with which actors 
change Types.  As we just saw above, if Vision 
consistently = 2, then it pays to be a Type C agent.  
Allowing agents to change from Type S to Type C if some 
particular (preset) satisfaction threshold is not met means 
they can capitalize on this environmental condition and 
earn much higher K scores than if they had to remain Type 
S.  As with PV, the probability of changing Type (PT) can 
vary from PT = 1, where agents always change types when 
their threshold isn’t met (maximum flexibility), to PT = 0, 
where agents never vary their Type, no matter how poor 
their performance (minimum flexibility).   
 Finally, we can also vary the threshold below which 
agents are triggered to change strategy, where lower 
thresholds correspond with quicker satisficing.  Recall that 
a perfect K score over 50 runs is 50.  If the threshold above 
which agents stop changing their type is 1, this means that 
very early on we should expect to see agents stopping 
changing strategies; even if later on the environment 
changes such that it would be advantageous to change 
strategies, these agents will not change.  (While this may 
seem like a disadvantage, we actually see in the model that, 
contrary to what we might expect, extremely high 
thresholds are surprisingly associated with lower total K 
scores.) 

To summarize, the events that take place during a single 
timestep are the following: 

1. Agent X is located somewhere on the lattice 
2. Agent X considers all relevant neighbors (given 

by Vision) 
3. Agent X considers the number of agents in 

neighboring cells; if Agent X is Type C, will 
move to a new cell if the number of agents in the 
neighboring cell exceeds the number in Agent X’s 
current cell (if there are more than one cells with 
the most, Agent X will move to the cell with the 
highest number).  If there are no neighboring cells 
with higher numbers of agents, Agent X does not 
move.  If Agent X is Type S, the exact same 
process holds, with the exception that now Agent 
X evaluates cells with respect to which has the 
lowest number of agents. 

4. Once Agent X moves (if the agent decides to 
move; if not, once the decision to “not move” has 
been made), Agent X considers its Contentment 
(K).  If K is below the Agent’s satisficing 
Threshold (T), then Agent X changes Type with 

0 0  0 0 
0 0  0 0 
0 

 
 

               0     0  
 
       
0             0     X 
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some probability (P).  (Note: in the base case, P = 
0.) 

5. The current timestep concludes and a new one 
begins with Agent X considering all current 
relevant neighbors.  If Agent X changed Types in 
the previous timestep, Agent X now plays the new 
round as the new Type. 

One “run” of the model is 50 timesteps.  For nearly all 
runs, 50 was more than enough to reach convergence to a 
long run equilibrium in terms of the proportion of Types in 
each population, as well as to establish a clear Type winner 
(the Type with the highest K) for that particular run.  For 
the few cases where even after 50 timesteps there was not 
clear convergence, this lack of convergence was only with 
respect to outcomes; i.e., it was not necessarily clear by 50 
timesteps which Type would come out with the highest K.  
However, for all runs the long-run distribution of Types 
was apparent within the first 10-20 timesteps (see graphs in 
the Appendix). 

Results 
There are three central results.  First, flexibility can lead to 
sub-optimality, (a) directly in terms of lower K scores, and 
(b) indirectly in terms of reduced diversity and greater 
inequality between agent Types.  
 In terms of the directly effects of flexibility on utility, it 
turns out that long periods of switching between types 
means that agents do not stay at a particular Type long 
enough to ever earn many points.  That is, it takes a few 
periods of agents attempting to cluster before they get 
close enough to really earn high scores (generally the 0.8-1 
range).  Similarly, a pack of Type S agents also need a few 
timesteps to move around before they’ve spread 
themselves out.  If the agents are too “picky” and they 
switch back and forth all the time, the entire period during 
which they are switching they aren’t earning as many 
points as they might if they would just pick one Type and 
stay there.  What’s more, since these agents have high 
thresholds, it takes them that many more timesteps of 
switching in order to reach those high thresholds, after 
which they finally converge on a consistent distribution of 
Types. 
 With respect to the indirect effects, as can be seen in the 
graphs in the Appendix, flexibility can mean that the 
agents switch Types frequently early on, and then get 
locked in to a certain ratio of types once the satisficing 
threshold is triggered (and this is robust to any threshold).  
The agents who do well early on, and thus trigger their 
“stay at this Type” threshold earlier than other agents end 
up losing out tremendously when/if the system ends up 
being one that favors agents of one Type over another.  In 
addition, the lower the threshold, the more agents there are 
who can capitalize on this new “knowledge” of which 
strategy is best, which exacerbates inequalities – we’ll see 
far more of the successful type than the unsuccessful, 

