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Abstract 
A true human-level learner should be able to deliberately 
construct its own knowledge, its processes of reasoning 
resulting in a new knowledge, its system of values and 
goals, and the scenario of its cognitive growth. These 
capabilities require a cognitive architecture of a new kind 
that supports metacognition, self-awareness, and self-
regulation. An example architecture design called 
Constructor is described here. The main distinguishing 
feature of this architecture is its virtually unlimited self-
regulated cognitive growth ability. Other features include 
metacognition, self-awareness, and an intrinsic embodiment 
in virtual reality that is used, e.g., for active construction of 
cognitive and learning processes. 

Introduction   
The present historical epoch is unique in the sense that now 
people may have the opportunity to create something equal 
to them, if not greater: machines capable of human-like 
intellectual and cultural development. The reason is not 
only that the hardware available today is compatible in its 
raw computational capacities with the human brain. The 
main reason is the emergent understanding of how the 
human mind works. It appears that implementing the same 
principles of the human mind in a machine would not take 
yet unavailable today computer resources.  
 Since the onset of the research in cognitive modeling, it 
was understood that a successful approach should be based 
on integrative cognitive architectures (Newell, 1990). 
Since then, cognitive architecture designs proliferated 
extensively (SIGArt, 1991; Pew & Mavor, 1998; Ritter et 
al., 2003; Gluck & Pew, 2005; Gray, 2007). While today 
many of the early ideas are forgotten, a mature stream of 
research has formed in the field, with two well-established 
dominant paradigms, associated with them communities 
and descending branches. The two dominant (but not 
exclusive) practice paradigms are: (a) cognitive modeling 
aimed at providing an accurate computational account of 
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the human psychology and neuropsychology (mainly 
associated with ACT-R: Anderson & Lebiere, 1998; 
Anderson et al., 2004), and (b) efficient task solving in 
special practical applications, probably more typical of 
researchers in the Soar community (an example is Tac-Air 
Soar:  Jones et al., 1999).  
 At the same time, the big goal of (c) creating machines 
that are intellectually comparable to humans (McCarthy et 
al., 1955) was apparently not so easy to reach. While some 
early attitudes may seem discredited, one could notice that 
today the goal is closer than ever. In order to make a 
progress toward it, we need to understand clearly: 
• What is the goal? 
• What is wrong with existing approaches? 
• What kind of a cognitive architecture do we need? 
 
The present work takes a shot at this target. The author’s 
answer to the first question should be clear from the above 
and can be formulated concisely as follows: the goal is to 
design a human-level learner. Yet, this statement needs a 
further clarification. Its limited interpretation could be, 
e.g.: “The goal of a human-level learner is to take complex, 
noisy information from multiple modalities and distill this 
experience into a representation that supports prediction 
about and manipulation of the world” (Shrobe et al., 2006, 
p. 11). An alternative, more general interpretation 
(Samsonovich, 2007) is the view of a human-level learner 
as a computational embryo of general intelligence capable 
of growing into a human-level-intelligent artifact. This is 
the interpretation implied in the present work. It may still 
sound ambiguous, but should become clear below. 

