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Abstract

This paper describes a novel approach based on a com-
bination of techniques in AI, parallel computing, and
network science to address an important problem in so-
cial sciences and public health: planning and respond-
ing in the event of epidemics. Spread of infectious
disease is an important societal problem – human be-
havior, social networks, and the civil infrastructures all
play a crucial role in initiating and controlling such
epidemic processes. We specifically consider the eco-
nomic and social effects of realistic interventions pro-
posed and adopted by public health officials and behav-
ioral changes of private citizens in the event of a “flu-
like” epidemic. Our results provide new insights for de-
veloping robust public policies that can prove useful for
epidemic planning.

Introduction and Contributions

The threat of global disease outbreak such as pandemic In-
fluenza is an important public health problem facing the
world. It is estimated that a pandemic influenza of the 1918
size that killed 40 million people would today result in 150
million deaths and estimated $4.4 trillion in global economic
output (Dobriansky 2006). In order to appropriately plan
and respond to such pandemics, public health officials need
to have a systematic assessment of the socio-economic im-
pact of interventions and other mitigation efforts (Philipson
2000).

It is well known that people adapt their behavior in re-
sponse to a threat posed by a potential epidemic, but a sys-
tematic study of how changes in individual behavior are
likely to affect the eventual spread of the disease has not
been undertaken to date. Our previous work shows that cer-
tain behavioral changes that might be viewed as beneficial
have potentially harmful side effects in case of infectious
disease outbreaks (Atkins et al. 2008). Personal behavior
during an epidemic depends on people’s socio-economic sta-
tus as well as their perception of the epidemic in the commu-
nity. People maximize their well being by choosing levels
of prevention and strategies with respect to their own con-
straints.
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In this paper, using a combination of tools from AI, net-
work science, parallel computing and social sciences, we
study the economic and social effect of various interventions
adopted by the public health officials and behavioral adapta-
tions of private citizens in the event of a “flu-like” epidemic.
We investigate the fairness of different intervention strate-
gies by examining its economic impact within specific de-
mographic classes. The results identify population strata by
demographics that are likely to win or lose from the imple-
mentation of these kinds of policies. A number of recent
reports and Hurricane Katrina have underscored the impor-
tance of this kind of work (Personick and Patterson 2007).

The use of agent-based models is crucial here; such con-
trolled experiments are virtually impossible to carry out in
real life. Agent based models provide a realistic yet syn-
thetic environment to carry out analysis of detailed what-if
scenarios. Such an analysis is crucial for informing public
policies.

We illustrate our ideas by studying the economic impacts
of various public policies and individual behavior adapta-
tion using a simulated outbreak of flu like disease in the New
River Valley (NRV) region of Southwest Virginia, NRV con-
tains about 150,000 people. We estimate the cost of preven-
tive behavior aimed at limiting the occurrence of the disease.
To understand the full impact of a disease, it is important to
calculate not only the cost of the disease but also the cost
of disease avoidance. Economic analysis has the power of
separating the impact of public mitigation policies on health
from the private preventive efforts. Traditional epidemiolog-
ical models focus on the cost of the disease, the prevalence
of the disease, and assume a big role of the public sector in
controlling the infectious diseases. They simply do not con-
sider the price paid by private citizens as they try and avoid
getting infected. This represents a significant portion of the
disease burden to the society. Individuals possess strong pri-
vate incentives to avoid the disease. These incentives and
the resulting dynamic agent modifications to personal social
behavior is clearly apparent in case of infectious diseases.
Our models try to capture this modified behavior and use it
to calculate the cost of the disease avoidance (Philipson and
Posner 1993).

Related Work: Earlier studies have emphasized the need
to measure the comprehensive economic impact by incorpo-
rating both direct and indirect economic costs of interven-
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tions; and the private and public cost of disease prevention.
Indirect costs include costs incurred due to the sickness of
dependent family members e.g. the cost of staying home
for a working parent when a child is sick (Philipson 2000;
Epstein et al. 2008). It also includes preventive and avoid-
ance costs which are incurred by the private individuals who
change their behavior e.g. get vaccinated, stay home from
work etc. and by public interventions such as school clo-
sures. This study uses an individual based simulation sys-
tem with detailed information on the individuals and their
household structures to estimate the socio-economic impact
of various private and public intervention strategies on the
population by demographic strata.

