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Abstract

We present an implementation of a plan adaptation system,
BioPlanner, built for biological pathway prediction across
species. BioPlanner formulates a pathway discovery problem
as a Hierarchical Task Network (HTN) planning problem and
solves it by adapting a plan solution of another well-studied
pathway. BioPlanner provides the following functionalities:

• It automatically builds HTN planning models for a bio-
logical pathway domain from the semantic web biological
knowledge bases (KBs).

• It retrieves plan cases from the biological KBs.

• It generates hypothetical pathways using plan adaptation
strategies with the aid of biological domain knowledge.

• It evaluates the hypothetical plan candidates, ranks them,
and recommends the most likely hypotheses to users.

• It employs an information gathering multi-agent system to
capture knowledge from heterogeneous sources to help the
hypothetical plan generation process.

We utilize BioPlanner to predict Signaling Transduction path-
ways for Mus musculus, Gallus gallus, and Drosophila
melanogaster from Homo sapiens.

Introduction

A biological pathway consists of the complex intercellular
interactions that contribute to the function of a living cell.
Because a huge amount of data about genes and gene prod-
ucts is generated from high throughput methods, the chal-
lenge is to place these data in the context of pathways, thus
allowing biologists to make inferences about the underly-
ing bio-processes (Barabási and Oltvai 2004). AI planning
provides one approach by re-casting the task of pathway dis-
covery as a planning problem that can be solved by planning
techniques (Khan et al. 2003). Due to the hierarchical nature
of the bio-processes and their underlying information, our
work models a pathway with Hierarchical Task Networks
(HTNs) (Erol, Nau, and Hendler 1994). Our approach then
applies plan adaptation technologies to pathway prediction
for those species with incomplete pathway information.

In this paper, we report on BioPlanner: a case-based HTN
planning adaptation system to predict pathways from incom-
plete domain information of one species by adapting already
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well-known pathways of another species using plan repair
strategies. BioPlanner addresses the following challenges
we have to face while applying HTN planning technology to
the biological pathway domain.

The first challenge we encounter is to extract the path-
way domain knowledge and its subsequent representation
into HTN models. Instead of the time consuming procedure
of generating the task models with human experts, BioPlan-
ner starts with existing Semantic Web data based on OWL
(Dean et al. 2004), for example, the BioPAX representation
for biological pathway data (Bader et al. 2005). In BioPlan-
ner, the task decomposition formalism and plan cases are ex-
tracted automatically from Reactome (Vastrik et al. 2007),
a knowledge base of manually curated Homo sapiens path-
ways.

The second challenge is incompleteness of domain
knowledge that is a significant impediment of bio-pathway
discovery for many species. Instead of generating pathways
from raw data, BioPlanner predicts hypothetical pathway
plans for those comparatively less studied species by adapt-
ing existing, curated pathways of well-studied species.

The third challenge is that many hypothetical plans might
be generated for the same initial and final states but some of
these hypotheses do not have real-world counterparts. Bio-
Planner implements an evaluation algorithm to measure the
confidence of a hypothesis based on the supporting data,
data resources, and the underlying adaptation or prediction
methods. BioPlanner ranks the hypotheses by their confi-
dence and recommends the best potential ones to users.

The fourth challenge is that the local domain knowledge
base, created from semantic web resources, does not have
complete information. Much relevant information is known
to exist somewhere else. In BioPlanner, the planning engine
engages a traditional multi-agent system - BioMas (Decker
et al. 2002) that is responsible for gathering data from out-
side data resources.

This paper continues by briefly presenting the architecture
of BioPlanner and then introducing the Signaling Transduc-
tion (ST) pathway domain that will be used as an example
to present our approach. The next four sections focus on
HTN model construction from semantic KBs, hypothetical
plan generation, confidence evaluation, and multi-agent data
retrieval in BioPlanner. We will utilize BioPlanner to pre-
dict ST pathways for Mus musculus (Mouse), Gallus gal-
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Figure 1: Information flow in BioPlanner.

lus (Chicken) and Drosophila melanogaster (Fruit fly) from
Homo sapiens (Human). Then, we will discuss related work
and finally make conclusions and discuss future work.