Limitations of Existing Approaches 
A cognitive architecture is a computational model that 
describes functional components of an intelligent agent (a 
cognitive system) and their interactions. Best known 
examples include Soar (Laird et al., 1986, 1987; Laird & 
Rosenbloom, 1996; Laird, 2008) and ACT-R (referenced 
above), and related architectures: e.g., SAL (Lebiere et al., 
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2008), EPIC (Meyer & Kieras, 1997), CLARION (Sun, 
2004), LIDA (Franklin, 2007), Polyscheme (Cassimatis et 
al., 2004), etc. All these cognitive architectures as currently 
used are limited in their abilities to grow cognitively 
through natural interaction with other agents and 
environments. Again, the statement needs clarification. Of 
course, each of these architectures is Turing-complete and 
in this sense can be programmed to do whatever the Turing 
machine can do. On the other hand, it would be impossible 
to take, e.g., an existing ACT-R simulation that is built to 
solve arithmetic problems and to teach it naturally, like a 
human child, up to a Ph.D. level. In this sense, all existing 
implementations of cognitive architectures lack general-
purpose human-level teachability. They with their current 
knowledge can only be taught kinds of knowledge that was 
conceived and potentially enabled in them by designers. In 
particular, they lack an unlimited ability to construct their 
own cognition and knowledge from metacognitive 
perspectives, because they lack a human-like sense of self 
and they lack true metacognition, as explained below. 
 “Metacognition” means “cognition about cognition”. 
Nevertheless, when today engineers use this term, they 
frequently mean something that is external to cognition, a 
tool that is used to monitor and to moderate cognition and 
is not cognition per se (therefore, is not metacognition). It 
appears that at present virtually no mainstream cognitive 
architecture implements principles of a true, general-
purpose metacognition, that requires certain cognitive 
processes to be instantiated in a metacognitive perspective 
of the agent, from which they would be used to operate on 
other cognitive processes that belong to other mental 
perspectives in the same system in real time, treating those 
processes and mental perspectives as first-class objects. 
 A clarification by counterexamples is necessary of what 
is meant by “genereal-purpose”. (i) An ACT-R simulation 
can spawn another ACT-R simulation to simulate the mind 
of a human partner (Kennedy et al., 2005). In this specific 
implementation, however, this step was pre-engineered and 
pre-programmed: the given implementation cannot do a 
different form of metacognition. (ii) Instructo-Soar 
(Huffman & Laird, 1995) learns from instructions, yet with 
definite limitations on what can be learned. For example, it 
cannot learn to do manipulations with its own episodic 
memories as it does with objects in its world. (iii) Formally 
speaking, certain databases can be “taught” any knowledge 
that is expressible electronically; however, they have 
limited abilities in using their “knowledge”. (iv) Numerous 
demos created for specific challenges (e.g., Breazeal et al., 
2005, 2006; Haikonen, 2007) may formally pass tests for 
higher cognitive functions, yet are clueless outside the 
selected challenge paradigms.  
 The difference between these examples and a general-
purpose learner is as big as, e.g., the difference between the 
universal Turing machine and a Turing machine designed 
to add two numbers. Interestingly, architectures of the two 
automata look somewhat similar to each other (Denning et 
al., 1978, section 11.6), and nevertheless the two automata 
have infinitely different abilities. One of them can only add 

two numbers – and can do nothing else, while another with 
the right software can prove all proven theorems about 
numbers, and do much more (of course, it can do nothing 
without a software). By analogy, one could say that with 
modern cognitive architectures we are still at a non-
universal stage (even though they all are Turing-complete). 
Are we yet to discover a universal cognitive architecture? 
If yes, then what are we missing?  
 Designers of recent modifications of Soar and ACT-R 
intend to fill by demos and modules all the “cognitive 
gaps” that one could point in them: metacognition, theory-
of-mind, episodic memory, imagery, “what if” capabilities, 
emotions, social cognition – in other words, most of those 
higher cognitive abilities that all simultaneously become 
unleashed in a 3-to-4 year old child during the so-called 
cognitive leap, when the child develops the familiar to 
adults sense of self (Moore & Lemmon, 2001). On the 
other hand, many designers of popular cognitive 
architectures would agree that their implemented agents 
lack any sense of self, and they do not consider this a 
drawback. The reason is that the notions of a self and self-
awareness are understood in the modern artificial 
intelligence literature in a limited sense. “The self” may 
refer to the robot’s body, or to the running software, or to 
the set of variables under homeostatic control by the agent, 
or to the agent as a whole contrasted with other agents or 
the environment (some agents have this kind of self). 
These basic notions of the self play the grounding role with 
respect to the more elaborate concepts of personhood 
(Damasio, 1999). The essence of the human sense of ‘I’ is, 
in fact, simple and distinct from them: it can be understood 
as an idealized abstraction of a subject, who is the owner of 
experiences and the author of volitions (minimal self: 
Gallagher, 2000; conscious self: Samsonovich & Nadel, 
2005). Unfortunately, it has become a good form in certain 
scientific communities to deny the relevance of this notion 
to science (e.g., Sloman, 2008). Yet, it does make sense to 
consider implementing the same principles in an artifact.  
 Indeed, this notion of a subject-self plays the key role in 
self-regulated learning (SRL: Zimmerman, 1990, 2000; 
Winne & Perry, 2000). SRL is a general, ubiquitous in the 
human society paradigm of learning guided by meta-
cognition, self-motivation and strategic action. SRL has 
three phases: forethought, performance and self-reflection 
(Zimmerman, 2000), involving elements like self-
motivation, self-orientation, self-analysis, self-control, self-
instruction, self-imagery, self-judgment, self-attribution, 
self-rewarding, etc. Principles of SRL have been studied 
and used in educational and psychological literature for 
decades and became recently supported by intelligent 
tutoring and diagnostic tools (see Azevedo & Witherspoon, 
2008; Winne & Nesbit, 2009). SRL proves critical for 
student academic achievements (Pashler et al., 2007; 
Zimmerman, 2008), yet there is no mainstream cognitive 
architecture that is built on the principles of SRL, not to 
mention the lack of tutoring systems based on such 
architectures (implemented close examples are again 
limited: e.g., Kim & Gil, 2007, 2008). 
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Table 1. Hierarchy of intelligent agent architectures 
(based on Table 1 in Samsonovich et al., 2009). 

