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Abstract

Agents and market mechanisms are widely elaborated
and applied to automate interaction and decision pro-
cesses among others in robotics, for decentralized con-
trol in sensor networks and by algorithmic traders in fi-
nancial markets. Currently there is a high demand of ef-
ficient mechanisms for the provisioning, usage and allo-
cation of distributed services in the Cloud. Such mech-
anisms and processes are not manually manageable and
require decisions made in quasi real-time. Thus agent
decisions should automatically adapt to changing con-
ditions and converge to optimal values.
This paper presents a bidding strategy, which is capa-
ble of automating the bid generation and utility maxi-
mization processes of consumers and providers by the
interaction with markets as well as to converge to opti-
mal values. The bidding strategy is applied to the con-
sumer side against benchmark bidding strategies and its
behavior and convergence are evaluated in two market
mechanisms, a centralized and a decentralized one.

Introduction

Technology trends like Grid and Cloud computing foster re-
search and business to investigate mechanisms and business
models that organize and utilize their computing infrastruc-
tures more efficiently in order to reduce costs and identify
free capacities. Such free resource capacities can be offered
to external consumers on-demand by deriving additional in-
come to their providers. Researchers e.g. in physics, bi-
ology and chemistry already share and utilize distributed
computing resources using well-known Grid middleware.
Prominent business like Amazon, Google, Sun and Sales-
force already offer Grid-based services on-demand by ap-
plying static pricing models like pay-per-use or subscription
for given static resource configurations.

Although technologies emerge, there is still a demand
for convincing mechanisms and business models that drive
consumers to use external resources without any objections.
One of these objections is the required effort to execute a
job or an application on an external provider resource. In re-
search, Grid middleware offer tools, standardized interfaces
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and message protocols to bundle and provide computing re-
sources as well as to submit and execute demanding jobs.
However, the allocation of jobs to computing resources is
performed by schedulers, which only consider the techni-
cal descriptions of provider resources and consumer pref-
erences. In a Cloud scenario, computing services can be
utilized by any consumer, who is willing to pay for the pro-
vided resource configuration and price model. Similar to the
Grid, there is a demand for mechanisms, tools, standardized
interfaces and message protocols, which allow an efficient
market-based allocation of Cloud services and support their
provisioning and usage processes. For providers, such pro-
cesses are the identification of idle resource capacities, cal-
culation of corresponding reserve prices and achievement of
a higher payoff from the market. Consumers want to execute
their jobs on-demand or scale their applications by achieving
higher utility from the market than from a local job execu-
tion. All these processes are not manually manageable and
should be automated with minimal human intervention.

In a real market scenario, it is assumed that consumers
and providers will act rationally by maximizing their own
utilities. Since there is no mechanism that satisfies all
mechanism-design desiderata (Myerson and Satterthwaite
1983), existing market mechanisms and bidding strategies
are investigated that can enable market-based allocation of
Cloud-based services. Our main focus is to explore bid-
ding strategies, which can automate the bidding processes
for consumers and providers and are capable to converge and
adapt in dynamic market environments, where demand and
supply change over time. This paper presents such a bidding
strategy, which can adapt in dynamic market environments
by converging to optimal values (bids). The presented bid-
ding strategy is applied on consumer side against benchmark
bidding strategies and its behavior and convergence is eval-
uated in centralized and decentralized market mechanisms.

Market-Based Resource Allocation

Economic models for resource scheduling are widely ex-
plored in the literature (Wolski et al. 2001; Parkes, Singh,
and Yanovsky 2004; Lai et al. 2005; Nassif, Nogueira, and
de Andrade 2007). According to the coordination modes,
scheduling mechanisms can be categorized into “centralized
mechanisms”, where the allocation decision of bids and of-
fers is taken by a central unit, and “decentralized mecha-
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nisms”, where the allocation decision is decentralized, i.e.
made by the requesters based on all of the responses they
receive from the environment. According to the allocation
modes, scheduling mechanisms can be divided into mecha-
nisms that execute periodically (also called “off-line mech-
anisms”), and mechanisms that execute continuously (also
called “on-line mechanisms”). Examples for off-line and
centralized mechanisms are the Call Double Auction (Grosu
and Das 2006) and combinatorial mechanisms like proposed
in (Bapna et al. 2007). Examples for centralized on-line
mechanisms are the Continuous Double Auction (CDA) and
Tycoon (Lai et al. 2005). Decentralized market mechanisms
for machine scheduling have been explored to a lesser extent
in the current literature. An example for on-line machine
scheduling is the Decentralized Local Greedy Mechanism
(DLGM) (Heydenreich, Müller, and Uetz 2006).

