Proceedings of the Twenty-First Innovative Applications of Artificial Intelligence Conference (2009)

Automating Art Print Authentication Using Metric Learning

Charles Parker
Eastman Kodak Company
1999 Lake Avenue
Rochester, NY 14650
charles.parker1 @kodak.com

Abstract

An important problem in the world of art historians is
determining the type of paper on which a photograph
is printed. One way to determine the paper type is to
capture a highly magnified image of the paper, then to
compare this image to a database of known paper im-
ages. Traditionally, this process is carried out by a hu-
man and is generally time-intensive. Here we propose
an automated solution to this problem, using wavelet
decomposition techniques from image processing, as
well as metric learning from the machine learning area.
‘We show, on a collection of real-world images of pho-
tographic paper, that the use of machine learning tech-
niques produces a much better solution than image pro-
cessing alone.

Introduction

One of the most basic determinations an art historian must
make about an unknown photographic print is the date it
was printed. Often, the date a print was made can deter-
mine whether it is a valuable work of art or a less valuable
reproduction.

A reasonably accurate determination of the age of a pho-
tographic print can often be made if one knows the type of
paper on which it is printed. This information, however, can
often be difficult to obtain. One way to make this deter-
mination is to capture an image of the paper at very high
magnification. Such an image reveals microscopic details of
the paper that can be very different depending on the manu-
facturing process and final attributes of the paper.

In the past, this search was conducted by a human, who
would manually compare the high magnification image of
the unknown, or “query” paper to that of all known, or “tar-
get” papers. The human would then rank the known papers
in order of visual similarity, and use other factors to deter-
mine the correct paper from this ranked list. Because there
are many types of photographic paper (at least in the thou-
sands), this would often take considerable time, especially if
the database was particularly comprehensive.

To alleviate this problem, we propose a solution inspired
by machine learning and image processing. In the image
processing step, we reduce each image to a vector of features

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

122

Paul Messier
Paul Messier, LLC
103 Brooks Street
Boston, MA 02135
pm@paulmessier.com

sufficient to discriminate between images. More specifi-
cally, we use a four-level wavelet decomposition (Akansu
and Haddad 1992) of each image, taking the L; and Lo
norms of each wavelet sub-band in the decomposition. This
turns each image into a vector v € R™ where n is the num-
ber of features. We show that this formulation of the feature
vector outperforms several other common feature vectors.

The machine learning step is using metric learning (Xing
et al. 2002) to learn a Mahalanobis distance that best in-
corporates our idea of “visual similarity” into the automated
retrieval process. The general idea is to mark certain pairs
of images as “similar” or “dissimilar”, then to use this in-
formation to learn a projection matrix. After projecting the
images into the space implied by this matrix, the similar im-
ages will be closer together, and the dissimilar images will
be further apart. If we are then presented with a new query
paper, we can perform the wavelet decomposition, multiply
the resulting vector by the projection matrix, and compute
the distance from the query paper to each target in the pro-
jected space. The distances to each target imply a similarity
ranking of targets with respect to the given query.

The rest of this paper is organized as follows: We will
first describe our feature extraction process, briefly review-
ing wavelet transformations and generalized Gaussian den-
sities. The following section reviews metric learning and
ranking algorithms. We then show experimental results on
a real-world database of photographic papers, and provide
some concluding analysis.

Feature Extraction for Texture Recognition

The problem we have described is known in the image pro-
cessing literature as texture recognition (Do and Vetterli
2002). While our version of the problem shares some quali-
ties with the versions described in the literature, our version
also has two important differences:

1. In the traditional instance of the problem, the number of
possible textures is relatively small (say, < 30). In our
version, this number is equal to the number of known pho-
tographic papers in our database, which could number in
the thousands or more.

2. An “answer” to the traditional version of the problem con-

sists of a single texture. That is, given a query image, we
return the predicted texture. In our version, we would



prefer to have a ranked list of possible textures. In other
words, our answer to the given query will be an ordering
of the known targets rather than a single target.

These two differences combine to rule out many of the
standard multiclass classification algorithms as viable ap-
proaches to the problem, as standard classifiers do not scale
to thousands of classes, and many (such as decision trees)
do not have an obvious way of producing an appropriate or-
dering for the classes.