Cognitive 
architecture type     
and level 

The agent is capable of 

Metacognitive and 
self-aware (highest) 

Modeling mental states of agents, 
including own mental states, 
based on the concept of a self

Reflective (high) Modeling internally the 
environment and behavior of 
entities in it 

Proactive, or 
deliberative (middle) 

Reasoning, planning, exploration 
and decision making 

Reactive, or adaptive 
(low) 

Sub-cognitive forms of learning 
and adaptation 

Reflexive (lowest) Pre-programmed behavioral 
responses 

 
 The informally accepted today hierarchy of cognitive 
architectures is known in many variants, one of which 
includes five levels (Table 1). The top, fifth level is 
virtually empty. Approach based on the GMU-BICA 
cognitive architecture (Samsonovich & De Jong, 2005) is 
intended to fill this gap (BICA stands for “biologically 
inspired cognitive architecture”, and reflects a 
parsimonious integration of computational models of 
cognition drawn from cognitive science, neuroscience, and 
artificial intelligence). However, the implemented under 
the DARPA BICA program rapid prototype of GMU-
BICA (Samsonovich et al., 2006) did not include 
metacognitive mental states (they were nevertheless 
present in the design). After a recent adaptation of GMU-
BICA for the design of an intelligent tutoring system 
(Samsonovich et al., 2009), it is becoming clear that the 
original design of GMU-BICA can be further optimized. 

The Architecture We Need 
This section outlines the design of Constructor:1 a 
metacognitive architecture inspired by the conscious brain- 
mind that integrates multiple instances of the self with 
virtual reality. “The self” here refers to the notion of the 
minimal subject-self: the unique owner of experience and 
the author of voluntary actions (Gallagher, 2000; 
Samsonovich & Nadel, 2005). Multiple instances of the 
self correspond to mental perspectives (viewpoints) that 
may differ from each other by the time of experience 
(‘I-Now’ vs. ‘I-Next’), by the status of the subject (e.g., 
‘I-Imagined’, ‘I-Goal’), by the location, the identity of the 
subject, etc. Constructor is based on the ideas of 
GMU-BICA and inherits many of its features, including 
the mental state framework (Samsonovich et al., 2009). 
                                                 
1The name reflects the inherent ability of this architecture to construct 
own cognitive and learning processes from a metacognitive perspective. 

 From an empirical psychological perspective, it seems 
plausible that representations of multiple instances of the 
self and attributed to them mental states co-exist and 
interact with each other in human working memory 
(German et al., 2004; Rizzolatti & Craighero, 2004; 
Samsonovich & Nadel, 2005). Therefore, implementing 
this feature in a cognitive architecture is likely to make it 
human-mind-compatible (Samsonovich et al., 2006, 2009). 
In particular, this feature makes a big difference for a 
human subject interacting with virtual reality, where 
multiple instances of the same self can be present 
simultaneously and may be very different from everyday 
experiences of self.  
 The Constructor architecture (Figure 1) is designed to 
work collaboratively with a human partner in a variety of 
paradigms: the partner could be a guide to the agent, a 
student, an instructor, a game player, a designer, etc. All 
these paradigms presuppose that the human and the artifact 
share a common task space. Constructor integrates internal 
(artificial) and external (human) mental states by 
embedding them into one and the same symbolic 
representation of this task space: an intrinsic virtual 
environment (Figure 1). This virtual environment provides 
a symbolic representation of the current cognitive 
paradigm and is made directly accessible to the human 
interacting with the artifact. Intrinsic virtual environment is 
a buffer that serves the functions of an interface, a 
simulation tool, and a medium where the construction 
processes take place. All operations in it can be performed 
cooperatively by the agent and by the human.  