Auction and strategy selection are closely connected in
the sense that a given choice of an auction mechanism
will affect the choice of the target bidding strategy, and
vice versa. For example, some bidding strategies per-
form well in a CDA, but not in a Dutch auction. This
also implies that the agent success in a particular auction
depends on the selected bidding strategy. Past and cur-
rent research explores trading agents and bidding strategies
in various fields like financial markets (Das et al. 2001;
Sherstov and Stone 2005; Vytelingum, Cliff, and Jennings
2008), supply chain management (Pardoe and Stone 2007)
and market-based Grid scheduling (Li and Yahyapour 2006;
Reeves et al. 2005). Wellman, Greenwald, and Stone gave
an overview of the various agents and their used strategies in
the trading agent competition. Phelps investigated an evolu-
tionary approach for learning the space of bidding strategies.

This section presents two on-line scheduling mecha-
nisms, CDA as centralized and DLGM as decentralized one,
adopted for market-based scheduling of computational ser-
vices as well as two state-of-the-art bidding strategies as
benchmarks for the selected market mechanisms.

Continuous Double Auction

The continuous double action (CDA) is one of the well-
studied market mechanisms, commonly employed in com-
modity and financial markets. In this market, the consumers
and providers bids are matched “continuously” in the sense
that the market clears instantaneously on receipt of a bid. If
there is no match, the bid is stored into an order book until a
match or the specified valid time (“time to leave”) expires.

The CDA market has been widely employed in experi-
mental economic studies, where different agent strategies
are investigated for applying automated bidding behavior by
the provisioning and usage of resources (Das et al. 2001;
Vytelingum, Cliff, and Jennings 2008). The matching in a
CDA is mostly based on a single value – price, which in-
corporates in a computing resource scenario the consumer’s
preferences for a job i.e. his value vj per time unit. Based
on a preferred bidding strategy a consumer generates and
submits a bid price (bj ≤ vj) to the CDA market. Re-
spectively, based on a preferred bidding strategy, a resource
provider also sets an offer price (oi ≥ vj) for its resource.
In case of a match the consumer can immediately execute

his job on the provider’s machine with a payment π to the
provider, calculated by the winning bid and offer prices.
The market price of a match, in our case, is calculated us-
ing the k-pricing schema (Satterthwaite and Williams 1989),
πm = kbj + (1− k)oi, with k = 0.5. The choice of the pa-
rameter k ∈ [0, 1] influences the price for which the trade
occurs. If k = 0, the provider sets the price, at k = 1, the
price is set by the consumer.

Decentralized On-line Machine Scheduling

In the case of the Decentralized Local Greedy Mechanism
(DLGM) (Heydenreich, Müller, and Uetz 2006), each time
a job j arrives on the consumer side, his bidding agent cre-
ates a request in the form tj = {rj , dj , vj} with its release
date rj , duration dj and valuation vj , and reports this to all
known providers. The valuation vj expresses the costs of
the job for waiting one additional time unit in the provider
machine’s queue.

Based on the received bids and the local scheduling pol-
icy, each machine performs real-time planning - if job j has
a higher priority value than k ⇔ vj

dj
≥ vk

dk
, then j is sched-

uled before job k in the waiting queue. Depending on the
current local waiting queue, the machine i reports a tenta-
tive (ex-ante) completion time Ĉi,j and a tentative payment
π̂i,j to the agent of job j. The payment π̂i,j contains the ag-
gregated compensation payments πi,j =

∑
k,

vj
dj
≥ vk

dk

dj ∗ vk

to all job-agents whose jobs are currently waiting at machine
i and are delayed due to allocation of j.

Upon receiving information about its tentative completion
time and required payments, the job-agent makes a binding
decision to queue at a certain machine i, and pays π̂i,j to
the delayed jobs. The decision on which machine to submit
the job is taken based on the consumer’s utility function,
uj = −vj ∗ Ĉi,j − π̂j,i, which selects a provider machine’s
offer i with the shortest weighted tentative completion time
vj ∗ Ĉi,j and tentative compensation payments π̂i,j . The
providers applying DLGM do not behave strategically and
do not request compensation for the use of their services.
The payments are divided only among the consumers for
compensating the delayed jobs. Heydenreich et al. showed
that DLGM achieves a performance ratio of 3.281 against an
optimal off-line scheduling mechanism.