Overview of the System

BioPlanner is a knowledge-based planning adaptation and
hypothetical evaluation system that employs plan repair
strategies to attack the challenge of incomplete informa-
tion in bio-pathway domains. Figure 1 shows the infor-
mation flow in BioPlanner. First, the HTN generator trans-
lates the pathway knowledge stored in local KBs into HTNs
and stores all the pathway plan cases into the plan library.
In BioPlanner, the local pathway knowledge is from Reac-
tome, represented in BioPAX format. The local KBs also
contain other necessary data for pathway prediction, such as
sequence structure data and function annotation data. When
a user sends a query through the user interface, the planner
retrieves the existing plan cases, adapts them, and generates
hypothetical candidates. Because of incomplete domain in-
formation, the candidates might fail in the real-world envi-
ronment. Therefore, a candidate should be evaluated and
analyzed for potential failures. The evaluator estimates the
confidence of a hypothesis based on the underlying support-
ing data, data resources, and repair strategies by using the
evaluation algorithm that will be discussed in a later section.
Finally, the user is provided with the ranked list of hypo-
thetical solutions and information about the potential failure
risks. In addition, BioMas gathers helpful information from
heterogeneous external resources, e.g. DIP (Salwinski et al.
2004), to aid the planner and HTN generator.

Signal Transduction Pathway Domain

We demonstrate our planning adaptation approach with ST
pathways as examples. ST pathways mostly involve cas-
cades of protein and other molecular chemical modifications
to implement information transfer across the cell. Many dis-
eases, such as diabetes and cancers, arise from defects in
ST pathways. In addition, while the malfunction of a single
entity might be tolerated, the combined effect of multiple
components malfunctioning can be substantial. Due to these

Figure 2: Ontology of Signaling Transduction pathway.

reasons, the study of sub-cellular molecular interactions in
the context of the ST pathways has vital importance to biol-
ogy as well as medicine. Our discussion is relevant to other
types of bio-pathways such as those of metabolism and gene
reduction.

A ST pathway usually involves the following steps
(Lodish et al. 2004):

1. A signaling cell secretes extracellular signaling molecules
in response to external stimuli.

2. Signaling molecules transport to a target cell.

3. Signaling molecules bind and activate a specific receptor
protein.

4. The activated receptor initiates a set of intracellular inter-
actions.

5. The signal arrives at the destination and triggers func-
tional responses, e.g. gene transcription.

Those mechanisms by which a signal is transferred
through the participants within a cell can be summarized
into the reactions: 1) Complex assembly: converts sin-
gle bio-molecules to a complex; 2) Complex disassembly:
decomposes an unstable complex into its constituent bio-
molecules; 3) Biochemical reaction: converts substrates to
products; 4) Transport: changes the cellular location of a
physical entity within a cell or between cells; and 5) Trans-
port with biochemical reaction: changes one or more of the
substrates, both their locations and their physical structures.

Figure 2 shows the ontology of the reactions and physi-
cal entities participating in a ST pathway. The physical en-
tities participating in a ST pathway include proteins, com-
plexes, DNAs, RNAs and small molecules. A protein can
be decomposed into domain units that are associated with
some functional activities and allow proteins to bind with
each other forming complexes. Also, many of the intracel-
lular portions of signaling pathways are cascades of two re-
actions: phosphorylation and dephosphorylation, that add
or remove a phosphate group to or from a protein. One
kind of protein called a catalyst can affect the confirmation
of proteins by binding with them to form a transient com-
plex, therefore activating or inhibiting the activities of those
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Figure 3: Hierarchical Structure of EGFR ST pathway.

proteins. Signal transduction is heavily dependent on two
kinds of catalysts, kinases and phosphatases, that catalyze
phosphorylations and dephosphorylations. Therefore, in our
approach, we also consider some specific reactions of sig-
nal transduction including bind, phosphorylate, dephospho-
rylate, domain-bind, etc. The other types of signaling events
that are not described here can be viewed as variations of the
reactions described here.

