
Creating Human-like Autonomous Players
in Real-time First Person Shooter Computer Games

Di Wang, Budhitama Subagdja
Intelligent Systems Centre

Nanyang Technological University
Nanyang Drive, Singapore 637553
{wangdi, budhitama}@ntu.edu.sg

Ah-Hwee Tan
School of Computer Engineering

Nanyang Technological University
Nanyang Avenue, Singapore 639798

asahtan@ntu.edu.sg

Gee-Wah Ng
DSO National Laboratories

20 Science Park Drive
Singapore 118230

ngeewah@dso.org.sg

Abstract

This paper illustrates how we create a software agent by em-
ploying FALCON, a self-organizing neural network that per-
forms reinforcement learning, to play a well-known first per-
son shooter computer game known as Unreal Tournament
2004. Through interacting with the game environment and its
opponents, our agent learns in real-time without any human
intervention. Our agent bot participated in the 2K Bot Prize
competition, similar to the Turing test for intelligent agents,
wherein human judges were tasked to identify whether their
opponents in the game were human players or virtual agents.
To perform well in the competition, an agent must act like hu-
man and be able to adapt to some changes made to the game.
Although our agent did not emerge top in terms of human-
like, the overall performance of our agent was encouraging
as it acquired the highest game score while staying convinc-
ing to be human-like in some judges’ opinions.

Introduction

Games can be used to test the capabilities of various AI
methodologies, and the focus of research is changing from
traditional board games or card games to modern games.
Real-time computer games such as first person shooter
games may employ AI techniques to make games more chal-
lenging and enjoyable. To achieve this goal, Non-Player
Characters (NPCs) in games should be dynamically evolv-
ing according to different human players and different game
scenarios. Moreover, NPCs should exhibit human-like be-
haviors to improve the satisfactory level of the players.

The 2K Bot Prize competition was held at IEEE Sympo-
sium on Computational Intelligence and Games, 2008. It
is like the Turing test that human judges need to identify
whether their opponents in the game are human players or
virtual agents. The platform of this competition is Unreal
Tournament 2004 (UT2004), a well known real-time first
person shooter computer game. To win this competition,
an agent must act like human and be able to adapt to some
changes made to the game. In particular, weapons hints
were disabled and their effects were modified during the fi-
nal competition. The agent must acquire all the necessary
information directly from the game environment on its own.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we describe how we make an agent to ad-
dress the challenges. The agent passed the pre-final quali-
fication trials and entered into the final of the 2K Bot Prize
competition. Although we did not win the prize, the overall
performance of our agent was encouraging as it acquired the
highest total game score and was convincing to be human-
like in the opinions of some judges.

Our agent is based on a class of self-organizing neural
models called Fusion Architecture for Learning, COgnition,
and Navigation (FALCON) (Tan 2004; Tan, Lu, and Xiao
2008), which is a generalization of Adaptive Resonance
Theory (ART) (Carpenter, Grossberg, and Rosen 1991;
Carpenter and Grossberg 2003; Tan, Carpenter, and Gross-
berg 2007) for real-time reinforcement learning. Specifi-
cally, we build two FALCON networks, one for behavior
selection and the other for weapon selection, and integrate
them into a software agent using Pogamut, a freeware for
rapid development of embodied agents in UT2004. By uti-
lizing FALCON networks, the agent bot learns knowledge
in the form of cognitive nodes, each can be translated into
a rule associating a pair of state and action to an estimated
reward value. Results show that our agent is able to perform
competitively through learning to play the game in real-time.

The rest of this paper is organized as follows. First, we re-
view related works. Then we introduce FALCON and TD-
FALCON as the models for reinforcement learning. Next,
we describe UT2004 and the Pogamut development tool.
Subsequently, we provide the details of the competition and
the results. Finally, we conclude and discuss future works.

Related Works

Real-time computer game is one of the leading trends in ap-
plying intelligent methodologies. In this section, we shall
review some related research works:

Spronck et al. (2006) use dynamic scripting to enable
Non-Player Characters (NPCs) to be evolving according to
different players. This means NPCs created in different time
have different scripts (rules), according to both the player’s
tactics and level of experiences. By doing so, it could im-
prove the satisfactory level of the human players as their op-
ponents are dynamic. However, the NPCs are fixed after
creation. They do not evolve in real-time.