Fortunately, one classifier that meets these conditions,
the 1-Nearest-Neighbor classifier (Aha, Kibler, and Albert
1991), will prove flexible enough to incorporate several dif-
ferent learning methods inside its formalism. Essentially,
the idea is to define a function ® : I — R" that takes an
image I and maps it to an n-dimensional vector, or a point
in an n-dimensional space. We do this for all target images
(known photographic papers) t in our target database, 7.
When a new query image, t; € 7, is given to the system,
we simply apply the same function, mapping the image to an
n-element vector. We can then order the targets according to
their n-dimensional Euclidean distance from the query.

Building on this idea, we define d(t;,q) = |®(t;) —
®(q)| to be the absolute value of the difference in feature
vectors between the target t; and the query q. The distance
between then becomes the norm of the difference vector,
[|d(ti, q)||. The important question, then, is how to con-
struct the function ® so that distance in the implied space
closely matches our notion of visual similarity. We will now
explore several possibilities for construction of this function.

Some Feature Functions

The first feature functions we will explore are relatively sim-
ple in nature, and require little special purpose processing.

L, and L; Norms of the Entire Image One simple ap-
proach is to simply take the L; and Lo norms (or the mean
and variance) over all pixels in the image. This gives us a
2-d space (that is, the number of features, n = 2) in which
our images are embedded.

Gray-level Histogram A slightly more complex vector is
given by putting each pixel of the image into a “bin” accord-
ing to its gray-level. The numbers of pixels in each bin then
become the elements of our vector. For our experiment, we
will use 16 equally spaced bins, giving us n = 16 dimen-
sions in our final space.

Visual Vocabulary The previous two feature functions in-
volve global features only. That is, features that are aggre-
gated across the entire image. A more “local” way to con-
struct features is to break the image into non-overlapping
16 x 16 pixel windows. Each of these windows will have its
own gray level histogram. If we do this for several images,
we will have a fairly large set of small histograms. We can
then run k-means clustering (Jain and Dubes 1988) on this
set to obtain a visual vocabulary (Li and Wang 2003) of size
k. These k means, or “visual words” become the basis for
our feature vector. That is, we begin processing each image
by initializing a feature vector of k zeros. The images are
then processed by obtaining a gray-level histogram for each

123

window in the image, determining to which of the & means
this histogram is closest, and then incrementing the appro-
priate count in our feature vector. This gives us a feature
vector of length n = k = 20 in our experiments.

If there are distinguishing local features in certain parts of
certain images, then the resulting feature vector should have
high counts at the visual word that most closely matches this
feature, and low counts for that word otherwise.

Wavelet-based Feature Functions

Following certain suggestions in the literature (Do and Vet-
terli 2002), we will now introduce several new feature func-
tions based on wavelet decomposition.

Wavelet decomposition (Akansu and Haddad 1992) is a
simple idea in principle: Given some signal, we subject it to
a high-pass and a low-pass filter. This gives us one version of
the signal that is smoothed and another that is edge-detected.
If we choose the filters carefully, we end up with two sig-
nals at half the resolution of the original signal that can be
combined in a clever way to retrieve the original signal. Es-
sentially, we can use the edge-detected signal to replace the
missing edge information in the smoothed image.

A key element of this is that it can be performed recur-
sively, so that the smoothed image at a lower resolution be-
comes a candidate for decomposition itself. This can con-
tinue until the smoothed signal is too low in resolution to
perform meaningful analysis. This gives us a series of sig-
nals, or wavelet bands, where the magnitude of the signal at
each resolution tells us the amount of “energy” (how much
the signal is changing) at that resolution.

When we perform the two-dimensional version of this
analysis on an image, the result is four new images: Three
edge-detected subbands, plus the smoothed image. In these
experiments, we do four levels of decomposition, and so 13
images are generated during the composition. A two-level
wavelet decomposition of an image is show in Figure 1.

Figure 1: A two-level wavelet decomposition

Now that we have 12 images generated from our original,
we can simply apply the techniques described in the previ-
ous subsection to each of those 13 images. This gives us 26
features for the L1 and Lo norms case, 208 features for the



histogram case, and 260 features for the visual vocabulary
case. In the latter two cases, we can use principle compo-
nents analysis (Fukunaga 1990) to reduce the features to a
manageable number, 25 and 50 respectively. In our experi-
ments, however, this reduction was not a factor in any sense
except reducing running time.

