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Abstract

Spacecraft simulation is an integral part of NASA mission
planning, real-time mission support, training, and systems
engineering. Existing approaches that power these simula-
tions cannot quickly react to the dynamic and complex behav-
ior of the International Space Station (ISS). To address this
problem, this paper introduces a unique and efficient method
for continuously learning highly accurate models from real-
time streaming sensor data, relying on an online learning ap-
proach. This approach revolutionizes NASA simulation tech-
niques for space missions by providing models that quickly
adapt to real-world feedback without human intervention. A
novel regional sliding-window technique for online learning
of simulation models is proposed that regionally maintains
the most recent data. We also explore a knowledge fusion
approach to reduce predictive error spikes when confronted
with making predictions in situations that are quite different
from training scenarios. We demonstrate substantial error re-
ductions up to 74% in our experimental evaluation on the ISS
Electrical Power System and discuss the early deployment of
our software in the ISS Mission Control Center (MCC) for
ground-based simulations.

Introduction

Simulation plays a crucial role in NASA spaceflight. Soft-
ware models recreate hardware behavior when using the real
system is impossible due to costs, safety, or operational con-
straints. Spacecraft simulation is an integral part of mission
planning, operations, training, and systems engineering.

Common practice at NASA in generating simulation
models is to use hardware specifications, manufacturer test
data, and physics to derive equation systems that describe
system behavior. The resulting equations may range from
simple algebraic expressions to complex integrals and dif-
ferential equations that require advanced numerical analy-
sis techniques. The final software implementations of these
equation systems are known as engineering models. After
initial model construction, engineers must tediously evalu-
ate and adjust models in order to match true system behavior
(Jannette et al. 2002). Engineering model adjustments range
from modifying coefficients to changing equation forms.
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With the sheer size and evolving nature of the Interna-
tional Space Station, engineers cannot continuously adjust
models to reflect current system. In this paper, we present
a solution that uniquely solves this challenging problem by
using machine learning to continuously and autonomously
construct highly accurate models from real-time telemetry
(streaming sensor data).

This solution advances the state of the art in NASA sim-
ulation techniques that traditionally require manual model
construction and adaptation. The work in (Bay, Shapiro,
and Langley 2002) recognizes the need for a machine learn-
ing solution to this problem, but does not address concerns
such as model construction without the restrictions of spe-
cific equation forms, the use of supplemental knowledge
during extrapolation, and efficient online learning. Our solu-
tion examines a drastically different approach that does not
require any assumptions about the mathematical structure of
the model, uses a model fusion approach to address extrap-
olation, and efficiently reacts to changes in system behavior
within seconds.

Our approach pre-processes spacecraft telemetry, main-
tains a constant-size training dataset, and employs a regional
sliding-window that preserves recent examples for localized
regions within the input space, allowing for accurate predic-
tions across all valid regions of the input space.

Using the resulting representative training dataset, we
evaluate a set of candidate algorithms and learn a simula-
tion model using the best training algorithm. Each result-
ing model is sent to the spacecraft simulator in real-time to
match current system behavior. Since the simulator can re-
quest predictions for regions of the input space not contained
in our training dataset, we employ a model fusion approach
that uses the knowledge contained in existing engineering
models to eliminate large spikes in error due to encounter-
ing situations that are quite different from training scenarios.

The unique contributions of the paper include:

• Online autonomous learning of highly accurate spacecraft
simulation models from real-time telemetry

• Regional sliding-windows that outperform traditional
sliding-windows for simulation model construction

• Model fusion that additionally uses traditional engineer-
ing models to make more reliable predictions in situations
that are quite different from training scenarios
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• A new system architecture that integrates machine learn-
ing into the model construction and adaptation process

We evaluate our technique using the ISS Electrical
Power System (EPS) through NASA’s archives of spacecraft
telemetry. Evaluation results demonstrate significant accu-
racy improvements over existing EPS engineering models.