Cook et al. (2007) use graph-based relational learning
algorithm to extract patterns from human player graphs and

173

Proceedings of the Twenty-First Innovative Applications of Artificial Intelligence Conference (2009)

apply those patterns to agents. This work shows how human
knowledge could be transferred, but it cannot improve the
intelligence of the agent.

Many researchers use Genetic Algorithms (GA) to auto-
matically tune the parameters used in game (Louis and Miles
2005; Stanley, Bryant, and Miikkulainen 2005; Miles and
Louis 2006). These parameters are like weapon preferences,
following tasks, and level of aggressiveness. Although the
performance is improving through generations, GA does not
guarantee the final solution to be global optimal. Even for a
satisfactory sub-optimal solution, it often takes an unneces-
sarily long time for a real-time computer game.

In the above mentioned papers, both commercialized
computer games and own developed platforms were studied.
There are also research works that have the same domain of
application as ours, the Unreal Tournament game.

Hy et al. (2004) define a way to specify various behaviors
of the agent. These behaviors could be tuned by adjusting
the pre-defined probability distributions. This is a straight-
forward way to use only probability equations to determine
the next action rather than write and maintain scripts. How-
ever, the parameters defined are all based on personal expe-
rience which includes human bias that different people have
different judgment for different kinds of behaviors (aggres-
sive, caution, and etc.).

Kim (2007) defines a finite state transition machine to
switch behaviors of the agent based on context sensitive sti-
mulations received from the game. However, this architec-
ture is rigidly defined and the agent is hard-coded. The agent
will always perform the same action under similar circum-
stances and will never evolve.

Unlike the above mentioned works, we adopt reinforce-
ment learning. Therefore, our agent is able to learn in real-
time as rewards received currently may affect its future deci-
sions and the learning time is not long. The agent learns by
getting rewards directly derived from the game, which does
not involve any human supervision and intervention. The
rewards derived are based on the outcomes when interact-
ing with the opponents. In this way, the agent does not need
a perfect model to learn from. The agent is able to adjust
its behaviors when confronting different opponents, if pro-
vided with enough training. The reinforcement learning tool
we employed is called FALCON, which will be introduced
in the following section.

FALCON Dynamics
FALCON (Fusion Architecture for Learning, COgnition,
and Navigation) was first proposed in (Tan 2004) as a kind
of reinforcement learning mechanism. FALCON employs a
3-channel fusion ART (Tan, Carpenter, and Grossberg 2007)
architecture (see Figure 1), comprising a cognitive field F c

2
and three input fields, namely a sensory field F c1

1 for rep-
resenting current states, an action field F c2

1 for representing
actions, and a reward field F c3

1 for representing reinforce-
ment values. The generic network dynamics of FALCON,
based on fuzzy ART operations (Carpenter, Grossberg, and
Rosen 1991), is described as follows:
Input vectors: Let S = (s1, s2, . . . , sn) denote the state
vector, where si ∈ [0, 1] indicates the sensory input i.

Figure 1: FALCON architecture.

Let A = (a1, a2, . . . , am) denote the action vector, where
ai ∈ [0, 1] indicates a possible action i. Let R = (r, r̄) de-
note the reward vector, where r ∈ [0, 1] is the reward signal
value and r̄ (the complement of r) is given by r̄ = 1 − r.
Complement coding serves to normalize the magnitude of
the input vectors and has been found effective in ART sys-
tems in preventing the code proliferation problem. As all in-
put values of FALCON are assumed to be bounded between
0 and 1, normalization is necessary if the original values are
not in the range of [0, 1].
Activity vectors: Let xck denote the F ck

1 activity vector for
k = 1, . . . , 3. Let yc denote the F c

2 activity vector.
Weight vectors: Let wck

j denote the weight vector associ-
ated with the jth node in F c

2 for learning the input patterns
in F ck

1 for k = 1, . . . , 3. Initially, F c
2 contains only one un-

committed node and its weight vectors contain all 1’s. When
an uncommitted node is selected to learn an association, it
becomes committed.
Parameters: The FALCON’s dynamics is determined by
choice parameters αck > 0 for k = 1, . . . , 3; learning rate
parameters βck ∈ [0, 1] for k = 1, . . . , 3; contribution para-

meters γck ∈ [0, 1] for k = 1, . . . , 3 where
∑3

k=1 γck = 1;

and vigilance parameters ρck ∈ [0, 1] for k = 1, . . . , 3.
Code activation: A bottom-up propagation process first
takes place in which the activities (known as choice function
values) of the cognitive nodes in the F c