Bidding Strategies

Following sections introduce benchmark strategies for the
selected market mechanisms used to evaluate Q-Strategy.

Truth-Telling Strategy In the model of Heydenreich,
Müller, and Uetz agents do not remember the outcomes of
earlier market interactions, but are somewhat “myopic” in
the sense that they only consider the current situation. As
shown for the model in Heydenreich, Müller, and Uetz,
without knowledge about the future, at time rj it is a util-
ity maximizing strategy (myopic best response) sj for an
agent j ∈ J to report truthfully tj = {rj , dj , vj} instead of
t̂j = {r̂j , d̂j , bj} to the system and to choose the machine
i which maximizes ûj (i|s−j , t̂j , tj) whatever other agents’
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strategies are. Although a simple strategy, truth-telling is es-
sential in strategy-proof mechanisms, because it guarantees
optimal payoffs, no matter what strategies are adopted by
other agents. However, in budget-balanced double-auction
mechanisms, this strategy is not dominant (Phelps 2007).

Zero Intelligence Plus Strategy Zero-Intelligence Plus
(ZIP) agents are widely explored and become a popular
benchmark for agents trading in CDA (Das et al. 2001).
In Cliff, the author shows that zero intelligence (ZI) agent
strategy is not enough, since the bids are uniformly gener-
ated between a given interval and do not depend on current
or past market information (bids, offers, clearing prices).
They introduced a new type of agent, the ZIP agent, which
uses the public market information to adapt the bid price.
Central to the ZIP agent is the rule for updating the profit
margin μ. For a consumer agent, this is the difference be-
tween its valuation v (i.e. maximum willingness to pay) and
the generated bid price b, for the provider respectively, the
difference between his valuation v (reservation price) and
offer price b. The ZIP’s relationship between profit mar-
gin, generated bid and valuation is represented through the
rule bi(t) = (1 + μi(t))vi. The rules for raising and low-
ering consumers’ and providers’ profit margins are based on
whether the last signal was a bid or an offer and whether the
agent has selling or buying intention. Das et al. show that
ZIP agents perform better than (non-expert) human traders
on CDA markets. Simulations show that adopting a ZIP
strategy in markets dominated by other kinds of agents re-
sults in an increased profit when the dominating agents are
ZI, Kaplan or GD.

This strategy is mainly evaluated and designed for CDA.
A drawback of the ZIP strategy is that it requires public in-
formation of the providers and consumers price signals. This
bidding strategy is selected as one of the benchmark strate-
gies for CDAs, which perform well by high demand and sup-
ply as well as quickly converge to equilibrium price.

Q-Strategy

Q-Strategy, first proposed in Borissov and Wirström, adopts
a reinforcement learning approach - Q-Learning (Watkins
and Dayan 1992) with an e-greedy selection policy (Kael-
bling, Littman, and Moore 1996). Using Q-Strategy, for
each job-type tj = {rj , dj , vj}, an agent explores the envi-
ronment with a probability of ε, e.g. available provider ma-
chines and the rewards from executing jobs on them. With a
probability of 1 − ε the strategy exploits the collected mar-
ket information in order to generate bids more intelligently
(Algorithm 1). In the following the strategy is described in
more detail.

Q-Strategy is executed in two phases, exploration and ex-
ploitation. In the exploration phase, for each incoming job
type tj = {Rj , dj , vj}, the agent is generating a random
bid price bj ∈ [s ∗ vj , vj ], s ∈ [0, 1], where Rj represents
technical resource requirements for job j, dj its estimated
(upper-bound) duration (Medernach 2005) and vj its valua-
tion. The bid t̂j = {Rj , dj , bj} for job j is submitted to the
market and after a match - allocation of a provider - the job
is executed on the provider machine. When the job finishes,

the agent calculates the outcome (reward) of its execution.
The agents maintain a history of the executed jobs, gener-
ated bids and received payoffs in a so called Q-Table. The
Q-Table is composed by the Q-Learning dimensions state s,
action a and payoff ρ, where the state-dimension represents
the job type tj , action-dimension represents the learned bids
bj and the payoff dimension aggregates the payoffs for sim-
ilar jobs and generated bids in a so called Q-Value, Q(s, a).
The payoff function is in our case a utility maximizing func-
tion u(j), which is configurable for each job type. The pay-
off is aggregated according to the Q-Rule:
Q(st, at) = Q(st, at)+αt[ρt +γ maxa Q(st+1, a)−Q(st, at)]

