
Not So Naı̈ve Online Bayesian Spam Filter

Baojun Su
Institute of Artificial Intelligence

College of Computer Science
Zhejiang University

Hangzhou 310027, China
freizsu@gmail.com

Congfu Xu
Institute of Artificial Intelligence

College of Computer Science
Zhejiang University

Hangzhou 310027, China
xucongfu@zju.edu.cn

Abstract

Spam filtering, as a key problem in electronic communica-
tion, has drawn significant attention due to increasingly huge
amounts of junk email on the Internet. Content-based fil-
tering is one reliable method in combating with spammers’
changing tactics. Naı̈ve Bayes (NB) is one of the earliest
content-based machine learning methods both in theory and
practice in combating with spammers, which is easy to imple-
ment while can achieve considerable accuracy. In this paper,
the traditional online Bayesian classifier are enhanced by two
ways. First, from theory’s point of view, we devise a self-
adaptive mechanism to gradually weaken the assumption of
independence required by original NB in the online training
process, and as a result of that our NSNB is no longer “naı̈ve”.
Second, we propose other engineering ways to make the clas-
sifier more robust and accuracy. The experiment results show
that our NSNB does give state-of-the-art classification per-
formance on online spam filtering on large benchmark data
sets while it is extremely fast and takes up little memory in
comparison with other statistical methods.

Introduction

Spam is an ever-increasing problem. The number of spam
emails is increasing daily - Spamhaus estimates that 90%
of incoming email traffic is spam in North America, Europe
or Australasia. By June 2008, 96.5% of email received by
businesses was spam. Added to this, spammers are becom-
ing more sophisticated and are constantly managing to out-
smart “static” methods of fighting spam. There are a variety
of popular methods for filtering and refusing spam such as
DNS-based blackhole lists (DNSBL), greylisting, spamtraps
and so on.

The approach of content-based spam filtering has shown
promising accuracy and generality in combating with spam-
mers. In content analysis, we regard spam filtering as a
special subproblem of binary text classification - the actual
message text are taken as input, various machine learning
methods are chosen to obtain the results of classification.
Content-based filtering has already been widely deployed in
a majority of real spam filtering systems.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Existing Problems

It is proved that content analysis could help the system to
get more accurate prediction, but there is a controversy in
choosing learning algorithms. Most of existing applied sys-
tems (e.g. Bogofilter, Spambayes, Spamassassin) integrate
NB (Graham 2003) as learning algorithm, because NB is
easy to code, lightweight, fast, and able to adapt to a partic-
ular person or organization. On the other hand, researchers
have developed various learning methods. These methods,
especially Support Vector Machines (SVMs) (Drucker, Wu,
and Vapnik 1999), Logistic Regression (LR) (Goodman and
tau Yih 2006), and Dynamic Markov Compression (DMC)
(Bratko and B.Filipic 2005) claim much higher precision
than NB. The NB’s advocators, in turn, complain about the
huge time or memory consuming of these new methods.
For example, SVMs typically require training time that is
quadratic in the number of training example, so they are not
so practical for large-scale email systems; DMC typically re-
quires 2GB memory, so it is a heavy burden to applied email
systems.

Contributions

In this paper, we demonstrate an improved version of on-
line Bayesian classifier, which can exceed or near the record
on several large benchmark data sets of spam email at the
same time holds the precious property of the original NB:
lightweight, and fast.

Besides, the algorithm behind our system is self-adaptive
to get rid of the hypothesis of independence gradually, which
do not use the complex graph model like Bayesian network.
So it can be used in a more generalized background, where
Bayes’ theorem works but is difficult to calculate directly.

Preliminaries

A Naı̈ve Bayes filter estimates the joint probability over a set
of features X = {X1, X2, . . . , Xn} and a class C by mak-
ing the “naı̈ve” assumption that each feature is conditionally
independent,

P (X , C) = P (C)

n∏

i=1

P (Xi|C). (1)

And in the context of spam filtering, take advantage of
Bayes’ theorem, we can estimate the email’s spam likeli-

147

Proceedings of the Twenty-First Innovative Applications of Artificial Intelligence Conference (2009)

hood by

P (spam|X) =
P (spam)

∏n

i=1
P (Xi|spam)

P (X)
.

Likewise,

P (ham|X) =
P (ham)

∏n

i=1
P (Xi|ham)

P (X)
.