Representation Building Blocks 
In humans, elements of subjective experiences, or 
instances of awareness (sometimes called qualia, although 
this term is ambiguous and may be confusing) are private 
and unique to each subject, and so are their representations 
by patterns of neuronal activity and other dynamic states in 
the brain. However, the form, functional characteristics and 
dynamics of elements of subjective experiences appear to 
be universal and can be described by mental categories, 
mental schemas and mental states.2 Here and below, a 
category is understood as a functional token characterizing 
a certain kind of subjective experience. Examples: “red”, 
“bicycle”, “fuzziness”, “the opposite one”. Each category 
corresponds to a schema understood as a functional model 
of that kind of experience. A schema can be represented as 
a graph, the nodes of which represent categories (and 
therefore correspond to other schemas) or primitives 
(defined in procedural memory). Further technical details 
of the schematism of GMU-BICA and Constructor can be 
found in previous works (Samsonovich & De Jong 2005, 
Samsonovich et al. 2006) and in the Appendix below, and 
will be presented elsewhere.  

                                                 
2The word “mental” is added here to distinguish them from categories, 
concepts and schemas developed in the subject’s mind (and of which the 
subject becomes aware as of concepts, schemas, etc.  rather than feelings).  
The word “mental” is further omitted, except for “mental states”. 
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Figure 1. The Constructor architecture. Components include virtual environment, four memory systems (procedural, semantic, working 
and episodic), and the value system. Arrows show main interactions among components. Interface with the world is provided at the 
symbolic level (via virtual environment) and at the subsymbolic level (mediated by primitives in procedural memory). 
 
 
 It is interesting to observe that from this point of view, 
brain representations of schemas and neural correlates of 
the elements of subjective experiences are the same things. 
Another representation building block is a mental state, 
which is “a set of instances of schemas attributed as the 
content of awareness to a unique mental perspective of a 
subject” (Samsonovich et al., 2009, p. 115). In Constructor, 
a mental state is interpreted as a functional model of an 
instance of the self per se rather than its experience or its 
footprint. Technical details of mental state dynamics are 
also inherited from GMU-BICA, and their description can 
be found in the corresponding works (Samsonovich et al., 
2006, 2009). One new element is that active mental states 
are represented by handles in virtual environment. 

Architecture Components and Their Functions 
In addition to the virtual environment described above, the 
architecture has five other components, or memory 
systems: procedural, working, semantic, episodic, and 
value system, that are briefly described below. 
Semantic Memory consists of schemas organized into a 
semantic net. In addition to this organization, schemas may 
be allocated as points in an abstract semantic space based 
on their semantics (e.g., Gardenforth, 2004). All symbolic 
representations in the virtual environment, in working and 
episodic memory systems are based on schemas.  
Procedural Memory consists of primitives (functions) 
that are considered sub-symbolic. One set of primitives 
connect symbolic representations in virtual environment to 
analog, graphical and textual input-output channels, 
subserving the corresponding input-output functions. 
Another (possibly overlapping) set of primitives are used 
inside schemas as nodes (see Appendix): they subserve 
standard operations (e.g., arithmetic or logical), primitives 
of control, etc., making schemas similar to LISP functions. 

Working Memory consists of instances of schemas that 
are bound to each other and attributed to particular 
instances of the self, i.e., organized into mental states, as in 
GMU-BICA (Samsonovich et al., 2009). In Constructor, 
elements of working memory can be represented as first-
class objects in virtual environment, where they can be 
analyzed and used by metacognitive mental states to 
deliberately construct cognitive and learning processes. 
Episodic Memory consists of groups of “frozen” mental 
states that were previously active (i.e., were present in 
working memory) and may become active again, although 
in a new for them status of the past. The notion of episodic 
memory includes not only retrospective memories of actual 
experiences attributed to the self (Tulving, 1983), but also 
prospective memories, including plans (Zimmer et al., 
2001), and more generally, memories of any imaginary 
experiences (dreams), not all of which, however, may be 
remembered. 
Value System includes drives and values. A drive is an 
internal stimulus represented by a number that may reflect 
certain resources of the system, global and specific 
measures of the system activities. A drive can cause or 
facilitate activation of the associated with it schema (e.g., 
hunger should increase activity of the schema of eating, at 
least in imagery). Values are associated with dimensions of 
the semantic space mentioned above. 