In the exploitation phase, with a probability of 1 − ε, for
each new or similar job type t̃j , t̃j ≈ tj , the agent exploits
the aggregated knowledge from his Q-Table and for job j
it selects the bid price b̃j , which achieved the highest ag-
gregated payoff in the past. The ex-post payoff of the job
execution is again aggregated in the Q-Table according to
the Q-Rule. Currently a job-type t̃j is defined to be similar
to tj , t̃j ≈ tj , if R̃j = Rj ∧ d̃j = dj ∧ ṽj = vj . This
implies that at this stage, Q-Strategy is suitable for repeated
jobs with similar job requirements, upper-bound durations
and valuations.

Algorithm 1 Q-Strategy: Bid Generation Rule
s ∈ (0, 1)
valj := job.getV aluation()
if ε < Stochastic.random(0, 1) then

//Explore:
bidPricej := Stochastic.random(s ∗ valj , valj)

else
//Exploit:
state := State.getState(job)
action := qLearner.bestAction(state)
if action! = nil then

bidPricej := action.getBidPrice()
else

//Q-Table is empty for job-type j ∈ J
bidPricej := Stochastic.random(s ∗ valj , valj)

end if
end if

In case of a provider agent, the state-dimension of Q-
Strategy represents the resource-type ti = {Ri, di, vi},
where Ri is the technical description of a provider resource,
di is the duration for which it is offered to the consumers
and vi is its reserve price.

The main advantage of Q-Strategy is that agents can bid
and adapt also in markets, where market information is
not available or incomplete. Maintaining classes of simi-
lar jobs t̃j ≈ tj will accelerate the learning process and thus
the reaction of market dynamics – fluctuating prices, new
providers and computing resources with changing qualities.
A common drawback of reinforcement learning algorithms
like Q-Learning is that learning the optimal bid price needs
“training time”. In the worst case, Q-Strategy will perform
worse at the beginning, but will converge towards optimal
values by and by (Watkins and Dayan 1992).
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Evaluation

The convergence and behavior of Q-Strategy is evaluated in
an agent-based simulation with selected market mechanisms
against benchmark bidding strategies. The following sec-
tions present the evaluation design and results.

Evaluation Methodology

Results in Borissov and Wirström showed that market mech-
anisms like DLGM improve the overall welfare in compar-
ison to mechanisms like CDA and first-in-first-out. More-
over, the paper presented first results on the convergence of
Q-Strategy, showing generated bids over time for selected
job classes. This work extends the analysis by looking at
the overall convergence and behavior of Q-Strategy against
benchmark strategies in two market mechanisms – DLGM
and CDA. To better understand the behavior of Q-Strategy,
it was decided to vary the strategies only on the consumer
side.

Table 1: Simulation Scenario
Provider 1000 machine agents
Consumer 10 consumer agents
Scenarios of Ratios of [9:1], [8:2], [5:5] and [0:10]
Markets & Strategy CDA consumer strategies [ZIP:Q-Strategy]
Configurations DLGM consumer strategies [TruthTelling:Q-Strategy]
Real Job Workloads W1:HPC2N with 130,770 jobs
d ∈ [1h, 72h] W2:LPCEGEE (Medernach 2005) with 155,669 jobs

W3:LLNLATLAS with 16,897 jobs
Valuations Job valuations N(50,5); Resource reserve prices N(8,1)
Metric Consumer utility Uc =

∑
c

∑
j

uc(j);

Table 1 depicts the overall simulation scenario. In or-
der to evaluate the behavior and convergence of the Q-
Strategy, settings with 10 consumers and 1000 machine
agents were defined, with one agent per machine. For each
market and job workload four simulation runs were executed
with a varying number of benchmarks (DLGM:TruthTelling,
CDA:ZIP) and Q-Strategy agents in ratios of [9:1], [8:2],
[5:5] and [0:10]. The providers behaved strategically as
ZIP agents only in the CDA. In DLGM, they offered their
resources without reward. Each simulation run was exe-
cuted subsequently with real cluster usage workloads, taken
from Feitelson’s workload archive1. Exploring strategies
and markets for interactive and quasi real-time applications
(e.g. demand forecasting, information aggregation, video
processing), a filter was applied to extract jobs lasting d one
hour or more but less than three days. The resulting num-
ber of the workload jobs was filtered to 130,770, 155,669
and 16,897, respectively. The workloads were chosen based
on the variety of run-times, numbers of used CPUs and start
times. As the most common assumption (Sandholm, Lai,
and Clearwater 2008), the valuations of jobs and resource
reserve prices (by CDA) were drawn from a normal distribu-
tion. The results were aggregated with the consumer utility
metric Uc.