EGFR ST Pathway In this paper, the epidermal growth
factor receptor (EGFR) signalling pathway is used as an ex-
ample. As shown in Figure 3, this pathway can be hierar-
chically decomposed into the smaller pathways: RAS acti-
vation, RAF activation, and MAP Kinase Cascade that can
be further decomposed into MEK and ERK activation path-
ways. These smaller pathways are composed of multiple
bio-reactions. The EGFR pathway is summarized as fol-
lows:

1. An epidermal growth factor (EGF) moves from plasma
membrane to an extracellular region.

2. EGF binds EGFR through EGFR’s extracellular domain.

3. The bound EGF and EGFR react to form a single dimer,
EGF:EGFR.

4. The EGF:EGFR phosphorylates an intracellular domain
at specific locations.

5. A growth factor receptor-bound protein 2 (GRB2) binds
EGF:EGFR through EGFR’s intracellular domain.

6. The guanine nucleotide exchange factor SOS interacts
with EGFR through GRB2, and activates Ras molecule.
Bio-processes 1-6 compose the RAS activation pathway.

7. Activated Ras recruits the Raf protein kinase to the mem-
brane where Raf is phoshorylated.

8. Activated Raf binds to and phosphorylates the MEK pro-
tein, which comprise MEK activation pathway.

9. Phosphorylated MEK binds the ERK protein and phos-
phorates it. Activated ERK transports to the nucleus,
where it triggers new gene expression. These bio-
processes occur through the reactions of ERK activation
pathway.

Constructing HTN Planning Models for ST

Pathways

Larger pathways can be built by combining individual pa-
rameterized modules of individual ST pathways (Endy and

Brent 2001). HTN provides one solution, where tasks rep-
resenting independent pathways are combined within a net-
work to form a larger pathway. Khan et al. have shown that
hierarchical representations can help with scalability com-
pared to STRIPS planning (Khan et al. 2003). However,
they have noticed that hand-coding pathway knowledge into
HTN task models is time consuming. In this paper, we have
developed an HTN generator that can construct ST pathway
HTN task models from Reactome.

We follow the principles of HTNs using the SHOP2 sys-
tem (Nau et al. 2005) to perform hierarchical decomposi-
tions of a pathway. HTN planning achieves complex tasks
by decomposing them into simpler subtasks. Planning con-
tinues by decomposing the simpler tasks recursively until
tasks representing concrete actions are generated. These
actions form a plan achieving the high-level task specifica-
tions.

Generally, an ST pathway can be recast as an HTN plan-
ning problem (I, T, D), where:

• I is an initial state that is the conjunction of the initial
configurations of the pathway components. For example,
each protein is initialized to some state, such as its cellular
location.

• T is a task to transfer information from one location to
another initialized by a specific kind of protein. For ex-
ample, the EGFR pathway can be considered as a task to
transfer information initialized by EGF between cells.

• D is the domain theory that is a collection of operators
and methods.

A plan solution is a sequence of biological reactions
whose executions are the biological processes responding to
stimulus events. The information of a ST pathway stored in
Reactome, such as the EGFR pathway, can be mapped to the
HTNs formalism as the following.

Physical Entities

Any individual physical entity (PE) participating in a path-
way is automatically mapped to a predicate (istype PE t) in-
dicating that PE is of type t, where t stands for one of the
physical entity types discussed in the previous section. A
variable ?x of a type t is defined using a predicate (istype
?x t). A protein can be further decomposed in terms of do-
mains. The relationship between a protein and its composing
domain units can be described as (has-domain p d) indicat-
ing p has a domain, d. For example, EGFR is a protein with
three domains. This is specified by (istype EGFR protein),
(istype EGFR-extra domain), (has-domain EGFR EGFR-
extra), etc. The ontology of physical entities described in
BioPAX can also be represented by a predicate (isa subtype
type). For instance, (isa protein physical-entity) indicates
that protein is a subtype of physical entity.

Compartmentalization

Compartmentalization describes a specific location of a cell
where a physical entity would function. The cellular loca-
tion information of an entity is mapped to a predicate, (in
physical-entity location). For example, EGF is present at
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the plasma membrane, thus its location is described by (in
EGF plasma-membrane).