2 field are computed.
Specifically, given the activity vectors xc1, xc2 and xc3 (in
the input fields F c1

1 , F cs
1 and F c3

1 respectively), for each F c
2

node j, the choice function T c
j is computed as follows:

T c
j =

3∑

k=1

γck
|xck ∧ wck

j |

αck + |wck
j |

, (1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡

∑
i pi for

vectors p and q. In essence, the choice function Tj com-
putes the similarity of the activity vectors with their respec-
tive weight vectors of the F c

2 node j with respect to the norm
of individual weight vectors.
Code competition: A code competition process follows
under which the F c

2 node with the highest choice function
value is identified. The winner is indexed at J where

T c
J = max{T c

j : for all F c
2 node j}. (2)

When a category choice is made at node J , yc
J = 1; and

yc
j = 0 for all j �= J . This indicates a winner-take-all stra-

tegy.

174

Template matching: Before code J can be used for learn-
ing, a template matching process checks that the weight tem-
plates of code J are sufficiently close to their respective
activity patterns. Specifically, resonance occurs if for each
channel k, the match function mck

J of the chosen code J
meets its vigilance criterion:

mck
J =

|xck ∧wck
J |

|xck|
≥ ρck. (3)

The match function computes the similarity of the activity
and weight vectors with respect to the norm of the acti-
vity vectors. Together, the choice and match functions work
co-operatively to achieve stable coding and maximize code
compression.
When resonance occurs, learning ensues, as defined below.
If any of the vigilance constraints is violated, mismatch re-
set occurs in which the value of the choice function T c

J is set
to 0 for the duration of the input presentation. With a match
tracking process, at the beginning of each input presentation,
the vigilance parameter ρc1 equals a baseline vigilance ρ̄c1.
If a mismatch reset occurs, ρc1 is increased until it is slightly
larger than the match function mc1

J . The search process then
selects another F c

2 node J under the revised vigilance cri-
terion until a resonance is achieved. This search and test
process is guaranteed to end as FALCON will either find a
committed node that satisfies the vigilance criterion or acti-
vate an uncommitted node which would definitely satisfy the
criterion due to its initial weight values of all 1s.
Template learning: Once a node J is selected, for each
channel k, the weight vector wck

J is modified by the follow-
ing learning rule:

w
ck(new)
J = (1−βck)w

ck(old)
J + βck(xck ∧w

ck(old)
J). (4)

The learning rule adjusts the weight values towards the fuzzy
AND of their original values and the respective weight va-
lues. The rationale is to learn by encoding the common at-
tribute values of the input vectors and the weight vectors.
For an uncommitted node J , the learning rates βck are typi-
cally set to 1. For committed nodes, βck can remain as 1 for
fast learning or below 1 for slow learning in a noisy environ-
ment. When an uncommitted node is selecting for learning,
it becomes committed and a new uncommitted node is added
to the F c

2 field. FALCON thus expands its network architec-
ture dynamically in response to the input patterns.

TD-FALCON

Selecting which weapon to use is straightforward if the asso-
ciations are learned by FALCON. However, behavior selec-
tion does not only depend on the current state. We need to
perform anticipation and select the action which may possi-
bly lead to the maximum reward. Therefore, while a simple
form of reactive FALCON (Tan 2004) is applied for weapon
selection, TD-FALCON is applied for behavior selection.

TD-FALCON (Tan, Lu, and Xiao 2008) incorporates
Temporal Difference (TD) methods to estimate and learn
value functions of action-state pairs Q(s, a) that indicates
the goodness for a learning system to take a certain ac-
tion a in a given state s. Such value functions are then

used in the action selection mechanism, also known as
the policy, to select an action with the maximal payoff.
The original TD-FALCON algorithm (Xiao and Tan 2007;
Tan, Lu, and Xiao 2008) selects an action with the maxi-
mal Q-value in a state s by enumerating and evaluating each
available action a by presenting the corresponding state and
action vectors S and A to FALCON. The TD-FALCON used
in this paper replaces the action enumeration step with a di-
rect code access procedure (Tan 2007).