We do not need to calculate P (X), if we examine the quo-
tient of the two above formulas, and note P (spam|X) +
P (ham|X) = 1, then

P (spam|X)

1 − P (spam|X)
=

P (spam)
∏n

i=1
P (Xi|spam)

P (ham)
∏n

i=1
P (Xi|ham)

, (2)

if the odds exceed some threshold, then the email is classi-
fied as spam.

In practice, P (spam) and P (ham) are estimated by
the spam and ham email’s frequency respectively, while
P (Xi|spam), and P (Xi|ham) are estimated by feature Xi’s
frequency in each category. The detail of how to calculate
frequencies varies among different variations of NB (Met-
sis, Androutsopoulos, and Paliouras 2006). In most cases,
there are zeros among P (Xi|ham), so a smooth parameter λ
is always introduced to avoid division by 0 (Graham 2002).

Online Naı̈ve Bayes

To make spam filter practical, the filter must have the ability
to adapt to spammers’ changing tactics. So spam filtering
is typically deployed and tested in an online setting, which
proceeds incrementally (Cormack and Lynam 2006). The
filter classifies a new example, is told if the prediction is
correct, updates the model accordingly, and then awaits a
new example.

Email Representation

A plenty of methods have been developed to extract features
from text, especially when the text may include meta con-
tents in header information like email. And different meth-
ods lead to different performances. Simply tokenization is
most popular, but cannot obtain good results for spammer’s
intentional obfuscation or good words attack. OSBF-LUA
introduced a complicated feature extraction algorithm called
OSBF (Siefkes et al. 2004), which won the TREC 2006
spam track competition also needs to tokenize the email as
first step. But in some other languages e.g. Chinese, tok-
enization itself is a very hard problem. Here we adopted a
very simple but competitive method, n-gram. An n-gram
vector is a vector x with a unique dimension for each pos-
sible substring of n total characters. No feature selection is
used. And the feature vector was constructed by binary rep-
resentation which indicates if a feature does not occur in this
document, the according weight is 0, and if a feature occurs
in this document, the according weight is 1.

Not So Naı̈ve Bayes (NSNB)

In traditional NB, the calculation accuracy losses greatly in
equation (1), because it is based on the hypothesis that all

features are conditionally independent, which is far from the
fact obviously. Though the results are always better than
expected, we can imagine even better results if indepen-
dent hypothesis can be get rid of. Some researchers (Fried-
man, Geiger, and Goldszmidt 2007) have brought Bayesian
Network in the general classification problem which no
longer needs the rigorous independent hypothesis, and con-
sequently obtain convincing results. But in the context of
spam filtering, or general text classification problems, there
are typically 104 to 106 features, that it is impractical to
solve such a huge graph.

Here we demonstrate a simple yet practical trick to relieve
conditional independence to some degree. Consider the joint
probability, and try to expand it using the chain rule in order.

P (X|C) = P (X1, X2, . . . , Xn|C)

= P (X1|C)P (X2, X3, . . . , Xn|X1, C)

= P (X1|C)θ(X , X1, C)P (X2, X3, . . . , Xn|C),

where θ is an unknown but does existing distribution. In
general, a notation Bi is introduced to represent the set of
features expanded before feature Xi. We have

P (X|C) =
n∏

i=1

P (Xi|C)θ(X , C, Xi,Bi).

Notice that the above equation is accurate, not an approxi-
mation. The problem lies how to calculate θ, which is triv-
ially set to 1 in traditional NB.

We can see that it is nearly impossible to calculate θ di-
rectly, as there exists too much uncertainty. Especially for
Bi, we can only illustrate it in theory. In order to approx-
imate θ, here we also make some parameter reduction (but
not all of them are ignored), that we approximate θ(C, Xi)

P (X|C) =

n∏

i=1

P (Xi|C)θ(C, Xi). (3)

It is not accurate now, but is still a much better approxi-
mation to P (X|C) than equation (1). In practice, instead
of calculating θ(C, Xi) directly, we devise an online re-
sponse mechanism to let a given θ(C, X i) change by itself.
Added to original NB, we give every feature two parameters,
ham confidence, and spam confidence, and for a given fea-
ture f , the ham confidence approximates θ(ham, f), while
the spam confidence approximates θ(spam, f). Before on-
line learning, all the confidence parameters are set to 1, if
mistake occurs, the system deduces the corresponding con-
fidence parameter. In a single classification process, we use
equation (3) instead of equation (1).

To control changes of the confidence parameters, we in-
troduce another two supportive parameters α and β, which
are called learning rate. If a ham mail is misclassified, then

ham confidence = ham confidence × β,

while if a spam mail is misclassified, then

spam confidence = spam confidence × α.