In this evaluation setting it was not aimed to compare the
DLGM and CDA market mechanisms themselves, but to an-

1www.cs.huji.ac.il/labs/parallel/workload

alyze the behavior and convergence of Q-Strategy in both
markets. In the case of the CDA, there was no waiting queue
on the provider side for the allocated jobs. Thus the jobs
spurred high competition for computing resources, whereby
the execution of the job started immediately as long as there
was a match. To reduce the simulation runtime in the CDA,
the job durations were scaled down by a factor of 100.

Evaluation Results

Figures 1 shows the evaluation results of the ZIP and Q-
Strategy agents for the settings [9:1] through [0:10] executed
in the CDA market. Based on the information gleaned from
the executed jobs, for each of the 10 agent types, an aggre-
gated ex-post utility was calculated using the utility function
in Heydenreich, Müller, and Uetz, uj = −vj ∗ Ĉi,j − π̂j,i,
which aims to minimize the weighted completion time and
payments. In our scenario, a “higher importance” was as-
signed to the completion time C than to the payments π.
According to the simulation settings, the generated values
for the valuations were v ∈ [23, 76] for the job durations
in the DLGM simulations ddlgm ∈ [3600000, 259200000],
and the CDA simulations dcda ∈ [36000, 2592000]. Dur-
ing the simulations, the following payments were transacted:
πcda ∈ [4, 57] and πdlgm ∈ [−185416, 152352].

The results show that in the workloads W1 and W2 in set-
tings [9:1] and [8:2], the Q-Strategy achieved lower utilities
on average than the ZIP strategy. On the other hand, given
a rising number of Q-Strategy agents in setting [5:5], the
agents that applied the Q-Strategy received higher utilities
on average than the ZIP agents. In contrast, in the case of
W3, the Q-Strategy agents generally achieved better average
utilities than the ZIP agents. Overall, it was observed that
with a rising number of Q-Strategy agents, competing in the
CDA against ZIP agents, the Q-Strategy agents learned to
maximize their configured utility better than the ZIP agents.

Figure 2 shows the evaluation results of the DLGM mar-
ket, where the consumer agents applied either the Truth-
Telling strategy or the Q-Strategy and the providers offered
their resources for free. The utilities were aggregated per
agent type the same way as the CDA simulations. As ob-
served in the DLGM simulations, the agents that applied the
TruthTelling strategy achieved higher average utilities than
the Q-Strategy agents. This was expected due to the fact that
the Q-Strategy agents tried to maximize their utilities by un-
derbidding from their true valuation, whereas in the DLGM
scenario bidding truthfully is in the myopic best response
equilibrium. With a rising number of Q-Strategy agents,
their overall utilities show higher improvements compared
to the utilities of the TruthTelling agents. In setting [0:10],
where all agents applied the Q-Strategy, their average utili-
ties were nearest to those of the TruthTelling agents in the
other settings. One can observe that in the case of increased
number of agents that apply the Q-Strategy, the aggregated
agent utilities tended to converge to better values.

Table 2 shows the standard deviation σ of the generated
bids. Based on σ it was observed a stable behavior of the Q-
Strategy agents in both markets. In the case of the DLGM,
the σ of TruthTelling in all three workload settings is con-
stant, because the valuation is reported truthfully. With a ris-
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QStrategy [9:1] ZIP [9:1] QStrategy [8:2] ZIP [8:2] QStrategy [5:5] ZIP [5:5] QStrategy [0:10]
Max utility -1814 -1819 -1818 -1818 -1818 -1817 -1818
Min utility -1814 -1760 -1814 -1760 -1759 -1777 -1759
Median utility -1814 -1794 -1816 -1791 -1790,6 -1799 -1795,3

-1830
-1815
-1800
-1785
-1770
-1755
-1740
-1725 HPC2N

QStrategy [9:1] ZIP [9:1] QStrategy [8:2] ZIP [8:2] QStrategy [5:5] ZIP [5:5] QStrategy [0:10]
Max utility -1986 -1984 -1986 -1984 -1983 -1987 -1988
Min utility -1986 -1934 -1982 -1934 -1933 -1937 -1934
Median utility -1986 -1963 -1984 -1961 -1964 -1966 -1966,1