Hierarchical Abstract Operators

In HTNs, an operator O is of the form (h, pre, dl, al), such
that: h is the operator’s head, pre is a set of preconditions,
and dl (delete-list) and al (add-list) are effect lists that de-
fine how the operator transforms the current state. In our
approach, the general biological reactions that modify the
states of physical entities in a cell are mapped to abstract
operators. Each abstract operator has the name of a reaction
as its head and a list of variables representing participating
physical entities and their cellular locations as parameters.
In addition, the states of the inputs and those of the out-
puts of a reaction are added into the operator’s dl and al,
respectively. The precondition set of an operator contains
the types and the states of input entities. The operators are
managed in a hierarchical structure based on the differences
in the biochemical detail they reflect. For example, domain-
bind provides a more detailed characterization of proteins
and models the reaction at the level of the protein domain
units.

For instance, the protein-bind reaction can be explicitly
modeled by the following protein-bind operator. It requires
two proteins in the same cellular location, where (can-ppi
?x ?y ?loc) allows only those reactions that exists in PPI
(Protein-Protein Interaction) KBs:

(:operator (!protein-bind ?x ?y ?loc)
(;;precondition

(istype ?x protein)
(istype ?y protein)
(istype ?loc compartment)
(in ?x ?l)
(in ?y ?l)
(can-ppi ?x ?y ?loc))

(;;delete-list
(in ?x ?loc)
(in ?y ?loc))

(;;add-list
(istype ?x:?y protein-bound)
(in ?x:?y ?l)))

Method Model

The method model is the union of decomposition descrip-
tions that define how to decompose a complex pathway and
how to complete a biological process. A method, M, is a
3-tuple: (h, P, SubT), such that: h, called the head of M,
is the task being decomposed; P is the precondition set re-
quired for using the method; and SubT is the set of the sub-
tasks achieving h. A Reactome pathway is represented as a
hierarchical task decomposition model in our approach. A
pathway’s name is mapped to the head of a method and its
hierarchical components are mapped to its subtasks. The
precondition set contains those preconditions that cannot be
achieved by any other subtasks, including those catalysts
that activate/inactivate the reactions and those physical enti-
ties that are not output from any reactions in the pathway.

The plan cases and action cases of ST processes that can
take place in a real cell are extracted by the HTN generator
from Reactome and other knowledge bases (e.g. (Salwinski
et al. 2004)). These cases are stored in the plan library and
will be modified to solve new problems.

Generating Hypothetical Plans

For many species we do not have enough information avail-
able for pathway construction from scratch. Instead, Bio-
Planner adapts the well-studied pathways of humans to pre-
dict similar pathways for other species by using plan re-
pair strategies from previous works (e.g. (Hammond 1990;
Kambhampati and Hendler 1992)).

To solve a problem by adaptation, the first step is to search
for suitable candidates based on the similarity of a user’s
query and the plan cases in the library. For this purpose,
when a plan case is stored in the plan library, its summa-
rized annotation information is also saved with it, including
its name, participants, initial states, final states, external pre-
conditions that cannot be achieved by the plan’s subtasks,
and the species it belongs to. When a plan candidate case
(called a reference plan) is found, BioPlanner will adapt it
using the following strategies.

Action Modification

Generally, when a reference pathway plan is applied to an-
other species (called a target species), most of its actions
have to be modified because many of the participating phys-
ical entities of the original actions do not exist in the target
species, causing the actions to fail.

Strategy 1: Physical entity adaptation BioPlanner mod-
ifies the failing actions by replacing the participating phys-
ical entities of the reference plan with those entities that
have similar physical structures and can be responsible for
the actions in the target species. Sequence alignment meth-
ods (e.g. BLAST(Altschul et al. 1990)) are employed for
this strategy. Suitable substitutes having similar biochemi-
cal functions and similar sequence structures will be identi-
fied from the knowledge bases of the target species. A list of
substitute candidates is generated with a confidence evalua-
tion (e-value) that is provided by the alignment method. The
e-value can be used to measure the confidence of a hypothet-
ical action adapted by Strategy 1. This confidence can help
users estimate the possibility that the hypothesis will happen
in the real environment of the target species.

Strategy 2: Replacing an action If a failing action can
not be repaired by Strategy 1, the searching process will con-
tinue to search for a replacing action in the plan library that
can accomplish the primitive task. The new action also has a
confidence value depending on the supporting data and data
resources. As an example, for the action (react P1 P2 P3)
indicating that P1 reacts with P2 producing P3, if Strategy
1 can adapt P1 and P3 to P1’ and P3’ without finding any
substitute protein for P2, but Strategy 2 can find (react P4’
P5’ P3’) that can produce P3’, then the original action will
be adapted by (react P4’ P5’ P3’).
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Task Modification

If a plan candidate still has failing actions that can not be
repaired by action adaptation strategies, the adaptation pro-
cedure will go into the task-level.