In practice, we only store one joint confidence factor

cf =
spam confidence

ham confidence
.

148

And now, in the online process, if a ham mail is misclassi-
fied, then

cf = cf/β,

while if a spam mail is misclassified, then

cf = cf × α.

We see the approximation and adaption of the confidence
factors are quite rough, but we all know that standard NB
empirically can achieves considerable strong results even di-
rectly neglect features’ probability relations which may be
potentially important in classification. Here we do not need
to follow the hypothesis of independence of features and in
return, we do obtain more stronger results on large bench-
mark corpus (Table 1).

Spamassassin CRM114 Bogofilter NSNB

score 0.0590 0.0420 0.0480 0.0079

Table 1: Results on TREC 2005 Spam Track corpus, while
the first three filters are traditional Naı̈ve Bayes filters. Score
reported is (1-ROCA)%, where 0 is optimal.

Besides the introduction of confidence factor and learning
rate which boosts the traditional NB from theory’s point of
view, we also propose three other engineering ways to build
a more robust and accuracy classifier:

• Unlike traditional smoothing technique, we choose a
smooth parameter small enough.

• Introducing the logistic function and a scale parameter to
scale the results.

• Using thick threshold to adjust learning model.

Smoothing

As mentioned above, in our algorithm, we modified equation
(2) as

P (spam|X)

1 − P (spam|X)
=

P (spam)
∏n

i=1
P (Xi|spam)θ(spam, Xi)

P (ham)
∏n

i=1
P (Xi|ham)θ(ham, Xi)

.

In order to avoid underflow arisen from too many multiply
operations, we take the logarithm, and log odds can be rep-
resented as following

log
P (spam)

P (ham)
+

n∑

i=1

log
P (Xi|spam)θ(spam, Xi)

P (Xi|ham)θ(ham, Xi)
. (4)

To estimate P (spam) as

P (spam) =
N(spam)

N(spam) + N(ham)
,

where N(spam) stands for number of known spams,
P (ham) can be calculated in a similar way. And to estimate
P (Xi|spam) as

P (Xi|spam) =
N(spam email includes Xi)

N(spam)
,

so we have

P (Xi|spam)

P (Xi|ham)
=

N(spam email includes Xi)N(ham)

N(ham email includes Xi)N(spam)
.

In fact some features only appear in spam email, so the
above equation is not always calculable. By applying the
lidstone’s law, we introduced a smooth parameter ε, and in-
stead of calculating the above equation, we calculate

N(spam email includes Xi) + ε

N(ham email includes Xi) + ε
·

N(ham) + 2ε

N(spam) + 2ε
.

Traditionally the smooth parameter ε is set to 1 or 0.1, while
we found 1.0 × 10−5 is a much better choice (Figure 1). It
is reasonable because the smaller the ε is, the more precise
the approximation is, when ε is 0, it is exactly the original
problem. But on the other hand, if ε is set too small, the
result will be unstable.

0 1 2 3 4 5 6
7.5

8

8.5

9

9.5

10

10.5

11
x 10

−3

n

(1
−

R
O

C
A

)%

trec07p
trec05p−1

Figure 1: The smooth parameter ε = 10−n. We can see
n = 5, i.e. ε = 10−5 is optimal.

Result Scale

After calculating equation (4) and obtaining the result
pprime, we now have a primary judgement on a coming mail.
pprime ∈ R, and if pprime ∈ R+, the mail is judged to be
spam or judged to be ham. But it is not over, in most of the
time, the probability of spam is needed. So we should take
some scale technique to map R onto (0, 1), here we choose
the logistic function:

logistic(x) =
1

1 + e−x

Because |pprime| is always too large that calculated p is very
close to 0 or 1, which may depress calculation accuracy (we
can address this issue from Figure 2). At the same time,
it is unsuitable for thick threshold retraining. So here we
use a so called scale parameter to prevent |pprime| going

149

too large, which also holds the mail’s relative position on
axis. In practice, the scale parameter is set to 2500. So, we
calculate the final score by

p = logistic(
pprime

scale parameter
). (5)

�20 �10 10 20

0.2

0.4

0.6

0.8

1.0

Figure 2: Logistic Function. We see points far from y-axis
are unreliable, that they are too close to the two parallel lines
y = 0 and y = 1.