Illustrative Paradigms 
Elements of Self-Regulated Learning. A paradigm of 
learning how to solve problems that requires metacognition 
can be as simple as a “yes-no” game. The task for the agent 
in this game is to explain a given narrative: i.e., to map the 
narrative by schemas (presumably the agent has a large 
pool of real-life schemas stored in its semantic memory). 
The only available actions for the agent are questions, e.g., 
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whether a certain schema applies to the narrative. To these 
questions, only three possible answers can be given by the 
human participant who knows the story: “yes”, “no”, and 
“irrelevant”. Of course, there is a potential difficulty with 
answering arbitrary questions correctly given this 
constraint, but it can be assumed that the human participant 
always makes the choice that is closest to the truth.  
 Given these settings, consider the following example 
narrative: 

A man cannot sleep. He gets up, makes a phone call, 
and when the recipient answers, he hangs up without 
saying anything. Then he sleeps well. 

The story is incomplete, because there causal relations 
among its parts are missing. A straightforward, naive 
strategy in solving the problem is to try one-by-one all 
potentially applicable schemas, which is exactly what a 
naive human participant typically does, asking questions 
like these: 
– Did the man worry about his wife?   – No. 
– Did the man worry about his son?   – No.  
And the process continues. 
 

 
Figure 2. Graphical representation of an expected snapshot of 
virtual environment containing iconic representations of the 
metacognitive processes involved in solution of the telephone 
problem. 
 
 
 The first step at a metacognitive level is to observe what 
is going on at the cognitive level, by mapping a schema 
onto the current cognitive process. The answer is that a 
search is being performed, with elements of the search 
space being explored one by one. This observation would 
lead to a prediction that the process may take forever, 
given the number of potentially applicable schemas and 

their combinations. Then, e.g., an idea (a schema) pops 
into the metacognitive mental state: “A binary search is 
more efficient than a sequential search”. Applying the 
schema of a binary search to the given situation means that 
the agent should use a different strategy at the cognitive 
level: ask questions that cut the search space nearly in half. 
These must be very general questions discriminating big 
categories of logical possibilities, for example: 
– Was the factor that kept the man alert external?   
– Does the identity/location of the caller/recipient matter? 

Given a sufficient set of schemas and the ability to 
translate between schemas and text, the agent should be 
able to find the (very short and simple, yet nontrivial) 
solution of this problem in a reasonable time, using the 
above strategy. 
Cognitive Growth Example. Another paradigm intended 
to illustrate the constructive cognitive growth ability may 
consist in exploration, habituation and exploitation of a 
given nontrivial environment. The agent will use its own 
intrinsic virtual reality to simulate the given environment 
together with the agent’s own knowledge, skills, values 
and memories, etc. represented as first-class objects. This 
unified model of the environment and the agent’s mind 
will be subject to exploration, experimentation and 
optimization using metacognitive processes. 

Validation and Expected Outcomes 
The Constructor architecture described above belongs to 
the top category in Table 1: “metacognitive and self-
aware”. From the human point of view, this means that the 
settings described above will result in an illusion of a 
genuine agency present in the artifact. This expected 
feature can be validated. There is a close relation between 
the feeling of self-presence in virtual reality (agency, 
ownership) and the feeling of another agency present in 
virtual reality (Herrera et al., 2006). Both phenomena can 
be measured using “breaks of presence” and “surprise 
mirror tests” sensitive to key aspects of the minimal self, as 
explained below. 
 The feeling of presence in virtual reality is a well-
documented phenomenon that is indirectly objectively 
measurable: by psychometrics, behavioral assessment, etc. 
A measurement paradigm typically involves detection of 
breaks of presence (Slater & Usoh 1994; Usoh et al. 2000): 
i.e., experiences of a sudden loss of the illusion of virtual 
reality. The notion of breaks of presence extends to 
perception of artificial entities embedded in the 
environment that pose as “alive conscious beings” (Herrera 
et al. 2006).  
 The mirror test (Gallup, 1995) is considered a test for 
the sense of self in a naive agent. There are, however, 
multiple possible mechanisms of passing the test, with only 
few of them involving the notion of a self as an actor. The 
test may be even much easier to pass with a robot design, 
when the test paradigm is known in advance (Haikonen, 
2007); therefore, this test was not very useful in the past as 
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a test for artificial human-level intelligence. A mirror test 
becomes nontrivial and human-hard when unexpected, 
unusual settings are used in virtual reality: the mirror may 
show a modified image of the agent’s body (or a totally 
unrelated image, or not an image but some other form of 
activity); the image or activity may be displaced in space 
and time, etc. Surprise mirror tests of this flavor can be 
designed to specifically address the notion of the minimal 
self, and therefore can be used to validate the sense of self 
in an artifact. 
 While there is a hope that these tests and measures will 
establish the superiority of Constructor with respect to 
modern state-of-the-art cognitive architectures, the big 
question remains: what is next? The main motivation and 
the main expected outcome is the practical impact of the 
new architecture. The hope is that Constructor will enable 
intelligent agents capable of human-like intellectual and 
cultural development, because it will clarify and utilize 
fundamental mechanisms underlying the functioning of the 
human mind.  