Strategy 3: Splitting an action In a biological process,
the expectations not achieved by one reaction might be
achieved by multiple reactions. Therefore, one possible way
to repair a failing action is splitting this action into multiple
actions that can achieve the primitive task. We can consider
this Strategy as recasting the primitive task as a compound
task and re-decomposing it into multiple primitive tasks to
achieve the expected effects. For instance, a failing action
(protein-bind P1 P2) can be adapted by (protein-bind P1
P3) and (protein-bind P3 P2) so that P1 can bind with P2
through P3.

Strategy 4: Combining actions On the other hand, the
results produced by multiple reactions can be generated by
one reaction. Thus, this strategy considers re-decomposing a
task by combining its several primitive tasks into one primi-
tive task that can be accomplished by one action.

Strategy 5: Adding a new task A method M of a task
may contain some specifications of preconditions that will
not be achieved in any way by continually decomposing the
method M into a sub-plan, but must be satisfied before the
method is applied. For example, a catalyst of a plan must be
satisfied before the subtask or action that requires the cata-
lyst begins. For these preconditions that are not satisfied in
the adapted plans, one possible modification is to find a task
that can establish them before the tasks that require the pre-
conditions. If a task cannot generate the expected effects, a
new subtask might be added to achieve the failing effects.

Strategy 6: Redecomposing a task Another method to
repair a failing task is to find an alternative decomposition
method that does not require the failing preconditions or can
achieve the failing effects.

Ordering Modification

Strategy 7: Adapting orders This repair strategy con-
cerns the ordering of biological reactions. For example,
one reaction may damage some effects of some previous re-
actions, or one reaction may destroy the preconditions of
later reactions. Therefore, one potential repair method is to
change the orderings of the actions or tasks in a plan.

During the adaptation procedure, each action of a hypo-
thetical plan has the adaptation method and the related in-
formation stored with it. The information will be used to
evaluate the hypothetical plan and to explain to a user how
the plan repair proceeded.

Evaluating Hypotheses

Many hypotheses might be generated for one task while
some of the candidates might not have real-world counter-
parts. Therefore a hypothetical plan has to be ascribed a
confidence measure. Because it is difficult to quantitatively
compare the confidences of different methods, we have de-
veloped a ranking algorithm to list the candidates in order

function SORT(HPS)
input : a set of hypothetical plans HPS
output : Sorted HPS based on its elements’ confidence
S ←− ∅
foreach hypothetical plan h ∈ HPS do

foreach element e ∈ S do
if ConfidenceCompare(h, e)>0 then

insert h into S before e
else

if e is the last element in S then
insert h into S after e

endfor

endfor
return S

function ConfidenceCompare(hp1, hp2)
input : hypothetical plan hp1, hp2
A1 ← action set of hp1
A2 ← action set of hp2
NF1 ←the number of failing actions in A1
NF2 ←the number of failing actions in A2
if NF1/sizeof(A1)<NF2/sizeof(A2) then

return 1
else if NF1/sizeof(A1)>NF2/sizeof(A2) then

return -1
if RelyVal(hp1,A1)>RelyVal(hp2,A2) then

return 1
else if RelyVal(hp1,A1)<RelyVal(hp2,A1) then

return -1
for i ←4 to 2 do

if Strategyi(hp1) <Strategyi(hp2) then return 1
if Strategyi(hp1)>Strategyi(hp2) then return -1

endfor
if AvgEVal(hp1)<AvgEVal(hp2) then return 1
else if AvgEVal(hp1)>AvgEVal(hp2) then return -1
return 0

function RelyVal(hp, A)
input : hypothetical plan hp and its action set A
value ← 0.0
foreach element a ∈ A do

if the biological reaction corresponding to a can be found
in knowledge bases then

value = value + 1.0
endfor
return value/sizeof(A)

function AvgEVal(hp, A)
Sum ← 0.0
Np ← 0
foreach element a ∈ A do

foreach participant p participating in a do
Sum = Sum+ e-value of p
Np + +

endfor

endfor
return Sum/Np

function Strategyi(hp, A)
N ← the number of actions in A adapted by Strategy i
return N/sizeof(A)

Algorithm 1: Hypothetical Plan Ranking Algorithm
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of their comparative confidence estimated based on the sup-
porting data, resources and the modifications taken place
during the adaptation process.