Thick Threshold

In our implementation, we use a thick threshold for learning.
Training instances are retrained even if the classification is
correct when the determined score is near the threshold. Two
additional positive parameter ε+ and ε− are chosen to define
an interval (0.5−ε−, 0.5+ε+), that if the predict spam prob-
ability P (spam|X) falls in it, we regard the email is not well
classified, and should modify the Bayesian model accord-
ingly. After using modified model to give a new score, the
classifier repeat the thick threshold procedure until the email
is well classified. In this way, a large margin classifier will
be trained that is more robust when classifying borderline
instances. In NSNB, we set ε− = ε+ = 0.25.

Online Model Adjusting

Here we will illustrate the whole online precess of NSNB.
In the beginning we establish two hash tables. One stores
the number of features’ occurrence in spam email, while
the other stores the number of features’ occurrence in ham
email. All features’ confidence factors are set to 1 initially.
When an email comes, we obtain the email’s vector form X
by feature extraction at first, and then calculate X ’s spam
prime probability Pprime using equation (4) with smooth-
ing technique. After result scale, we obtain the final score P
using equation (5). If P ≤ 0.5, the email is considered to be
ham, and if P > 0.5, the email is considered to be spam. In
an optimal situation, we get the feedback immediately. Then
if the email is misjudged, or P ∈ (0.5 − ε−, 0.5 + ε+) (by
applying thick threshold), we just add all features in X to
the corresponding hash table, and set all the new features’
confidence factor to 1, meanwhile the confidence factor of

all features in X are going to be adjusted by multiplying or
dividing by learning rate depends on the email’s class. So
the model now has been adjusted, and we repeat the above
process until the email is well classified (obtained right pre-
diction and P �∈ (0.5− ε−, 0.5+ ε+)). Then the filter awaits
another email to come until all the emails are classified. The
pseudo-code of whole online process is shown as Algorithm
1.

Input: Dataset U = (X1, y1), . . . , (Xn, yn), learning
rate α, β, thick threshold ε

Set all features’ cf to 1;
for each Xi ∈ U do

calculate the score pi;
if pi > 0.5 then

report spam;
end
else

report ham;
end

while yi is ham and pi > (0.5 − ε−) do
train Xi;
for all features in Xi do

feature’s cf × = α;
end

end

while yi is spam and pi < (0.5 + ε+) do
train Xi;
for all features in Xi do

feature’s cf / = β;
end

end

end

Algorithm 1: Pseudo-code for online learning

Experiment Results

We have demonstrated our new Bayesian online spam detec-
tion algorithm, which is more reliable than traditional Naı̈ve
Bayes theoretically. In this section we conduct a series of ex-
periments on several benchmark email corpus and compare
with other machine learning algorithms or applied systems.

Experimental Setting

We conduct several experiments on four email datasets for
spam filtering. They are 2005-2007 TREC Spam Filtering
Track public datasets, which have also been used frequently
in previous works (TREC 06 has two corpus - TREC 06p is
an English corpus, TREC 06c is a Chinese corpus).

As mentioned in Preliminaries, in our system, we use 5-
gram for feature extraction, and no other feature selection is
used. To determine features’ weights, binary feature scoring
is used, which has been shown to be most effective for a
variety of spam detection methods. Furthermore, with email
data, we reduce the impact of long message by considering
only the first 2000 characters of each header and body. Same
features in email’s header and body are used distinctively.

150

We first make some tests on these corpus using our algo-
rithm with different parameter setting, and try to find a series
of parameters which maximize the Area under ROC curve,
which will be used in the later experiments.

In order to certify our method’s reliability, we com-
pare our results to TREC’s winner each year. All
the TREC participants’ results are gathered from official
TREC’s overview (Cormack and Lynam 2005) (Cormack
2006) (Cormack and Lynam 2007). And we also compared
both running time and (1-ROCA)% with ROSVM (Sculley
and Wachman 2007), which claims to give state-of-the-art
performance on email spam. The results show that our algo-
rithm are more practical.

Though spam filtering is a binary text classification prob-
lem, the accuracy of the filter at the 50-50 decision point is
usually not a good performance metric. Because the cost of
losing legitimate mail is much higher than receiving spam.
We choose ROC curve (Fawcett 2004) as a standard of com-
parison, which is a typical method for evaluating spam fil-
ters.

Our program is coded purely in python. All the experi-
ments are done on a typical PC with Core 2 Quad Q6600
and 4GB memory, which runs Ubuntu 8.10 as operating sys-
tem and python 2.52 as the interpreter. We use the standard
Linux shell commands time and top to get the program’s
running information. The online procedure is simulated by
the canonical order with each of these corpus for fair com-
parison, and the feedback is given immediately after a mail
has been classified. Notably, we do not use any other email
source to pre-train the filter before any single test.