The Generalized Gaussian Distribution

Following other suggestions in the literature (Do and Vet-
terli 2002), we give one more possible feature vector for-
mulation. In the last section, we used three techniques to
“summarize” each wavelet sub-band: L, and Ly norms,
gray-level histograms, and visual vocabularies. We can also
attempt to fit a generalized Gaussian distribution to each
sub-band. The zero-mean generalized Gaussian distribution
takes the following form:

—(lx ocﬁ
ggd(z; a, B) b (zl/)

" 2aT(1/5)°

where (3 is the “shape parameter” and « is related to the stan-
dard deviation. As (§ gets smaller, the distribution becomes
shallower and more “pointed”. The distribution has, as a
special case, the standard Gaussian distribution at § = 2.
Figure 2 shows several generalized Gaussian curves as (3 is
varied.

0.7

p=2
--—pai
o6l —(=05 |

““““ p=5

Figure 2: The generalized Gaussian distribution, under sev-
eral values of 3

While it is difficult to fit the generalized Gaussian distri-
butions to a set of values (e.g., pixels from a wavelet sub-
band), it is possible, and we have implemented a procedure
to find these parameters (Do and Vetterli 2002) in MATLAB.
Our final feature vector is « and 3 for each of the wavelet
sub-bands, except the final smoothed image. This results in
a 24-element feature vector.

Metric Learning and Ranking

Once we have defined our feature extraction function, we
can easily sort our list of targets according to Euclidean dis-
tance from a given query image in the space defined by the
feature function.

124

But is this the best we can do? Suppose we had some
“side information” about which pairs of targets were similar
and which were not. In this case, is it possible to “warp”
the space in which our images are embedded so that our side
information was better satisfied? That is, can we change the
space so that those targets that we knew to be similar were
closer together in the changed space and dissimilar targets
were further apart? More specifically, suppose we imagine
some of the targets are example queries, and other targets
that look similar to these example queries are correct an-
swers to the query, while other, dissimilar targets are incor-
rect answers. Given these examples, can we improve our
retrieval performance?

Fortunately, there are several formalisms given in the lit-
erature that do exactly this. Many of them learn a weighting
of the feature vector, while others learn a Mahalanobis dis-
tance. We experiment with seven such methods, described
below:

Ranking Algorithms

Our first few learning algorithms are those that learn a
weight for each element of the difference in feature vectors.
If our learned weight vector is w, then the “distance” from
target t; to query q; is (w,d(t;,q)). This means that ev-
ery weight in the weight vector corresponds to a dimension
of the feature vectors. If the weight of a given dimension
is higher, this means that the learning algorithm has decided
that this dimension is “more discriminative” or “‘more mean-
ingful” than the others.

Note that the distance from query to target in this formal-
ism is no longer a proper distance at all, as it can be negative
if the weight vector has sufficiently negative weight values.
This matters little to us in this application; it simply means
that the targets with negative distances will come first in our
ordering.

We now briefly review some of the methods for learning
this weight vector.

AdaRank AdaRank (Xu and Li 2007) is a ranking version
of the famous AdaBoost (Freund and Schapire 1995) algo-
rithm. The idea is essentially the same: We maintain a dis-
tribution over all of our example queries. We then construct
some “weak” weight vector based on the current distribu-
tion. This vector will perform well on some queries (that is,
rank most similar targets ahead of most dissimilar targets)
and poorly on others. The distribution is updated to give
more weight to queries on which the weight vector performs
poorly. We add the weak vector to our collection of vectors,
weighting it according to its overall performance. We then
iterate the process, constructing a new weight vector based
on the new distribution over queries.

The question is then how to construct a weak weight vec-
tor given a distribution over queries. We will follow (Xu
and Li 2007), considering at each iteration all weight vec-
tors with a “1” in one element of the vector and a “0” for
all other elements. That is, each weight vector ranks the
targets based on a single dimension. We choose, at each it-
eration, the one that performs best on the collection of sam-
ple queries according to weighted mean average precision,



meaning the weighted average of the average precision of
the sample queries, where the weights are defined by the
distribution over queries.

SVM-Rank and SVM-MAP Another way to find an ap-
propriate weight vector is to use the formalism of support
vector machines. Suppose that, for our set of sample query
images, Q, we have a set of “similar” target images S and a
set of “dissimilar” target images D, so that each set is pop-
ulated with pairs of images, and each pair contains a query
and a target, which is either similar or dissimilar if the pair
is in § or D, respectively. We can then use standard SVM
optimization techniques to find a solution to the following
optimization:

min% + CZ &gk

S bV, t,qk € O; (qk, t;) € S (ak, t;) € D
<Wa |d(tja Qk)|> > <W7 |d(tjv qk)') +1- gz}j,k’
ijk >0,

That is, we solve for the w that makes all pairs in S for
each query have smaller distance apart than those pairs in
D. We attempt to do this with some margin, but add in slack
variables in case this cannot be accomplished, as is done in
(Joachims 2002).