Aggregate computational epidemiology models often as-
sume that the population is partitioned into a few sub-
populations (e.g. by age) with a regular interaction struc-
ture within and between sub-populations. The resulting,
uniform mixing model can typically be expressed as a set
of coupled ordinary differential equations. Such models
focus on estimating the number of infected individuals as
a function of time, and have been useful in understanding
population-wide interventions. For example, they can be
used to determine the level of immunization required to cre-
ate herd immunity. See (Barrett, Smith, and Eubank 2005;
Hethcote 2000) for more discussion on this class of models.

Disaggregate or individual-based models such as the one
used here, in contrast, represent each interaction between
individuals and can thus be used to study critical pathways
of the diseases. Disaggregate models require neither par-
titions of the population nor assumptions about large scale
regularity of interactions; instead, they require detailed esti-
mates of transmissibility between individuals. For more than
a few individuals, the state space of possible configurations
of the dynamical system is so large that they are best stud-
ied using computer simulation. See (Eubank et al. 2004;
Ferguson et al. 2006) for recent results and discussion on
this topic.

Simdemics: a Multi-Agent Simulation-Based

Approach

We use a novel agent based modeling framework called
Simdemics (Barrett et al. 2008a) for simulating epidemic
outbreaks in large urban regions. Simdemics belongs to
a new emerging class of models called network based epi-
demiological models that use a detailed representation of
social contact networks; such a representation is crucial for
studying the questions related to role of individual behavior
and public policies. The computational model can be used
to study the effect of public policies and individual behavior
on the dynamics of infectious diseases. Policy planning has
been one of the central focus of epidemiological research
over the years. The recent SARS epidemic served as an ex-
cellent example of how individual behavior as well as public
policies played an important role in changing the social net-
work.

The mathematical model underlying Simdemics consists
of two parts: (i) a co-evolving graphical discrete dynamical
system (CGDDS) framework that captures the co-evolution

of disease dynamics, social network and individual behavior,
and (ii) a partially observable Markov decision process that
captures various control and optimization problems formu-
lated on the phase space of this dynamical system. CGDDS
provides a novel mathematical formalism for the underlying
agent-based model, which captures the interaction between
policies, social contact network and disease dynamics.

Simdemics details the demographic and geographic dis-
tributions of disease and provides decision makers with in-
formation about (1) the consequences of a biological attack
or natural outbreak, (2) the resulting demand for health ser-
vices, and (3) the feasibility and effectiveness of response
options (Eubank et al. 2004). The overall approach fol-
lowed by disaggregate models consists of the following
steps: Step 1. Creating a set of (synthetic interactors), Step
2. Generating (time varying) basic interaction networks,
Step 3. Detailed simulation of the epidemic process, Step
4. Simulating the coevolution of disease dynamics, behav-
ioral adaptation and social contact networks. We describe
these steps below; more detailed discussion about Sim-
demics can be found in (Barrett, Smith, and Eubank 2005;
Eubank et al. 2004).

Step 1: Creation of Synthetic Interactors: This step
creates a synthetic population by integrating a variety of
databases from commercial and public sources into a com-
mon architecture for data exchange. The process preserves
the confidentiality of the original data sets, yet produces re-
alistic attributes and demographics for the synthetic indi-
viduals. The synthetic population is a set of synthetic peo-
ple and households, located geographically, each associated
with a set of demographic variables drawn from the census.
It is a collection of synthetic objects, each associated with a
set of attributes. Synthetic populations are thus statistically
indistinguishable from the census data (Beckman, Baggerly,
and McKay 1996). Since they are synthetic, the privacy of
individuals within the population is protected.

Step 2: Generate Time Varying Interaction Network:
This step creates a set of activity templates for house-
holds are determined, based on several thousand responses
to an activity or time-use survey. The modeling method-
ology is called activity based travel demand models and
is now accepted as the de facto standard in transporta-
tion science, see (Bowman and Ben-Akiva 2001) for recent
overviews. Our early work in this area (Barrett et al. 2001;
Beckman, Baggerly, and McKay 1996) played an important
role in the development of this methodology.