-1995
-1980
-1965
-1950
-1935
-1920
-1905

LPCEGEE

QStrategy [9:1] ZIP [9:1] QStrategy [8:2] ZIP [8:2] QStrategy [5:5] ZIP [5:5] QStrategy [0:10]
Max utility -662 -703 -663 -703 -693 -702 -700
Min utility -662 -648 -662 -647 -650 -646 -644
Median utility -662 -672 -662,5 -672 -664,6 -672 -667,8

-720
-700
-680
-660
-640
-620
-600

LLNLATLAS

Figure 1: Aggregated consumer agent utilities in the CDA-Market

QStrategy [9:1] TT [9:1] QStrategy [8:2] TT [8:2] QStrategy [5:5] TT [5:5] QStrategy [0:10]
Max utility -2343 -1785 -2299 -1745 -2160 -1605 -1881
Min utility -2343 -1729 -2298 -1690 -2129 -1556 -1819
Median utility -2343 -1768 -2298,5 -1724 -2145,6 -1837 -1856,1

-2800
-2400
-2000
-1600
-1200

-800
-400

0 HPC2N

QStrategy [9:1] TT [9:1] QStrategy [8:2] TT [8:2] QStrategy [5:5] TT [5:5] QStrategy [0:10]
Max utility -5835 -3776 -5601 -3610 -4947 -3224 -4135
Min utility -5835 -3710 -5501 -3550 -4898 -3080 -3967
Median utility -5835 -3756 -5551 -3591 -4922 -3130 -4029,7

-7000
-6000
-5000
-4000
-3000
-2000
-1000

0 LPCEGEE

QStrategy [9:1] TT [9:1] QStrategy [8:2] TT [8:2] QStrategy [5:5] TT [5:5] QStrategy [0:10]
Max utility -3000 -2333 -2991 -2334 -2994 -2265 -2689
Min utility -3000 -2105 -2829 -2091 -2711 -2113 -2358
Median utility -3000 -2188 -2910 -2207 -2810 -2163 -2535,4

-3500
-3000
-2500
-2000
-1500
-1000

-500
0 LLNLATLAS

Figure 2: Aggregated consumer agent utilities in the DLGM-Market
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Table 2: Standard deviation σ of generated bid prices
[9 : 1] [8 : 2] [5 : 5] [0 : 10]

DLGM W1 QS 8.39 8.37 8.41 8.41
DLGM W1 TT 5.00 5.00 5.00 -
CDA W1 QS 9.28 9.37 9.00 8.53
CDA W1 ZIP 2.57 2.69 3.60 -
DLGM W2 QS 8.38 8.45 8.35 8.34
DLGM W2 TT 5.00 5.00 5.00 -
CDA W2 QS 9.02 9.55 8.97 8.83
CDA W2 ZIP 3.72 3.90 7.04 -
DLGM W3 QS 8.31 8.20 8.30 8.39
DLGM W3 TT 4.98 4.98 4.98 -
CDA W3 QS 9.52 9.25 9.10 8.41
CDA W3 ZIP 1.82 1.92 2.23 -

ing number of Q-Strategy agents in settings [8:2] and [5:5],
the σ of the ZIP agents rose in all settings, which reflects the
increased competition between both agent strategies.

Conclusion

This paper proposed a novel bidding strategy, designed
to bid, converge and adapt in many markets. The pro-
posed strategy was applied on the consumer side and com-
pared to benchmark strategies in two on-line market mecha-
nisms. The evaluation shows that with a rising number of Q-
Strategy agents, the strategy outperforms the ZIP agents in
the CDA, in DLGM however the utilities converge towards
those of the Truth-Telling agents.

Future work will elaborate on suitable business models
and utility functions for providers. Identifying utility func-
tions for Cloud-based services will allow automation of the
provisioning and bidding processes on the provider side.
Hence, the evaluation scenario will be extended to provider
agents that apply the Q-Strategy with the identified utility
functions for the particular resources. It is aimed to extend
the DLGM mechanism and introduce strategic behavior on
the provider side. This will change the payment scheme and
will probably unseat Truth-Telling as the myopic best re-
sponse, at least for the providers. Another point of research
are the dynamic adjustments of the Q-Strategy α and ε pa-
rameters in relation to different markets and preferences.
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