Given the current state s, TD-FALCON first decides be-
tween exploration and exploitation by following an action
selection policy. For exploration, a random action is picked.
For exploitation, TD-FALCON searches for optimal action
through a direct code access procedure. Upon receiving a
feedback from the environment after performing the action,
a TD formula is used to compute a new estimate of the Q
value of performing the chosen action in the current state.
The new Q value is then used as the teaching signal for TD-
FALCON to learn the association of the current state and
the chosen action to the estimated Q value. The details of
the action selection policy, the direct code access procedure,
and the Temporal Difference equation are elaborated in the
following subsections.

Action Selection Policy

Through a direct code access procedure, TD-FALCON
searches for the cognitive node which matches with the cur-
rent state and has the maximal reward value. For direct code
access, the activity vectors xc1, xc2, and xc3 are initialized
by xc1 = S, xc2 = (1, . . . , 1), and xc3 = (1, 0). TD-
FALCON then performs code activation and code competi-
tion according to equations (1) and (2) to select a cognitive
node.

Upon selecting a winning F c
2 node J , the chosen node J

performs a readout of its weight vector to the action field
F c2

1 such that

xc2(new) = xc2(old) ∧wc2
J . (5)

An action aI is then chosen, which has the highest activa-
tion value

xc2
I = max{x

c2(new)
i : for all F c2

1 node i}. (6)

Learning Value Function

A typical Temporal Difference equation for iterative estima-
tion of value functions Q(s,a) is given by

ΔQ(s, a) = αTDerr (7)

where α ∈ [0, 1] is the learning parameter and TDerr is a
function of the current Q-value predicted by TD-FALCON
and the Q-value newly computed by the TD formula.

TD-FALCON employs a Bounded Q-learning rule,
wherein the temporal error term is computed by

ΔQ(s, a) = αTDerr (1 − Q (s, a)) . (8)

where TDerr = r + γmaxa′Q(s′, a′) − Q(s, a), of which
r is the immediate reward value, γ ∈ [0, 1] is the discount
parameter, and maxa′Q(s′, a′) denotes the maximum esti-
mated value of the next state s′.

175

Unreal Tournament 2004

Unreal Tournament 2004 (UT2004) is a commercial game,
which could be used as an environment for embodying vir-
tual agents. One great thing about this game is its extensibi-
lity. Users can make modifications to the game, like the one
used in the 2K Bot Prize competition. In this competition,
the DeathMatch game type is used. Figure 2 shows a screen
shot from the recorded video of the 2K Bot Prize competi-
tion (from the view of the judge).

Figure 2: A snapshot of Unreal Tournament.

Pogamut

Pogamut1 is an Integrated Development Environment (IDE)
to facilitate the development of agents in the UT2004 game.
This freeware is a plug-in for the NetBeans Java deve-
lopment environment. Pogamut communicates to UT2004
through Gamebots 2004 (GB2004). GB2004 is a built-in
server inside UT2004, which exports information from the
game to the agent and vice versa. As GB2004 only exports
and imports text messages, a parser is needed for translation
purpose. Pogamut has a built-in parser module. It automati-
cally converts text messages to Java objects and vice versa.

Figure 3: Pogamut architecture.

The architecture of Pogamut is shown in Figure 32. It
is very easy to implement an agent that plays UT2004 us-
ing Pogamut, as it has templates for various types of virtual
agents. A bot developer only needs to define and override a

1The Pogamut homepage is available online. URL:
http:/artemis.ms.mff.cuni.cz/pogamut/

2This figure is taken from Pogamut Homepage.

few methods for a simple agent. Other than templates, there
are also a number of sample agents available in Pogamut.
They are good examples to follow when one starts to cre-
ate his or her own agents, and they are also very useful for
benchmarking purpose.

The 2K Bot Prize

About the Competition

The 2K Bot Prize competition3 was held at IEEE Sympo-
sium on Computational Intelligence and Games, 2008. The
aim of this competition is to find out whether a virtual agent
could convince a panel of judges that it is actually a hu-
man player. The panel of judges included experts in various
areas: AI experts, game designers, and game players.