Epilogue 
This work outlined general principles that can be used to 
design and build a cognitive architecture of a new kind: 
with potentially unlimited metacognitive abilities. There is 
a hope that this relatively small step can lead to a big 
outcome. To understand why or why not the time now may 
be favorable to a big change, one needs to take a 
metascientific perspective and observe that at many levels 
of natural organization and evolution, one and the same 
cycle consisting of two alternating modes repeats itself.  
 Mode 1 (incremental evolution): An open system that is 
far from equilibrium develops a certain internal ordering 
by disposing entropy in the environment. This process 
usually involves selection of the elements of the ordered 
state. Over time, this process approaches a plateau of 
organization and entropy production. While the ordering of 
the system approaches a maximum, the rate of entropy 
production approaches a minimum (Prigogine, 1955; 
Prigogine & Nicolis, 1977; Nicolis & Prigogine, 1989).  
 Mode 2 (leap): The system makes a leap to a new stage 
of evolution, such that: (i) a qualitatively new internal 
order emerges starting from parts of the system where the 
current order does not dominate; (ii) this new order rapidly 
takes over the old one by re-using and transforming its 
elements; (iii) the entropy production, the level of 
evolution and capabilities of the system all rapidly 
increase, until the process enters Mode 1 and starts 
approaching a new plateau. This leap phenomenon is 
called, depending on the domain and the medium in which 
it occurs, by many names: a phase transition, a catastrophe, 
an avalanche, a breakthrough, a revolution. Leaps are 
ubiquitous and can be found at all levels in nature. 
Examples include phase transitions in disordered systems 
(e.g., Ziman, 1979), alteration of the species hierarchy 
(Teilhard de Chardin, 1955), and scientific revolutions 
(Kuhn, 1962). In the latter example, elements of the 

ordered state are scientific concepts labeled by the 
associated with them terms. 
 The common leapfrog pattern observed in evolution of 
different kinds of systems at different scales of 
organization can be described by one general principle 
grounded in statistical physics: the leap occurs when the 
system approaches a minimum of entropy production.  
 For example, in development of science, the entropy 
production can be associated with disposal of fallacious 
concepts and conversion of the corresponding terms into 
“bad words” that label “bogus notions” (Sloman, 2008, 
2009). At the same time, new concepts emerge and new 
terms enter the lexicon when a leap occurs. Therefore, it 
seems possible to detect and predict leaps in development 
of science by measuring the time course of the relative 
frequencies of scientific terms.  
 Consider the following example. Cognitive revolution of 
the middle of the previous century occurred as a leap from 
behaviorism to cognitive psychology. The essence of the 
leap was an expansion of the scientific framework by 
including in it new concepts and new terminology. The 
notion of internal brain representations was taken seriously 
and admitted to science, together with words like “mind”, 
“perception”, “expectation” and “memory” (Miller, 2003).  
 In spite of the rapid progress in cognitive psychology, 
the problem of interpretation of semantics of brain 
representations was not resolved. A plateau was reached 
that is characterized by a conceptual vacuum in cognitive 
sciences and at the same time by the inability to account 
for phenomena like subjective experience (Chalmers, 
2006). Today the connectionist paradigm is exhausted by 
cognitive modelers, while symbolic cognitive modeling 
approaches are bound by decades-old limitations of 
frameworks like ACT-R and Soar. New concepts and new 
theoretical paradigms are necessary in order to make 
further progress in the computational science of mind. 
 It is interesting in this context to look at the frequencies 
of word usage in the scientific literature over decades 
(Figure 3). Here, in order to discriminate among scientific 
domains, two sources were used: PubMed 
(http://www.ncbi.nlm.nih.gov/pubmed) and Inspec 
(http://www.engineeringvillage2.com). PubMed is an 
interface to MEDLINE: a database of academic journals 
covering life sciences, medicine, biological and biomedical 
research. In contrast, Inspec covers scientific and technical 
journals and conference proceedings in physics, electrical 
engineering and electronics, computing and control, and 
information technology. The total number of citations from 
1970 to present available via PubMed is 16,197,975, which 
is about two or three times more than with Inspec. 