The social contact network from the above population is
constructed as follows. We have a labeled dynamic bipartite
graph GPL, where P is the set of people and L is the set of
locations. If a person p ∈ P visits a location � ∈ L, there is
an edge (p, �, label) ∈ E(GPL) between them, where label
is a record of the type of activity of the visit and its start
and end times. Each vertex (person and location) can also
have labels. The person labels correspond to demographic
attributes such as age, income, etc. The labels attached to
locations specify the location’s attributes such as its x and
y coordinates, maximum capacity, etc. Note that, there can
be multiple edges between a person and a location record-
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ing different visits. This produces synthetic individuals that
just like real individuals can now carry out other activities
like eating, socializing, shopping, etc. An important point to
note here is that such data is impossible to collect by mea-
surements or surveys (Barrett et al. 2001).

Step 3: Epidemic Simulation. This step consists of de-
veloping a computational model for representing the disease
within individuals and its transmission between them. The
model can be viewed as a networked probabilistic timed fi-
nite state machine. Each individual is associated with a
timed probabilistic finite state machine. Furthermore, the
automata are connected to other automata – this coupling is
derived from the social contact network. The state transition
is probabilistic and is timed (i.e. depends on the duration of
contact). It may also depend on the attributes of the people
involved (age, profession, health status, etc.) as well as the
type of contact (intimate, casual, etc.) states of individual
automata as they update their states in responses to changes
in internal state and state of its neighbors.

Step 4: Simulating Effect of Policies and Behavioral
Adaptations. The final step consists of representing and an-
alyzing various public policies and interventions using par-
tially observable Markov decision process (POMDP). It al-
lows us to capture sequential decision making process re-
lated to studying the efficacy of various interventions. The
POMDP is exponentially larger than the problem specifica-
tion and is intractable to solve optimally in general. We thus
resort to efficient simulations. A key concept is that of im-
plementable policies — policies or interventions that are im-
plementable in the real world.

Model Validation

Extensive efforts have been made to validate the overall ap-
proach and specific components of the model. This includes
structural validity of models, matching the data produced to
field data, and formal specifications of these models for soft-
ware verification (Beckman, Baggerly, and McKay 1996;
Barrett et al. 2001; Halloran et al. 2008; Eubank et
al. 2004). Results on population mobility and social net-
work construction were presented and reviewed annually at
(TRBC 1995 2003).Epidemiological simulations were also
reviewed and discussed as a part of a letter report by the Na-
tional Academies and published in (Halloran et al. 2008).
Simdemics has been used in more than half a dozen user de-
fined case studies; these case studies have further improved
and served to validate the various models. The economic
analysis reported in this paper is new and was motivated by
our recent work as a part of a DHHS requested analysis un-
dertaken by the NIH sponsored MIDAS program. The study
illustrates what we believe is the first use of high resolution
simulation based microeconomic analysis in the context of
public health epidemiology.

AI Technologies

Infectious disease is an important societal problem and com-
putational public health epidemiology can benefit from ad-
vances in several AI topical areas. The development of Sim-
demics uses a number of methods and technologies devel-

oped in AI in conjunction with methods in high performance
computing and network science. The combination of ideas
from various disciplines that formed the basis of Simdemics
is an innovative aspect of the work. Examples of such tech-
nologies include: (i) high resolution multi-agent models, (ii)
synthesis and analysis of large urban social and relational
networks, (iii) light weight yet realistic behavioral model-
ing and (iv) development of a theory of graphical dynamical
systems and games. We give an example to illustrate these
ideas.