The paper is organized as follows: The Background sec-
tion provides relevant background information, the Techni-
cal Approach section describes our solution in detail, the
Experimental Results section offers results from our exper-
imental evaluation, the Early Deployment section discusses
the early deployment of our technique at NASA, and finally,
the Conclusion section closes the paper.

Background

Spacecraft Simulation

For ISS mission operations, simulations allow engineers to
answer critical questions such as the following: How long
until the crew exhausts the oxygen supply during a cabin
pressure leak? How can we orient the spacecraft to retain
communication when mechanical antenna positioning fails?
Is enough power available to run a science rack experiment
for the required fourteen days?

Engineers generate initial models using hardware specifi-
cations, manufacturer test data, and physics to derive a set of
equations that describe system behavior. After initial model
construction, engineers must tediously evaluate and adjust
models in order to match true system behavior. Simulation
models need to reflect real-world system behavior, other-
wise their value is limited. Engineers find it difficult and
time-consuming to create and maintain accurate models for
spacecraft systems for the following reasons:

• Human-rated spacecraft systems are complex
• True performance is only observable in space
• Abnormal scenarios are difficult to understand
• System behavior can evolve over time
• Extensive effort is required to refine models

We address these challenges by autonomously generating
highly accurate models that reflect current system behavior.

ISS Electrical Power System

We chose the ISS EPS (Gietl et al. 2000) to evaluate our
technical approach due to our EPS domain knowledge, how-
ever, our approach is generically applicable to any system.

Our focus is on two core components: the battery
charge/discharge unit (BCDU) and the battery itself. The
hardware layout for a single power channel (eight total) is
illustrated in Figure 1. The ISS absorbs sunlight through
its massive solar arrays and converts the energy into a us-
able power source through a network of complex electrical
equipment. An array of nickel-hydrogen batteries stores ex-
cess energy for use during orbital eclipse. The ISS orbit re-
sults in cyclic battery charge/discharge behavior due to the
periodic transition from eclipse to insolation (periods of so-
lar radiation) as demonstrated in Figure 2. The EPS model
must forecast into the future for power availability planning.
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Figure 1: ISS Electrical Power System schematic
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Figure 2: Battery charge level telemetry

Technical Approach

In the Requirement Analysis section, we provide a require-
ment analysis for our solution. Then in the System Archi-
tecture section, we outline the system architecture and il-
lustrate the flow of information from incoming telemetry to
final simulation output. We then focus on the following solu-
tions necessary to solve specific problems: regional sliding-
windows (Regional Sliding-Window section), model learn-
ing and evaluation (Model Learning and Evaluation section),
and model fusion (Model Fusion section).

Requirement Analysis

We must solve a series of problems in order to effectively
learn spacecraft simulation models in an online fashion:

• Process large continuous sensor data streams

• Create models that forecast into the future

• Account for frequent and long periods of missing data

• Create accurate models across valid input space regions

• Adjust models for system degradation and change

• Learn and evaluate models without human intervention

We discuss these requirements in detail throughout the
discussion of our approach.

System Architecture

Our architecture consists of the offline analysis components
and online learning components as shown in Figure 3. We
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Figure 3: System architecture

Algorithm 1 Regional Sliding-Window Algorithm
Input: trainingSet, dataStream �x[], size n, size k
Initialize trainingSet ⇐ ∅
loop

newPoints ⇐ next n samples from x
trainingSet ⇐ trainingSet ∪ newPoints
trainingSet ⇐ k-means from trainingSet

end loop

now describe the flow of data through these system com-
ponents. Before running our system, the Feature Selection
component determines the optimal set of sensors that gen-
erate the best possible model. Once our system is running,
all incoming telemetry runs through the Data Preprocess-
ing component to condition the data appropriately for model
learning and evaluation. At a fixed frequency, the system
will revise the training dataset using the regional sliding-
window. The system sends this training dataset to the Al-
gorithm Selection component where the best algorithm is
selected from a set of candidate training algorithms. The
Online Learning component then learns a system model us-
ing the current training set. The system then sends the result-
ing learned models to the simulator where the Model Fusion
component combines the knowledge contained in existing
engineering models to prevent highly inaccurate predictions.