Contrary to some expectations (e.g., Bernard Baars, 
private communication), results (Figure 3) show that the 
relative frequency of words like “consciousness” that label 
hot topics of recent debates is remarkably stable, with only 
a 75% increase over the last three decades in the 
biomedical literature. In the engineering literature, the 
frequency of “consciousness” increased nearly three times 
since  1975,  yet  compared  to  neologisms  (not  shown  in  
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.  
Figure 3. Alteration with time of relative word frequencies in 
scientific publications. Results are derived from database 
searches (left: PubMed, right: Inspec) for selected words 
occurring in any field, performed on September 5, 2009. Curves 
are labeled according to the search words: c, “consciousness”; 
m, “memory”; e, “emotion”; ms, “mental state”; and mc, 
“machine consciousness”, for which there are only 3 entries in 
PubMed (2005, 2008 and 2009). Each data point represents one 
year in the left panel and one decade (all curves except c) in the 
right panel. All word frequencies were normalized by the 
frequencies of the word “normal” (n) at each data point and then 
uniformly scaled to set the leftmost computed nonzero value to 
one (each curve was scaled separately). The total search counts 
for the selected time interval and selected words are, for 
PubMed: n=1,026,200, e=109,930, c=22,004, m=128,337, 
ms=7,256, and for Inspec: n=377,931, e=7,474, c=2,250, 
m=199,629, ms=330, mc=25. 
 

Figure 3) this behavior can be interpreted as approaching a 
plateau. Similarly, relative frequencies of words “memory” 
and “emotion” in the biomedical literature demonstrate 
remarkable stability, and the relative frequency of 
“memory” in the technical literature did not significantly 
change at all since the 70s.  

There are, however, words and phrases (aside from 
neologisms) the frequencies of which grow dramatically. 
E.g., Figure 3 shows a rapid growth of the relative 
frequency of “emotion” in the technical literature, but not 
in the biomedical literature, and a similarly rapid growth 
for “mental state” in both databases. The phrase “machine 
consciousness” appears likely to gain its popularity in both 
domains, but the counts are too low to make a judgment 
(see Figure 3 caption) 

Could these emerging popular terms be precursors for 
the missing concepts in cognitive sciences and in artificial 
intelligence? Are we witnessing the beginning of a new 
leap in cognitive and computational sciences? The time 
will answer these questions. As we can see today, there is a 
possibility and a necessity for the leap to systems with 
better learning and cognitive abilities, achievable by 
enabling general metacognitive capabilities in artifacts. 