which just makes the successful types even more 
successful.  (Again, this is particularly startling if the 
system began slightly biased in favor of the Type that ends 
up losing!).  The lack of diversity appears here, too, for in 
these cases we see an average of 91% of agents taking on 
the dominant Type, leaving only 9% stuck in the minority 
with no way out given the parameters of the model. 
 The second major result is that environment matters, and 
in two ways.  The first is with respect to the physical 
landscape, or topology, itself.  As hinted in the description 
of the model, if Vision = 2, then there is little hope for any 
Type S agent to receive a high K score, no matter where on 
the lattice it moves.  Even if we allow these unfortunate 
Type S agents to change types, unless the threshold =0 and 
the PT = 1, there will always be a not-insignificant period 
during which agents who started out as Type S earn low K 
scores. 

The additional way that environment matters is that how 
well one Type does depends on what the other Type is 
doing.  As can be see in the graphs in the Appendix, many 
times if Type C and S are doing about the same for the first 
few runs, all it takes is for one Type to earn a slight 
advantage before the system suddenly turns to favor that 
Type.  This is because if Type S agents end up moving to 
cells on some turn that earn them enough points to pass a 
threshold (and this result is robust to threshold levels), this 
means there will be more Type S agents in the next turn, as 
some Type C agents will switch.  This, then, means that on 
the subsequent turn, Type S agents will do even better, 
because there will be that many more of them spreading 
out rather than clustering.  By the same token, Type C 
agents will do that much worse, because there will be 
fewer agents with which to cluster.  Note that half the time 
this result held for the reverse: if C got even a slight 
advantage on one turn, the population would veer toward 
favoring C’s. 
 This points to the final result that there are 
disadvantages to flexibility that do not rely on costs to 
changing behaviors.  Originally when I was implementing 
the model I planned to add a “cost to change” effect in 
order to generate limitations on benefits from flexibility.  
Surprisingly, it turned out I did not need to add this effect 
in order to see negative aspects of flexibility in the agents.  
To be sure, I added a constant cost component to changing 
strategies, and in fact I found it slightly improved 
outcomes, as agents flipped back and forth between 
unsatisfactory strategies less.  This result was not 
particularly strong, but suggests a direction for further 
research that would include costs as a function of the 
magnitude of the change, or costs that vary over time. 

Conclusion 
This model provides some preliminary insights into points 
after which behavioral flexibility can be disadvantageous, 
even in a dynamic environment.  It is important to note that 
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these results are for inherently competitive systems.  Non 
zero-sum situations may have different dynamics.  That 
said, the results presented here from a competitive system 
are of course not to suggest that flexibility is bad.  Indeed, 
if Type S agents were stuck in an environment with Vision 
= 2 and did not have the ability to change, then we would 
see consistently low scores with no way out (see Appendix 
2).  Future work to build on this is application of these 
insights to real world cases where we see groups stuck in 
suboptimal situations due to precisely the dynamics 
described here.  Additional work after that is to determine 
the configurations to tweak the group out of these spirals of 
suboptimality, which can include everything from low 
payoffs to lost diversity to increased inequality. 
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Appendix 1: Graphs of Outcomes 
First, we see equality and inequality in two sample runs.  
Here PT=1, PV=1, and begin with equal number Type C 
(red) and Type S (blue) 
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Equality is on the left, inequality on the right.  Notice 

that in the right the two strategies begin at about the same 
well-being, but just slightly more Type S starts to tip it, 
until there are a lot more Type S, and Type C is 
permanently lower simply because they do not have the 
numbers required to increase their K. 