Developing scalable multi-agent systems for studying
real world problem remains an active area of research. We
first note that the notion of agency as used here should be
distinguished from the notion of entity and actor. Agents
are actors that have intent/motive and thus require a behav-
ioral representation that on one hand is rich enough for the
problem at hand and lightweight so that it can be scaled. We
needed three new ideas to achieve this: (i) parametric repre-
sentation of individual behaviors and local actions wherein,
a single basic algorithm is used for each agent and the be-
havioral variation is obtained by randomization and agent
specific attributes, (ii) behavioral decomposition: using au-
tomata theoretic techniques to represent each kind of local
function associated with an agent by a separate automata
(algorithm) and then using generalized cross product like
construction to obtain a composite behavior, and (iii) un-
encapsulated agents: where in the notion of agency is dis-
tributed and does not reside within a single software object.
For example, we have one within host disease progression
model (represented using probabilistic timed transition sys-
tem); the specific manifestation of disease within host is a
function of demographic variable associated with the indi-
vidual and affect the state transition. Similarly behavioral
models that are used for individual decision making in the
event of epidemics are parameterized. An individual’s over-
all representation comprises of within host disease model
and the individualized behavioral model. The description
of the agent, or what an agent does is not confined within
these local functions. Its interaction with other agents de-
fines its overall behavioral description. In this sense the idea
bears certain resemblance to the notion of (non)-modularity
of functions in cognitive science (Fodor 1983) and in neuro-
science under the concept of population coding (McIlwain
2001). So while local functions and the state attributes as-
sociated with agent determine its local dynamical evolution,
the phase space encodes the system behavior and is neces-
sary to understand the behavior of an individual agent.

In the course of developing Simdemics, we identified
a number of potential ways in which computational epi-
demiology further motivates research in AI. This includes:
(i) blending models of individual behavior in social sci-
ences with cognitive theories for more realistic and yet light
weight behavioral representations, (ii) further research in re-
lational networks and machine learning for refining the so-
cial contact networks; the availability of new sensor data
has raised the possibility of refining these social contact net-
works, at least in special circumstances (such as an office or
school environment) and (iii) further research into theoreti-
cal aspects of graphical games and dynamical systems; it is
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clear that we need to exploit the special structure of social
contact networks to compute important invariants in such
systems that shed light on the outcome of the collective in-
dividual behaviors; e.g. computing the fixed points in such
large n-way minority games (Bauch and Earn 2004).

Methodology

Demographic Classes and Intervention Strategies

This study estimates the differences in economic impact on
demographic classes caused by various public antiviral dis-
tribution and social distancing strategies as well as private
behavioral strategies. Demographic classes were formed by
dividing the synthetic population of the New River Valley
region of Virginia into twenty-seven classes based on the
household income, family size, and age. Classifications of
the family’s wealth were formed by defining three segments
of families who make less than $25,000, $25,000-$75,000,
and more than $75,000 per year. Household size classes
were defined as those containing a single-member, two to
three members, and more than three members. Age groups
were defined as juveniles (0-18), working adults (19-64),
and retirees (65+). Demographic classes were developed
from all twenty-seven possible combinations of each factor.
A single digit label is assigned to each of the three aspects of
the classification. Table 1 displays all the categories as well
as the proportion of people belonging to each class. Strate-
gies include individual and public interventions that aim to
reduce personal and public risk respectively. The strategies
incorporated in this study are supported by public health of-
ficials and researchers (Blendon et al. 2008).

Individual Strategies People with different socio-
economic constraints follow different preventive strategies
to avoid getting infected. These strategies are based on
how people perceive the society is doing as well as the
kinds of actions their own peer group/demographic class is
taking. We project that the change in individual behavior
is triggered by the prevalence level of the virus in the
overall society as well as within one’s own demographic
class. Thresholds for these two factors were set for each
class as shown in Table 2. Once the number of infected
people in the population or in a person’s class reaches
the personal threshold value, the individual decides to
modify its behavior. For the affluent household members,
the modified behavior is reflected through the purchase
of antiviral medication kits available for private use. The
members of the middle income class decide to modify their
daily activity schedule in order to reduce their potential
contact with infected individuals. This social distancing
technique eliminated visits for unnecessary shopping trips
and recreational activities. Finally the individuals from
the poorest income class find it too expensive to purchase
antiviral kits, or reduce contacts and hence decide to just
rely on the herd immunity. Table 3 tabulates the private
strategies implemented by the different income classes and
the measurements used for global and local thresholds.