Conclusions 
This work focused on the goal of designing a general-
purpose human-level learner. From this point of view, 
essential limitations of existing approaches based on state-
of-the-art cognitive architectures and associated with them 
paradigms were discussed. The conclusion is that none of 
the current mainstream cognitive architectures appears to 
be suitable for designing a true human-level learner, and an 
architecture of a new kind is necessary.  
 The Constructor architecture was described in this work 
as a candidate potentially suitable for implementation of a 
general-purpose human-level learner. Constructor is a 
descendant of GMU-BICA developed at GMU under the 
DARPA IPTO BICA program (terminated in 2006). The 
key distinguishing features of Constructor include 
metacognition and self-awareness, which put it on top of 
the cognitive architecture hierarchy (Table 1). Other 
distinguishing features include an intrinsic virtual 
environment which is used by the agent for interface with 
other agents and for active construction of its own 
cognitive and learning processes. It is expected that, as a 
result, the Constructor agent can be teachable at a human 
level, without obvious intrinsic limitations determined by 
the engineered paradigms and infrastructure of learning 
that are characteristic of modern approaches. 
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Appendix: Schematism 
The object-oriented paradigm (OOP) is the basis 
framework for modern software development (e.g., Meyer, 
1988), and mainstream cognitive architectures do not make 
an exception. In general, many frameworks of knowledge 
representation conceived independently fall into the same 
paradigm (e.g., frames: Minsky, 1981). OOP is based on a 
key set of concepts, including notions like object, class, 
hierarchy, abstraction, encapsulation, inheritance, and 
modularity (Tracy & Bouthoorn, 1997). At the very core of 
OOP is the primitive: Object → attribute → value. An 
object is augmented with a set of attributes to each of 
which a value can be assigned (a value can be another 
object). It seems like there is no alternative to this core 
primitive. The same primitive lies at the basis of 
representation structures in cognitive architectures, 
including Soar and GMU-BICA or Constructor. There is, 
however, a difference between its usage in these cases. 
Figure 4 illustrates this difference between Soar and 
Constructor by examples of working memory snapshots.  
 Figure 4 A shows a semantic-net representation of a 
snapshot of working memory in Soar with the following 
content of awareness: “A large orange box (O53) contains 
a big red ball (O87) and a small red apple (O43) that 
weighs 200 grams (X44)”. Soar represents objects (box, 
ball, apple) by OOP-objects, their general properties (color, 
size, etc.) by OOP-attributes, and specific properties of 
objects (red, big, small, etc.) by OOP-values. There is an 
alternative to this scheme. 
 Figure 4 B shows a graph representing a snapshot of a 
mental state content in Constructor that corresponds to the 
same content as in Figure 4 A, only without the ball, to 
simplify the picture: “A large orange box (O53) contains a 
small red apple (O43) that weighs 200 grams (X44)”. As 
the figure illustrates, Constructor represents all elements – 
objects, general properties and specific properties – by one 
and the same class of OOP-objects called categories, or 
nodes (small circles in Figure 4 B). Each category is 
associated with its unique schema in semantic memory (not 
shown), and vice versa: each schema represents a 
functional model of the category of its head node (red 
circles in Figure 4 B). A schema is a set of categories, or 
nodes, possibly linked to each other (there are no examples 
of internal links in Figure 4 B). Schemas constitute another 
class of OOP-objects. As an OOP-object, each category 
(node) in Constructor has a standard set of OOP-attributes. 
This set is domain-independent, one and the same for all 
nodes, and includes attributes like category (e.g., “apple”), 
name (e.g., “apple1”), Id (e.g., “O43”), supercategory list 
(e.g., “fruit, object”), bindings (represented by arrows in 
Figure 4 B), and value (to which optionally a scalar or a 
vector can be assigned).  
 

 
Figure 4. Snapshots of working memory representations in Soar 
(A) and in Constructor (B). A: a fragment of Figure 3.1 from the 
Soar manual (Laird & Congdon, 2009), representing a semantic 
net illustration of four objects in working memory. The state 
identifier is not shown. Each circle corresponds to an object, 
each link corresponds to an attribute, and each tip of the arrow 
points to a value. B: a snapshot of a mental state content in 
Constructor representing a part of the same content (one object is 
deleted to simplify the figure). The mental state label and 
attributes are not shown. Each rounded rectangle represents an 
instance of a schema, each circle represents a node (a category), 
and each line represents a binding. The head node in each 
schema is represented by a red circle, terminal nodes are light-
blue. 
 
 It is important to notice the difference with Soar. 
Attributes of objects in Soar do not correspond to attributes 
of nodes in Constructor, except one case: “isa” in Soar 
corresponds to “category” in Constructor. Otherwise, in 
Soar, attributes are domain-specific and represent 
properties of physical objects, like color, size, mass, and 
also specific relations among physical objects, like 
“contains” or “inside”. In Constructor, every node 
regardless of the domain of simulation has one and the 
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same, standard set of attributes that includes category (isa), 
name, Id, supercategory list, bindings, value, and many 
others like perspective, attitude, mode of binding, etc. that 
are not explained here. The complete set of attributes and 
their functions in Constructor will be described elsewhere. 
 Schemas and corresponding to them categories are used 
in Constructor as universal building blocks to represent all 
kinds of elements, including those that in Soar correspond 
to rules and operators. Mental states in Constructor also 
formally fall into the category of schemas (they are 
schemas of animate entities, although they are treated 
differently from the rest of schemas). 
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