 
Below is another graph showing the influence of just 

one or two timesteps.  This case begins with 50 of each 
Type of agent, and all are endowed with 100% probability 
to change Type, and the environment changes with 
probability 1. 

 
 

Below, we see outcomes when Vision is fixed at 2 (Left) 
and 0 (right).  Clearly Type C outperforms S on the left, and vice-
versa on the right.  Here PT = 1, but notice that some C’s and S’s 
still get “stuck” in the losing team because their thresholds were 
met before the split in K scores. 

 

   
 

 
 

Below we see that decreasing flexibility can lead to 
greater equality.  The below two graphs show typical runs 
when Vision change =1, but the probability of changing 
Type is only 0.5.  We begin with 100% type A in both. 
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Appendix 2: Results from Base Cases 
I first present outcomes of the model in an unchanging 
environment.  Recall that vision can take on values 0, 1, or 
2.  The table below shows the average outcomes over 30 
runs for each “vision environment” when there are an 
equal number of Type C’s and Type S’s and no agents 
change their type. 

Average Aggregate Contentment (K) Per Type in 3 
Constant Environments 

 Vision = 0 Vision = 1 Vision = 2 
Average K 
Type C 

2.2 27.8 50.0 

Average K 
Type S 

47.9 42.7 20.1 

Table 1: Average Aggregate Contentment (K) Per Type in 3 
Constant Environments.  Here the population is 50% Type C 
and 50% Type S.  The probability of vision change and the 
probability that an agent will change Type are both zero. 

The next table presents average aggregate outcomes 
over 30 runs where I vary the turbulence in the 
environment.  Specifically, I vary the probability that the 
agents’ vision will change at any timestep.  Again, there 
are 50 Type C and 50 Type S agents. 

 
Average Aggregate Contentment (K) Per Type in 

Changing Environments 
 Prob. 

Change 
Vision = 
1 

Prob. 
Change 
Vision = 
0.9 

Prob. 
Change 
Vision = 
0.5 

Prob. 
Change 
Vision = 
0.1 

Average K 
Type C 

33.0 31.6 34.2 31.3 

Average K 
Type S 

36.6 37.4 34.8 35.9 

Table 2: Average Aggregate Contentment (K) per Type in 
Changing Environments.  Here the population is 50% Type C 
and 50% Type S.  The probability of an agent changing Type is 
zero, while the probability that an agent’s vision (environment) 
will change is varied between 1 (i.e., most turbulent: it changes 
every timestep), 0.9, 0.5, and 0.1). 

Now I want to see the behavior of the two Types when 
they are in a homogenous society; that is, how well do C’s 
do in the absence of S’s, and vice/versa? 
 

Average Aggregate Contentment (K) per Type in 
Homogeneous Society 

 Vision = 0 Vision = 1 Vision = 2 
Average K 
Type C 

2.1 49.6 50.0 

Average K 
Type S 

47.9 44.5 37.5 

Table 3: Average Aggregate Contentment (K) per Type in a 
Homogeneous Society.  This table presents the average K over 
30 runs when only one Type is present.  The probability of the 
agents changing type and the probability that the environment 
changes are both zero. 

In the below tables I allow agents to change strategies 
(threshold = 10) while keeping the environment constant.  
The table below presents the average aggregate 
contentment scores for both Types S and C after 30 runs of 
the model.  In these cases I begin with 100% Type C. 
 
 Vision = 0 Social Score 
Ave. K Type C 11.3 
Num. Type C 15.8 

178.5 

Ave. K Type S 38.5 
Num. Type S 84.2 

3241.7 

Vision = 2 Social Score 
47.3 
65.6 

3102.9 

20.1 
34.4 

691.44 
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Now I replicate the above experiment, but time 
beginning with 50% Type C and 50% Type S. 
 
 Vision = 0 Social Score 
Ave. K Type C 11.4 
Num. Type C 27.0 

307.8 

Ave. K Type S 38.8 
Num. Type S 73.0 

2832.4 

Vision = 2 Social Score 
46.7 
75.6 

3530.5 

19.2 
24.4 

468.5 
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