Learning Rate

In this experiment, we tune the learning rate α, β ∈ (0, 1] to
different numbers, and pick up a set of {α, β} which min-
imize the (1-ROCA)%. To keep problem simple, we only
consider the situation where α = β. When α, β are set to 1,
the algorithm regress to the original NB.

α = β Corpus (1-ROCA)% Time Memory
1.0 TREC 05p 0.0229 104m6s 590mb
0.65 TREC 05p 0.0079 18m27s 155mb

1.0 TREC 06p 0.0684 24m34s 289mb
0.65 TREC 06p 0.0344 7m27s 147mb

1.0 TREC 06c 0.0229 24m26s 533mb
0.65 TREC 06c 0.0004 10m16s 150mb

1.0 TREC 07p 0.0112 48m35s 562mb
0.65 TREC 07p 0.0087 24m54s 111mb

Table 2: To keep the table readable (not too long), here we
only illustrate α = β = 0.65 which is optimal through-
out the experiment. “Memory” is for the maximum memory
consumed in the online training process. We can see the
addition of confidence factor drastically deduced the total
running time and memory consuming while obtaining better
results.

Comparison with TREC Winners

In this experiment, we gather the results of TREC winners
from the official overview to draw a comparison with our
NSNB.

Winner of TREC 2005 (Bratko and Filipic 2005) used the
character-level Markov models for spam filtering, which is
adaptive statistical data compression model. Such models
use statistics obtained from some training corpus to predict
the probability of the next character in a stream of text.

Winner of TREC 2006’s English corpus (Assis 2006) is
an original NB classifier while used very skillful methods of
feature extraction and feature selection to enhance the result.
We should point here, unlike the OSBF-Lua (06 winner), we
do not use any other priori knowledge before training.

Winner of TREC 2006’s Chinese corpus (Sculley, Wach-
man, and Brodley 2006) used the perceptron algorithm with
margins, which is an online linear classifier using inexact
string matching in explicit feature space. The result they
have got is near perfect, but we did even better.

Winner of TREC 2007 used a simple yet promising algo-
rithm of Logistic Regression described in the paper of CEAS
2006 (Goodman and tau Yih 2006), and they obtained sound
results on TREC 07 corpus.

TREC 05p TREC 06p TREC 06c TREC 07p

winner 0.0190 0.0540 0.0023 0.0055
NSNB 0.0079 0.0344 0.0004 0.0087

Table 3: Score reported is (1-ROCA)%, where 0 is optimal.
Here we only list the results of immediate feedback. We
have obtained much better results than TREC winners ex-
cept for TREC 07.

Comparison with ROSVM

ROSVM (Sculley and Wachman 2007) is for Relaxed On-
line SVMs, which claims to hold state-of-the-art spam clas-
sification performance while is an order of magnitude more
efficient than the normal Online SVM. We will show our
algorithm can achieve similar if not better results, while is
much more efficient than it.

Corpus (1-ROCA)% Time Memory

ROSVM TREC 05p 0.0090 6h52m -
NSNB TREC 05p 0.0079 18m27s 155mb

ROSVM TREC 06p 0.0240 5h9m -
NSNB TREC 06p 0.0344 7m27s 147mb

ROSVM TREC 07p 0.0093 - -
NSNB TREC 07p 0.0087 24m54s 111mb

Table 4: Our NSNB beats ROSVM algorithm on most cor-
pus except for TREC06p, and most significantly it is 20 to
40 times faster than ROSVM.

151

Discussion

The comparison results shown in Tables 3,4 are striking
in two ways. First, they show the performance of our
NSNB can match or even exceed records on these large pub-
lic benchmark corpus held by other sophisticated machine
learning methods. Second, they show a dramatic disparity in
computational cost. NSNB could handle tens of thousands
of emails typically less than 20 minutes, and after that it only
consumed around 150mb memory, which is so lightweight
and fast that dramatically suitable for practical application.
Above all, by now we do not use any pre-training technique
like database which is widely used by other Bayesian clas-
sifiers, and we do find that most errors occur in the very be-
ginning of online process, so we can imagine an even better
accuracy of classification in practice if some received emails
are labeled before the system is put into service. Interest-
ingly, Experiment results show that NSNB has a surprising
classification ability on Chinese corpus, that it makes less
than 50 mistakes on TREC06c corpus (total emails : 64620)
and less than 40 mistakes on SEWM08 corpus (total emails
: 69300). We will try to find out the exact reason in our later
work.