With some significant tweaking (Yue et al. 2007), we can
phrase a version of this optimization that optimizes mean av-
erage precision directly, rather than just the overall accuracy
of the ranking. We will try this version of the optimization
in our experiments as well.

Metric Learning Algorithms

There is another family of algorithms that learn a Maha-
lanobis distance, rather than a simple weighting of the fea-
ture vector. These distances essentially learn a linear trans-
formation of the points in the feature space, and so learn an
n X n matrix, where n is the dimensionality of the feature
space. The distance between two points in the new feature
space is then /d(t;, q) T Ad(t;, q) where A is the learned
matrix. We again seek to learn a matrix that brings together
the similar pairs in the set S and separates the dissimilar
pairs in the set D. We now describe a couple of different
schools of thought on how this might be done.

Relevance Component Analysis (RCA) and Discrimina-
tive Component Analysis (DCA) Relevance Component
Analysis (Shental et al. 2002) and Discriminative Compo-
nent Analysis (Hoi et al. 2006) work on essentially the same
principle as linear discriminant analysis: We use the train-
ing data to estimate the covariance matrices of the similar
and dissimilar sets, then use these directly to construct our
Mahalanobis matrix. In the case of RCA, we estimate only
the covariance matrix of the set of similar pairs, and the Ma-
halanobis matrix is the inversion of this covariance matrix:

LY dtadt,a)’

|S| (t,q)eS

Agca = C4'

Cs =

125

So, intuitively, A shrinks the space in directions where the
variance among similar pairs in the highest. In DCA, we do
the same thing, except we also estimate the covariance of the
dissimilar pairs:
1 T
(t,q)eD

Apca =C5'Cp

so that the space is also expanded in the directions where
variance among dissimilar pairs is the smallest. There are
strong theoretical reasons for these steps, and important is-
sues to consider when computing matrix inversions. The
reader is encouraged to consult (Hoi et al. 2006) for more
information.

Cp =

Xing’s Method and Large Margin Nearest Neighbor
(LMNN) Xing’s method (Xing et al. 2002) and the Large
Margin Nearest Neighbor classifier (Weinberger, Blitzer,
and Saul 2006) both solve the Mahalanobis distance learn-
ing problem via an optimization. To simplify our notation,
we follow (Xing et al. 2002) and define

d(e,y)a = \/d(x, y)T Ad(x.y)

to be the Mahalanobis norm of the vector d(x,y), and simi-
larly, for the squared Mahalanobis norm ||d(x, y)||% . Using
this notation, we can state Xing’s optimization as follows:

. 2
min 37 [ld(t, a3

(t,@)es

S lld(t @)lla > 1.

(t,a)eD
AX>0

The intuition is fairly simple: The optimization attempts to
find A so that the distance between similar pairs is as small
as possible, whereas the sum of the differences between dis-
similar pairs is held above some arbitrary constant (in this
case, 1).

The optimization for LMNN is slightly more involved.
It blends the large margin ideas in the ranking SVM with
Xing’s method, requiring not simply that the sum of the dif-
ferences be large, but that all similar targets for a given query
be closer than all dissimilar targets by some margin:

min Y ld(t. @)l +C)_ &

(ta)es
s. t. ZVtiatjaqk S Q7 (qkatz) € 87 (qk,t;) €D:

|ld(t;, ar)la — [ld(ts, qi)l|A =1 — & jk,
&gk >0,
A>0

Both optimizations have advantages and disadvantages, as
discussed in the original papers. Details on how to solve
these optimizations are also discussed in the original pa-
pers, and we only mention here that both are solved via the
method of alternating projections (Bauschke and Borwein
1996). We will try both in the experiments below.

s.t.:



All Ly, L, | Histogram | Visual Vocab. | Band o, 5 | Band L, Lo | Band Hist. | Band VV
Euclid 0.0389 0.3065 0.2413 0.1747 0.5300 0.0283 0.0235
Rank SVM 0.3150 0.0551 0.3172 0.4921 0.0023 0.0041
SVM-MAP 0.3040 0.2404 0.3830 0.5605 0.025 0.0245
AdaRank 0.2129 0.0874 0.1639 0.3989 0.0191 0.014
Xing 0.0663 0.0561 0.1703 0.2337 0.0107 0.0105
LMNN 0.3007 0.2188 0.6069 0.7372 0.0252 0.0191
RCA 0.3287 0.2565 0.6366 0.7479 0.0260 0.0221
DCA 0.3439 0.2231 0.3790 0.5294 0.0307 0.0265