Detailed descriptions of the Feature Selection and Data
Preprocessing components are provided in (Thomas 2007)
and are not the focus of this paper.

Regional Sliding-Window

When learning from data streams (Babcock et al. 2002;
Gaber, Zaslavsky, and Krishnaswamy 2005), it is not realis-
tic to use the entire data stream for model learning. In our

case, a year of operational data sampled every 10 seconds
results in a training set with over 3 million data points (1
GB). A popular technique to handle data streams is to only
retain the n most recent data points. This is known as a
sliding-window (Widmer and Kubat 1996). This simplistic
model works well in many situations, but suffers from the
drawback that knowledge is lost when it leaves the sliding-
window (Figure 4). For a spacecraft simulation model, we
desire the most recent examples covering the entire input
space as last known behavior. We propose a regional sliding-
window to perform this task.

We use k-means clustering to create a representative
dataset across all exercised operational regions. Algorithm 1
takes an initial training dataset and appends n samples from
data stream �x[]. Then k-means is used to generate a large
number of representatives, keeping the training set a con-
stant size k. Examples in the training set that are nearby the
new samples from �x[] will be shifted towards the new data
as k-means determines the new representatives. Examples
from the training set that are not nearby the new data will
not move. We desire this behavior since we do not want to
discount or remove elder data that are most recent for a par-
ticular region in the input space. By selecting a sufficiently
large value for k, we can maintain data points across the en-
tire input space as shown in Figure 4.

The selection of the k and n parameters are important in
the performance of this regional sliding window approach.
Our experimental evaluations found that n must be much
smaller than k (typically around 90-95% smaller). The value
of k is related to the number of data points necessary to pre-
serve valid operating values across the input space. We ex-
perimentally determined k by producing a series of plots on
a data set with increasing values of k, and then increasing the
value of k by 20% to account for future data not included
in our input dataset. If k is too large, our runtime perfor-
mance will suffer due to increased dataset size during train-
ing, and if k is too small, then we might not be able to pre-
serve enough data for quality training. Also n controls the
training frequency, since after n input points are buffered,
we then execute k-means to perform a reclustering. As the
value of n decreases, system performance decreases.

Many system models must also account for system degra-
dation. In the field of machine learning, this is known as the
concept drift problem (Widmer and Kubat 1996). Concept
drift is best described as dynamic change to the underlying
data-generating distribution. In our domain, the EPS com-
ponents tend to degrade over time, resulting in changes to
the system behavior and corresponding output. Our regional
sliding-window technique also indirectly accounts for the
concept drift phenomenon since incoming data points will
influence the elder training examples in that local region.

Model Learning and Evaluation

When learning from data streams, our system takes in the
regional sliding-window of telemetry and generates a model
at a fixed frequency. During the learning process, the sys-
tem selects the best algorithm from a candidate set based on
mean absolute error on independent test sets. We selected
the candidate algorithms by examining our problem charac-
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Figure 4: Regional sliding-window example – A full day of battery data (left) shows a loop in the middle of the input space.
This loop is lost the next day using a traditional sliding-window (middle). However, a regional sliding-window maintains this
important knowledge (right).

teristics (real-valued inputs/outputs, efficient prediction per-
formance, etc. . . ) and experimenting on sample datasets.
We used the following algorithms in our experiments:

• Artificial Neural Networks (single and boosted)

• Linear Regression

• Regression Trees (single and bagged)

• Model Trees (single and boosted) (Quinlan 1992)

The EPS telemetry shown in Figure 2 contains significant
gaps which represent data unavailability due to communica-
tion outages between the ISS and the MCC. The Tracking
and Data Relay Satellite (TDRS) communications system is
a shared resource and we expect such communication out-
ages, even for up to 30 minutes.

For time-independent models (such as the BCDU model),
we construct training sets and independent model evalua-
tion sets by simply removing all data points with missing
data from the full dataset. This basic approach is valid since
the occurrence of missing data is completely independent of
EPS system operation and we have ample training data.