Conclusion and Future Work

We enhanced traditional NB by introducing a confidence
factor to each feature, and in the online process, the con-
fidence factor is changed when an email is not well classi-
fied. Throughout this process, the Naı̈ve Bayes model grad-
ually becomes to be not so naı̈ve, i.e. we no longer need
the conditional independent hypothesis after sufficient itera-
tions. In the experiments, we can see the introduction of the
confidence factor does brought better results, less time and
memory consumption. This technique can also be used in
other situations where Bayes’ theorem holds but the result
is hard to calculate as the relation of variables is too com-
plex. During the online process, we also developed other
techniques such as smoothing, result scale, and thick thresh-
old to enhance the final results. The experiment results show
our NSNB is very reliable for the attractive sound results yet
runs extremely fast with much less memory consumption.
Though in TREC06p corpus, and TREC07p corpus, the re-
sults obtained by NSNB are not the best on records, but they
are close to the best results.

We do not use other material to pre-train the NSNB be-
fore the online process, and then lots of mistake occurs in
the very beginning of online training process. We will try
to resolve this problem and it is uncertain if our system is
robust enough against the good word attack (Wittel and Wu
2004), that we must do more experiments on this matter.

Acknowledgements

This paper is supported by the National High Technology
Research and Development Program of China (863 plan, No.
2007AA01Z197). We give thanks to Weike Pan, Guanzhong
Lu, Peng Peng, and Juxin Liu for their great work in the
design and development of our spam filtering system.

References

Assis, F. 2006. Osbf-lua - a text classification module
for lua, the importance of the trainning method. In The
Fifteenth Text REtrieval Conference (TREC 2006).

Bratko, A., and B.Filipic. 2005. Spam filtering using com-
pression models. Technical Report IJS-DP-9227.

Bratko, A., and Filipic, B. 2005. Using character-level
markov models for spam filtering experiments for the trec
2005 spam track. In The Fourth Text REtrieval Conference
(TREC 2005).

Cormack, G. V., and Lynam, T. R. 2005. Trec 2005 spam
track overview. In The Fourteenth Text REtrieval Confer-
ence (TREC 2005).

Cormack, G. V., and Lynam, T. R. 2006.
On-line supervised spam filter evaluation.
http://plg.uwaterloo.ca/?gvcormac/spamcormack.html.

Cormack, G. V., and Lynam, T. R. 2007. Trec 2007 spam
track overview. In The Sixteenth Text REtrieval Conference
(TREC 2007).

Cormack, G. V. 2006. Trec 2006 spam track overview. In
The Fifteenth Text REtrieval Conference (TREC 2006).

Drucker, H.; Wu, D.; and Vapnik, V. N. 1999. Support
vector machines for spam categorization. Neural Networks.

Fawcett, T. 2004. Roc graphs: notes and practical consid-
erations for researchers.

Friedman, N.; Geiger, D.; and Goldszmidt, M. 2007.
Bayesian network classifiers. Machine Learning.

Goodman, J., and tau Yih, W. 2006. Online discriminative
spam filter training. In Third Conference on Email and
Anti-Spam (CEAS 20006).

Graham, P. 2002. A plan for spam.

Graham, P. 2003. Better bayesian filtering.

Metsis, V.; Androutsopoulos, I.; and Paliouras, G. 2006.
Spam filtering with naive bayes - which naive bayes? In
Third Conference on Email and Anti-Spam (CEAS 2006).

Sculley, D., and Wachman, G. M. 2007. Relaxed online
svms for spam filtering. In SIGIR’07.

Sculley, D.; Wachman, G. M.; and Brodley, C. E. 2006.
Spam filtering using inexact string matching in explicit fea-
ture space with on-line linear classifiers. In The Fifteenth
Text REtrieval Conference (TREC 2006).

Siefkes, C.; Assis, F.; Chhabra, S.; and Yerazunis, W. S.
2004. Combining winnow and orthogonal sparse bigrams
for incremental spam filtering. In PKDD 2004.

Wittel, G. L., and Wu, S. F. 2004. On attacking statistical
spam filters. In First Conference on Email and Anti-Spam
(CEAS 2004).

152

	IAAI09
	Contents
	Index
	Help
	Terms

	Doctoral Consortium
	AAAI