Table 1: Results of the paper retrieval experiment, in terms of leave-one-out mean average precision over our sample dataset

Experiment and Results

We now perform experiments to find out which combination
of feature set and learning algorithm are the most effective
in this application. We use a set of high magnification pho-
tographic images collected by the second author for these
experiments. These images are collected in laboratory-like
conditions. Specifically, images are acquired using an In-
finity 2-3 imager manufactured by the Lumenera Corpora-
tion. The camera incorporates an Interline Sony ICX262
3.3 megapixel color progressive scan CCD sensor, produc-
ing images incorporating 2080 x 1536, 3.45um square pix-
els. The imager is attached to an Edmund Optics VZM 200i
lens. Samples are illuminated using a 3"LED line light. The
light is placed at a 15° raking angle to the surface of the pho-
tographic paper.

Using the image processing program ImageJ (Rasband
2006), image files are converted to 16-bit grayscale and
cropped to 1024 x 1024 pixels. Slight edge-to-edge varia-
tions in exposure are reduced through flat field correction us-
ing a bandpass filter. The images are also sharpened slightly
using an unsharp mask. Contrast is enhanced by equaliz-
ing the histogram. The image files are then saved as TIFFs.
The resulting images cover 0.667 cm? of the surface of the
photographic paper.

The resulting collection contains about 2050 images. We
split each image into quarters for our experiments, giving us
a database of 8200 targets. To simulate a query, we feed the
algorithm a single quarter-image. We consider the “similar
images” to be the other three quarters of the original image,
and all other images to be dissimilar. For training, we use
100 images from the original set (or 400 quarter-images) and
the rest for testing. We use visual inspection to verify that
we are matching for visual similarity and not simply learning
which quarter-images came from the same original. This is
standard practice in the literature (Do and Vetterli 2002).

We measure the effectiveness of our system using mean
average precision (Yue et al. 2007), where we try each of the
7800 test images as a query, compute the average precision
of the query, and average the results over all 7800 images.

Table 1 shows the results of learning over all experiments
and feature vectors discussed. The best algorithm for each
feature set is shown in boldface, and the second best in ital-
ics. Performance differences of > 0.005 are statistically sig-
nificant. In the final two columns, differences of > 0.001
are also statistically significant. We provide results from the
first feature set, L1 and Ly norms of the entire image, as

126

a reference point only; no metric learning is done on these
features.

Among learning algorithms, RCA appears to be success-
ful over a wide variety of features. LMNN is also very suc-
cessful, and DCA is successful on a number of feature sets
but not all. Xing’s method has trouble with these datasets.
Weighted linear models do not do as well as the full Maha-
lanobis distances. AdaRank in particular does poorly. SVM-
MAP is the best of the group, always managing to find a
weighting that is marginally useful or at least not worse than
Euclidean distance. This is expected as SVM-MAP opti-
mizes mean average precision directly, unlike all of the other
methods.

Among feature sets, the wavelet-based feature sets, with
two-value summaries for each band, are clear winners, as
predicted by previous experiments (Do and Vetterli 2002).
More than two values per band proves to be too fine of a
granularity, whereas not using the wavelet decomposition at
all clearly misses information. Importantly, we note the im-
provement that metric learning brings to the «, 3 feature set:
Euclidean distance in this feature space performs worse even
than the histogram or visual vocabulary features. After met-
ric learning is applied, this feature set is second only to the
L1 and Lo norms of the wavelet sub-bands.

In Figure 3 we see two sample queries, with the top two
returned images for each one. Note that in this figure, the
top two images are not quarter-images taken from the same
original; these are the top two results from different origi-
nals.

Conclusion

We have here presented a challenging problem in informa-
tion retrieval, that of matching high magnification images of
photographic papers for art print authentication. We have
shown that this problem can be solved effectively with a
combination of feature extraction techniques from image
processing and metric learning techniques from machine
learning research. We showed that, on a real world database
of photographic papers, we are able to achieve a mean aver-
age precision of 0.7479. More simply, an average of three
out of the top four targets returned per query are relevant,
an impressive feat on a test database of 7800 target images
with only three relevant targets per query. Visual inspection
shows that the system’s notion of visual similarity closely
matches the human notion.



e

Figure 3: Examples of queries with similar targets returned
by the constructed system.