For time-dependent forecasting models (e.g. battery
model), we create a lagged variable (Chatfield and Weigend
1994) for the time-delayed output. To create a lagged vari-
able, the system creates a new feature for the data point at
time t with the output from the data point at time t + 1.

To evaluate forecasting models, we cannot use traditional
n-fold cross validation since we must have a contiguous
time-series of data. Instead we construct time-series test sets
from independent data. We desire datasets without missing
data for at least 90 minutes (one ISS orbit), but these datasets
are extremely scarce. Instead we employ linear interpola-
tion to complete missing values. To avoid overly biasing our
evaluation, we experimentally determine the maximum du-
ration of missing data that meets our quality threshold. For
our evaluations, we generated ample test sets using a 40-
second threshold (under the 100-second maximum thresh-
old).

Model Fusion

Simulation models provide engineers a means of exper-
imenting and trying out many potential scenarios. This
means system models must be able to make predictions in
any valid region of the input space at any time. We must
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Figure 5: Battery model error comparison (engineering
model vs. learned model)

account for cases when our system model must predict in a
region in the input space where no training examples exist;
a common problem for inductive algorithms.

Model fusion is a knowledge fusion approach that uses
traditional engineering models to supplement the learned
models. Our software uses the output from the learned
model when the incoming data point is very similar to the
training dataset, otherwise we use the output from the engi-
neering model. We observed that engineering models pro-
vide useful background knowledge to reduce predictive er-
ror spikes when confronted with making predictions in sit-
uations that are quite different from the training scenarios
used when learning the machine learning model. We refer
to the resulting model as the fused model.

As we show in Figure 5, battery models created using our
online learning technique outperform the existing engineer-
ing model with the exception of a few large spikes. Visual
inspection of the telemetry data in Figure 6 shows that dur-
ing one of these spikes, there were novel examples reflected
by the loop in the middle of the normal operating region.
This scenario demonstrates the need for model fusion since
the learned model did not accurately predict these inputs.

To determine if the incoming data point is similar to the
training dataset, we turn to unsupervised density estimation
techniques as proposed by Bishop (Bishop Aug 1994). We
use a Gaussian Mixture Model (GMM) density estimator to
determine if the new data point is novel when compared to
the training dataset. Our software achieves this by measur-
ing the distance from the clusters generated by the standard
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Figure 6: Previously unobserved battery data points

Algorithm 2 Model Fusion Algorithm
Input: dataPoint, means[], covars[], threshold
c ⇐ NearestCluster(dataPoint, means, covars)
distance ⇐ MahalanobisDistance(dataPoint, c)
if distance > threshold then

output ⇐ EngineeringModelOutput(dataPoint)
else

output ⇐ LearnedModelOutput(dataPoint)
end if

Expectation-Maximization training procedure as shown in
Algorithm 2. If the distance is greater than our global nov-
elty threshold, the incoming data point is deemed novel and
we use the output from the engineering model. The global
threshold is set so that 99% of the training set is deemed
nominal to allow for some noise. We use the Mahalanobis
distance function rather than the normal probability density
function to increase simulator runtime performance since the
probability density function uses several exponential terms
that impact performance.

Figure 7 shows the large error spikes by the learned model
in Figure 5 are reduced in the final fused model. In some in-
stances the mean error in the final fused model is larger than
the learned model, but these small sacrifices are necessary
to bound error spikes caused by extreme extrapolation.

Model fusion provides a safety net to ensure that adap-
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Figure 7: Battery model error comparison (learned model
vs. fused model)

0

1

2

3

4

0 10 20 30 40 50 60 70 80

M
A

E
(%

)

Day (2006)

engineering
fused

Figure 8: Battery model error comparison (engineering
model vs. fused model)

tive model extrapolation does not introduce bizarre results.
Unusual output will hurt the user’s confidence and decrease
their trust in this intelligent system. This safeguard is neces-
sary for real-world deployment in spacecraft simulation.