We have developed a confidence evaluation algorithm
based on the biological assumption that a hypothetical path-
way is more preferred if it has fewer differences from the
original pathway. The difference takes into account the par-
ticipants’ structures and functions, the reactions, and the
pathway decomposition. In the bio-domain, a hypotheti-
cal reaction found in literature or experimental resources is
considered more confident. In addition, a hypothetical path-
way obtained only by physical entity substitutions is thought
more confident than those containing other modifications. If
a hypothesis is achieved by splitting a failing reaction into
two reliable reactions, it is more confident than splitting the
failing reaction into more than two reactions.

Based on theses biological assumptions, we assign the
priorities of the adaptation strategies in the decedent order,
Strategy 1 > Strategy 2 > Strategy 3 = Strategy 4 > Strat-
egy 5 = Strategy 6. We have developed hypothesis ranking
algorithm as shown in Algorithm 1, where two hypothetical
pathways, hp1 and hp2, can be compared for their confi-
dence by the following rules:

• A hypothetical plan might contain failing actions that can-
not be repaired. If hp1 has a lower percentage of failing
actions than hp2, then hp1 is ranked more confident than
hp2.

• hp1 is assumed more confident than hp2 if hp1 has a
higher percentage of actions whose corresponding reac-
tions can be found in protein-protein interaction KBs or
literature resources.

• hp1 is assumed more confident if hp1 contains a higher
percentage of actions that are achieved by applying adap-
tation strategies having higher priorities than those strate-
gies used in hp2.

• If hp1 and hp2 contain the same percentage of actions
adapted from the same strategies, then hp1 is thought
more confident if hp1 has a lower average e-value of
participating entites than hp2 or if hp1 has more actions
adapted by using more reliable resources. The e-value
comes from the underlying sequence comparison method.
The resources BioPlanner relies on are ranked by their re-
liability.

Multi-Agent System

BioPlanner can only generate new and promising hypothe-
ses if it is applied to new data that can improve and/or mod-
ify existing plans. The volume of data collected requires
that the acquisition and translation of data into the planning
formalism be automated. For these reasons, we have incor-
porated the planning engine into a multi-agent system that
gathers data from multiple sources and populating the local
knowledge base for the planner and the generator.

Figure 4 shows the integration of BioMas that is responsi-
ble for data gathering and other components in BioPlanner.
The manager agent is responsible for finding some agent
to gather more information for the planner. Agent name

Figure 4: Multi-agent data gathering system in BioPlanner.

servers, matchmakers, and other domain independent agents
support the creation of open systems where elements may
come and go over time. The planner agent and HTN Model
Generator agent wrap the planning and generating compo-
nents in BioPlanner. The local KB Management Agent is
responsible for interacting with local knowledge bases for
storing and retrieving data.

Implementation and Experiments

BioPlanner is implemented on JSHOP2 (Nau et al. 2005)
with the additional components of adaptation, evaluation,
etc. BioPlanner has integrated data gathered from 11 knowl-
edge resources. The ST pathway HTN model currently con-
sists of 14 operator schemas. Around 470 action cases and
150 plan cases of Human pathways have been retrieved from
Reactome and stored in the plan library. Based on these
cases, we have applied BioPlanner to predict hypothetical
pathways for three species: Mouse, Chicken and Fruit fly.

Figure 5 is a snapshot of the hypothetical pathway gen-
erated by BioPlanner for Chicken by adapting the Human
EGFR pathway. In the figure, the left side shows the hier-
archical structure of the plan, the right side illustrates the
information related to the plan adaptation, such as the in-
formation about the method used for action adaptation, the
resources where the supporting data came from, and the re-
liability of the supporting data or resources. Even when plan
generation fails, the partially repaired hypotheses will show
up with messages telling a user the components of the orig-
inal plan that cannot be repaired and the reasons. In sum-
mary, BioPlanner tries its best to present to a user as much
information as possible that might be helpful.