We highlight two important messages in our results: First,
as shown in previous work (Do and Vetterli 2002) wavelet-
based feature functions are the best choice for this applica-
tion, performing better than gray-level histograms and sim-
ple visual vocabularies, but the method of summarization of
the wavelet sub-bands is important. Using too many values
to summarize, such as gray-level histograms for each sub-
band, overwhelms the system with irrelevant features. Fit-
ting a Gaussian to the coefficients of each sub-band, either
generalized or not, appears to be a good choice.

Second, learning a full-rank Mahalanobis matrix, using
metric learning, nearly always outperforms learning a sim-
ple weight vector, but again the choice of learning algorithm
is important. RCA, DCA, and LMNN all seem to do well
under certain feature sets. If a linear weight vector must be
learned (e.g., in applications where the feature space is large
or speed is a priority), SVM-MAP is able to optimize its tar-
get criteria (mean average precision) more effectively than
other linear learning methods.

Currently, we are attempting to combine several of our
best performing models into a single, better model. We have
experimented with different types of model fusion, and re-
sults so far are promising, giving mean average precision of
0.8 in early tests.

Finally, those in the image processing area may object to
using the mean (or L; norm) of all pixel values in the final
smoothed image as a feature for our model, as this feature
could be drastically influenced by light level in the surround-
ing area. While this is true, our images are taken in condi-
tions where the external light level is highly controlled. In
this case, the L; norm becomes a useful, non-misleading
feature. In cases where light levels are more variable, the a,
[ feature set may be a better choice.

127

References

Aha, D. W.; Kibler, D.; and Albert, M. K. 1991. Instance-based
learning algorithms. Machine Learning 6(1):37-66.

Akansu, A. N., and Haddad, P. R. 1992. Multiresolution Sig-
nal Decomposition: Transforms, Subbands, Wavelets. Academic
Press.

Bauschke, H. H., and Borwein, J. M. 1996. On projection al-
gorithms for solving convex feasibility problems. SIAM Review
38:367-426.

Do, M. N, and Vetterli, M. 2002. Wavelet-based texture retrieval
using generalized gaussian density and kullback-leibler distance.
IEEE Transactions on Image Processing 11:146-158.

Freund, Y., and Schapire, R. E. 1995. A decision-theoretic gen-
eralization of on-line learning and an application to boosting. In
European Conference on Computational Learning Theory, 23—
37.

Fukunaga, K. 1990. Statistical Pattern Recognition. Elsevier.
Hoi, S. C.; Liu, W.; Lyu, M. R.; and Ma, W.-Y. 2006. Learning
distance metrics with contextual constraints for image retrieval.

In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 2072-2078.

Jain, A. K., and Dubes, R. C. 1988. Algorithms for Clustering
Data. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Joachims, T. 2002. Optimizing search engines using clickthrough
data. In ACM International Conference on Knowledge Discovery
and Data Mining (KDD), 133-142.

Li, J., and Wang, J. Z. 2003. Automatic linguistic indexing of
pictures by a statistical modeling approach. [EEE Transactions
on Pattern Analysis and Machine Intelligence 25:1075-1088.

Rasband, W. 2006. Imagel: Image processing and analysis in
java. http://rsbweb.nih.gov/1i7j/. Developed at the Na-
tional Institute of Health in Bethesda, MD, USA.

Shental, N.; Hertz, T.; Weinshall, D.; and Pavel, M. 2002. Ad-
justment learning and relevant component analysis. In European
Conference on Computer Vision (ECCV), 776-792.

Weinberger, K. Q.; Blitzer, J.; and Saul, L. K. 2006. Distance
metric learning for large margin nearest neighbor classification.
In Advances in Neural Information Processing Systems (NIPS),
1473-1480.

Xing, E.; Ng, A.; Jordan, M.; and Russell, S. 2002. Distance met-
ric learning with application to clustering with side-information.
In Advances in Neural Information Processing Systems (NIPS).

Xu, J., and Li, H. 2007. Adarank: a boosting algorithm for infor-
mation retrieval. In ACM Conference on Research and Develop-
ment in Information Retrieval (SIGIR), 391-398.

Yue, Y.; Finley, T.; Radlinski, F.; and Joachims, T. 2007. A sup-
port vector method for optimizing average precision. In ACM

Conference on Research and Development in Information Re-
trieval (SIGIR), 271-278.



	IAAI09
	Contents
	Index
	Help
	Terms

	Doctoral Consortium
	AAAI