Experimental Results

For our experimental evaluation, we used 90 days of ISS
historical telemetry data from year 2006. First, we per-
formed feature selection for the battery and BCDU devices.
Next, we started a regional sliding-window with k=2000
and n=100 to generate training datasets. Then, our software
learned new models every 24 hours. Finally, all models were
evaluated on independent test sets one week into the future.

A summary of the results is provided in Table 1. The
regional sliding-window approach improves over traditional
sliding-windows by reducing mean absolute error (MAE) by
53% (battery), 25% (BCDU current), and 21% (BCDU volt-
age). Model fusion slightly increases MAE for all learned
models, but removes drastic spikes in error by reducing
maximum errors by 70% (battery), 2% (BCDU current),
and 73% (BCDU voltage). Our final models improve over
the existing engineering models with 25% (battery), 73%
(BCDU current), and 74% (BCDU voltage) reductions in
MAE. In all cases, the system selected boosted model trees
as the learning algorithm due to EPS characteristics, but our
approach remains generic for future systems.

Early Deployment

ISS power system flight controllers approved our proposal to
integrate this method into a ground-based EPS model used
for ISS power planning in the Mission Control Center. This
is the only method in use at the NASA Johnson Space Cen-
ter (JSC) that applies machine learning to spacecraft system
simulation. We split this project into two phases in order to
evaluate this method in stages and build user confidence in
machine learning techniques for critical mission support.

The first phase integrated learned models generated of-
fline from archived data. Models are not continuously
learned and updated within the simulator. Without full on-
line adaptation, we must manually trigger the learning pro-
cess to generate new models from recent data. This allows
human validation of new models, but does not meet our goal
of fully adaptive and automated model learning.
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Approach Battery BCDU Current BCDU Voltage
Existing engineering model 0.00831 1.1305 4.8653
Learned model with traditional sliding-window 0.01096 0.3037 0.8237
Learned model with regional sliding-window 0.00513 0.2273 0.6538
Final model (model fusion and regional sliding-window) 0.00623 0.3079 1.2574

Table 1: Results summary (mean absolute errors)

The first phase completed in April 2008 with deployment
into the Solar power planning software application to in-
crease accuracy for a critical constraints-based solar array
planning problem (Thomas and Downing 2008). We re-
ceived positive feedback from the flight controllers who use
Solar, but the exact accuracy increases are hard to quantify
beyond results provided in this paper because the model pre-
dicts the amount of ISS available power; a number that can-
not be measured under normal circumstances because the
ISS must not operate under maximum power consumption.

The existing EPS model was implemented in Java, and
therefore we also implemented the software supporting on-
line learning of spacecraft simulation models in Java. Our
software currently runs within a Windows environment on
Intel x86-based laptops, although the Java implementation
allows for portability across a variety of platforms. Total
project effort was estimated at 500 hours from problem de-
scription to deployed software (first phase). We leveraged
the WEKA data mining software library (Witten and Frank
2005) for the training algorithm (ANN, Model Tree, etc...)
and k-means implementation to reduce costs, however we
implemented our own data preprocessing, results evalua-
tion, and Gaussian Mixture Model algorithm due to custom
project requirements.

The second phase consists of deploying the full on-line
learning and evaluation approach. Software will contin-
uously and autonomously generate models from real-time
telemetry. Our model evaluation technique will collect
statistics and validation test sets to perform trustworthy au-
tomated model validation. The second phase is under con-
sideration for 2009.

Conclusion

This paper introduced a unique and efficient method for
continuously learning highly accurate models from real-
time streaming sensor data, relying on an online learning
approach. This approach revolutionizes NASA simulation
techniques for space missions by providing models that
quickly adapt to real-world feedback without human inter-
vention. A novel regional sliding-window technique for on-
line learning of simulation models was proposed that region-
ally maintains the most recent data. We also explored a
knowledge fusion approach to reduce predictive error spikes
when confronted with making predictions in situations that
are quite different from training scenarios. We demonstrated
substantial error reductions up to 74% in our experimental
evaluation on the ISS Electrical Power System which re-
sulted in our approach being the only application of machine
learning in spacecraft simulation in use at NASA JSC.
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