Figure 6 shows the percentage of pathways that can be
completed using a combining similar sequence prediction
with hypothesis generation. As expected the percentage of
completed pathways decreases with evolutionary distance
from the human. Unfortunately, there are no completely
curated pathway database to allow evaluation of these hy-
potheses. Current effort focuses on using the hypotheses to
design laboratory experiments thus allowing direct evalua-
tion of these predictions. Figure 7 shows the performance
of BioPlanner corresponding to scalability. As the pathway
size measured in terms of the number of the component re-
actions increases, the average running time needed to find a
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Figure 5: Snapshot of a hypothetical EGFR pathway generated by BioPlanner for Gallus gallus.

Figure 6: % of Human ST pathways repaired for other
species.

Figure 7: Running time to generate hypothetical pathways
of different sizes.

solution also increases.

Related Work

Applying AI planning technology to biological pathway dis-
covery is first presented in (Khan et al. 2003) where a de-
terministic classical planner is used to solve the problem.
Along this planning trend, (Tran and Baral 2005) show that
the changes in cellular processes can be modeled as exoge-
nous actions called triggers. (Bryce and Kim 2007) present
a formulation of Gene Regulatory Network intervention as a
decision theoretical planning problem. Different from these
works, BioPlanner does not plan from scratch, but uses re-
planning techniques and generates hypothetical plans with
incomplete domain models. Consequently, it does not re-
quire a full description of the signal pathway domain in
question. Therefore, BioPlanner can help biologists dis-

cover new pathways across species from the existing path-
ways, with the help of computational analysis.

Many researchers have shown the advantages of plan
adaptation (Nebel and Koehler 1995), and plan adaptation
and repair techniques have been developed and applied to
many real-world domains (e.g. (Hanks and Weld 1995;
Wilkins 1985; Beetz and McDermott 1994; Warfield et al.
2007)). Similar to those previous case-based adaptation
works (e.g. (Veloso and Carbonell 1993; Muñoz-Avila and
Cox 2008)), our approach also modifies the previous cases
to solve new problems based on domain knowledge. In ad-
dition to the adaptation strategies summarized from these
works, BioPlanner has integrated information gathering and
confidence evaluation in order to attack the challenges of an
incomplete biological information domain.

In the HTN planning field, various approaches have been
applied to construct HTN models, such as learning task
models from STRIPS cases (Hogg, Muñoz-Avila, and Kuter
2008) or from cases with the hierarchical relationships be-
tween tasks already known (Muñoz-Avila et al. 2001;
Ilghami et al. 2005). HTNs can also be extracted from
OWL-based information (Sirin et al. 2004). Our approach
takes advantage of existing OWL representations of pathway
knowledge to generate HTN models from pathway cases.

Authors have observed that plan evaluation can play im-
portant role in plan repair (Fox et al. 2006; Garland and
Lesh 2002). Fox et al. process the evaluation based on the
differences of the actions between the original plan and the
new one. Garland and Lesh increase the confidence of a
plan by minimizing the actions of incomplete information.
Our approach evaluates a hypothesis based on its supporting
data and resources. Instead of only considering the actions,
BioPlanner also takes task method evaluation into account.

There exist some other approaches for bio-pathway study,
e.g. EcoCyc (Karp 2001), Petri Nets (Peleg, Yel, and Alt-
man 2002) and Statecharts (Harel and Gery 1997). However,
these works require the fully described state and state trans-
lation descriptions that are not satisfied by the bio-domains
of many species.
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Conclusion and Future Work
In this paper, we have described several challenges while
applying an AI planning approach to biological pathway
domain, and we have showed how BioPlanner meets these
challenges. In our knowledge, BioPlanner is the first plan
adaptation and evaluation system that generates hypotheti-
cal pathways across species. These hypotheses provide bi-
ologists with useful information about uncurated biological
processes. We will evaluate our approach further when more
curated pathway data is available. We also intend to de-
velop a diagnosis component for a hypothetical plan execu-
tion in order to help users analyze the differences between
real-world experimental data and expected results from a hy-
pothetical simulation.
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