Public Strategies The strategies available to the public
health officials include the distribution of antiviral kits and

Num HHInc(frac) HHSize(frac) Age(frac)
0 0-25K (0.32) 1 (0.11) 0-18 (0.20)
1 25-75K (0.52) 2-3 (0.54) 19-64 (0.69)
2 75K+ (0.16) 4+ (0.35) 65+ (0.11)

Table 1: Demographic classes based on age, household in-
come and size with an assigned number label. Numbers in
the parenthesis show the fraction of population in each class.

school closures. The trigger threshold for the public inter-
vention is set at 1% of the total population becoming in-
fected. The public stockpile of AV kits is limited to 10,000.1
These kits are distributed to the individuals based on the fol-
lowing four selection techniques; randomly selected indi-
viduals, poorest individuals, first sick individuals, and the
most vulnerable individuals. Vulnerability of an individual
is defined as the probability with the individual gets infected
when the disease starts from a random person in the pop-
ulation (Barrett et al. 2008b). We empirically estimate
the vulnerability of all individuals in the population by run-
ning hundred simulation runs of the epidemic where each
run starts from a different random individual. To calculate
the vulnerability, we determine the number of times an in-
dividual gets sick and divide it by the total number of runs.
For example, if an individual got infected 5 times during the
hundred runs, his vulnerability was 0.05. Under the most
vulnerable individual strategy, the AV kits were distributed
to those who had the highest vulnerability value as calcu-
lated by the above procedure.

For the “close school” strategy, the trigger threshold is set
at 1% of the total population becoming infected. Each time
the “close school” strategy is used, the schools are closed for
a period of two weeks. We try various combination strate-
gies that involve closing schools as well as the distribution
of antiviral kits according to the four strategies mentioned
above. The combination of AV distribution strategies and
closing schools led to nine distinct governmental strategies.

Strategy Label Description We now describe the strategy
labels that are being used in all the upcoming tables. The
strategies described below are followed by the public health
officials while distributing the public stockpile of AVs. In
addition to distributed AV kits, the public authorities close
down schools based on some trigger thresholds. Under all
these scenarios, the private citizens continue to follow their
respective strategies whenever their local and global thresh-
olds are met. In the base case no interventions or strategies
are used.

In the case of Random strategy the entire public stock-
pile of AVs is distributed randomly by the government to
the people. Under the poor strategy, the public stockpile is
distributed to the poorest individuals. Under the Vulnerable
strategy, the entire stock of AVs is distributed to the most

1To test the sensitivity of the number of AV kits in the public
stockpile, we repeated the entire experiment in which the public
AV kits stockpile was limited to 1000. The results of that exper-
iment were not statistically significantly different from the results
of 10000 kits experiment.
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Classes Global Threshold Local Threshold
(% sick in the society) (% sick in class)

100 5 None
101 5 2
102 2 1
110 5 None
111 5 4
112 3 1
120 5 None
121 5 4
122 3 1
200 .5 None
201 2 5
202 1 2
210 .5 None
211 2 3
212 1.5 3
220 .5 None
221 2 1
222 1.5 2

Public 1 None

Table 2: Demographic class labels and respective thresholds
to trigger private intervention strategies. Note that the low
income class (0−−) does not take any action and hopes to
benefit from the herd immunity.

Class Individual Strategy by Income Class
LowInc Herd immunity/No Action
MedInc Stop non-essential activities
HighInc Buy AV kits

Threshold Measurement
Global Total sick in the society
Local People not reporting to work in class

Table 3: Private intervention strategies by income class

vulnerable people in the society. Under the sick strategy,
the AVs are distributed to the first sick individuals in the so-
ciety. Strategy CS closes schools for 14 consecutive days.
Under CS, no AVs are distributed. However, CS+R refers to
closing schools as well as randomly distributing the public
stockpile of AVs. Similarly, CS+P refers to closing schools
plus giving AVs to the poorest people. CS+V refers to clos-
ing schools plus giving AVs to the most vulnerable people.
CS+S is for closing schools as well as giving AVs to the
first sick people. NoGovt strategy implies that there is no
intervention by the government. No AVs are distributed and
schools remain open. However, under all the above scenar-
ios the private strategies are being implemented.

Scenarios and Simulation

In order to assess the economic impact of various interven-
tion strategies by demographic class, we develop eleven dis-
tinctive scenarios based on individual and governmental ac-
tions. Nine of these scenarios come from the public inter-
ventions. A base case or control simulations are conducted

to determine the size of the epidemic in the absence of any
interventions. Finally, a scenario is developed where no gov-
ernment intervention takes place and only private strategies
are implemented.

For each epidemic run, five vulnerable individuals were
used as the index cases or the set of initially infected individ-
uals. One hundred simulations were conducted to ascertain
the average spread of an epidemic for each scenario. In each
simulation, the number of infected members of each demo-
graphic class was tracked for each day in the simulation. It
was also assumed that infected individuals would not go to
work or school. This resulted in a schedule change for in-
fected workers, infected children, and the working parent of
an infected child.

Simulation Results

The data produced by the simulation provides some insight
into the average epidemic under each scenario. The shape of
the disease prevalence for the average epidemic under each
scenario can be directly compared to each of the other sce-
nario’s results. The potential effects of an intervention strat-
egy on the diffusion of the virus can thus be established. In
all of the scenarios, any intervention by a government strat-
egy or an individual’s course of action greatly reduced the
number of individuals infected during the course of the epi-
demic. Even the least effective intervention diminished the
total size of the epidemic to less than half of the base epi-
demic. The prevalence of the disease at its height was re-
duced by two thirds. It is important to note that the inter-
ventions not only caused the peaks to drop significantly, but
also delayed the outbreak and reduced the duration of the
epidemic.

Impact of Preventive Behavior

The results show that the most significant reduction in the
size of the epidemic was caused by the preventive behavior
undertaken by the individuals. These actions were driven
by agent decisions to modify personal behaviors and activ-
ities within the social network by observing the simulation
environment. This is indicated as the ‘NoGovt’ strategy per-
forms only slightly worse than the random, poor, vulnera-
ble and sick strategies. In all of these strategies, individ-
uals modified their behavior once alerted that a number of
peers in their demographic class have been infected. How-
ever, in the NoGovt strategy there was no distribution of
AV kits whereas random, poor, vulnerable and sick strate-
gies used AV kits provided by the government. This implies
that the private behavior modification was the main factor
in causing the reduction in the size of the epidemic in all
these strategies. The second best reduction in the size of
the epidemic came from the government strategy of closing
schools which resulted in a drop in attack rate by another
10%. Note that attack rate is defined as the size of the epi-
demic divided by the size of the population. Under the CS
(close schools) strategy, the attack rate was 15%, i.e. more
than 10% lower than the attack rate of 26% under the No-
Govt strategy. Among the public AV distribution strategies,
the distribution of the AV kits to the most vulnerable indi-
viduals proved to be the most effective. The governmental
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strategy of closing schools and distributing medications to
the first sick individuals reached its peak prevalence much
faster than the others, but the number of infected individu-
als also tailed off earlier compared to the strategies without
school closures.

Conclusions

This study uses an individual based modeling approach to
obtain a detailed understanding of the economic and social
impact of various mitigation strategies for a “flu-like” epi-
demic. The results show that the most important factor re-
sponsible for preventing income loss is the modification of
individual behavior which alone drops the total income loss
by 62% compared to the base case. The next most signifi-
cant strategy is the closure of schools which further reduced
the total income loss by 40% and the size of the epidemic by
half. Compared to the base case, the school closure strategy
helped drop the income loss due to care-taking by 93% and
due to illness by 75%. This strategy works well across all
demographic classes, but it is especially favorable to chil-
dren and large families for whom the total costs could go
down by more than 80%.

The best and most effective distribution strategy requires
school closures, public distribution of AVs to the most vul-
nerable individuals in the society, and behavior modification
by the private citizens. This strategy drops the attack rate
by 87% and income loss by 82% compared to the base case.
The cost of disease avoidance, as measured by the economic
loss run close of $20 million whenever schools need to be
closed for 2 weeks. In summary, both private citizens and
public officials play an important role in successfully miti-
gating the disease.
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