To enter this competition, teams must send their agents
to the competition organizer for a pre-final qualification trial
before the conference date. In total, only five teams entered
the final competition.

When playing UT2004, some weapon hints will be re-
ceived by the agent. These hints include the type of each
weapon (close range melee type or long distance sniping
type), its effective range, and its maximum range. How-
ever, these hints were disabled during the final competition.
Moreover, the weapon effects were changed.

On the day of final competition, in the morning, teams
were allowed to install their agents on the local computers
and train the agents. At this stage, teams were no longer
allowed to modify their agents. Only the agents themselves
were allowed to create or modify programs or files. This was
when the modified game (new map, no hints, and weapon
effects were changed) was released to the teams for the first
time. Therefore, the agents were totally on their own to play
in the modified game. That is why it is crucial to incorporate
learning modules in our agent.

The actual competition was held in the afternoon. All the
five teams of agents played five rounds, each round with
one judge and one human confederate. Therefore, the five
agents, the five judges, and the five human confederates all
played with every opponent exactly once. At the beginning
of each round, the agent and its human confederate joined
the game first. The judge needed to join later as it was his or
her job to identify which opponent was a virtual agent and
which opponent was a human player. At the end of each
round, the judge rated the level of humanness for both op-
ponents. A rating of 0 is the lowest score as it indicates this
opponent is not a very human-like agent. A rating of 4 is the
highest score as it indicates this opponent is a human player
in the judge’s opinion.

Behavior Selection

In order to avoid having a hard-coded agent that will always
perform the same action under similar circumstances, we
enable our agent to be evolving in real-time by employing
TD-FALCON network. The agent learns and utilizes the as-
sociation of its current state, behavior selection, and reward.

3All information about this competition is available online.
URL: http://www.botprize.org/

176

We define four behavior states for our agent. In each state,
the agent will perform a set of predefined actions based on
some hard-coded heuristics. The four states are listed as
follows:

• Running around state, where the agent will explore ran-
domly on the map.

• Collecting items state, where the agent will go and pick
up collectible items.

• Escaping from battle state, where the agent will try to run
away from the battle field.

• Engaging fire state, where the agent will try to kill its op-
ponent and avoid being hit at the same time.

The state vector S comprises eight inputs. Therefore, the
length of S is 16 in total with complement coding (Carpen-
ter, Grossberg, and Rosen 1991). These inputs include the
current health level of the agent (discretized), whether the
agent is being damaged, whether the opponent is in sight,
whether the agent has adequate ammo, and another four
Boolean variables, indicating the current behavior state.

The action vector A consists of four attributes. Using a
binary representation, only one of them is 1 at any one time,
indicating which behavior state should the agent switch to
based on S and R. The reward vector R consists of only
two variables, namely the reward and its complement.

To enhance learning, our agent also memorizes its previ-
ous state and action. When a reward is given (for example,
after killing an opponent), it does not only learn the current
S and A with R, but also learn its previous S and A with
a reduced version of R (please refer to temporal difference
learning for details).

Weapon Selection

As discussed earlier, a reactive FALCON network is used
for weapon selection. The state vector S consists of two
attributes, namely the distance between the agent and the
opponent (discretized) and its complement. The action vec-
tor A consists of ten attributes, the same number as the total
number of available weapons. Using a binary representation,
only one of the attributes is 1 at any one time, indicating the
weapon should the agent use based on the state and reward
vectors S and R. The reward vector R consists of only two
attributes, namely the reward and its complement.

Human Behaviors

Although it is crucial for the agent to be able to learn in real
time, the competition judging criteria is still on the human-
ness of the agent. Other than behavior selection module and
weapon selection module, we also defined series of actions
when creating the agent. These human-like behaviors were
incorporated in different behavior states and some of them
are listed as follows:

• If the agent is hit by its opponent and the opponent is not
in sight, the agent will wait for a randomly short time and
then turn around in a random direction with a random de-
gree (between ±90o to ±180o) to find out the location of
its opponent.

• During battle, the agent will try to kill its opponent while
trying to avoid being damaged.

• Some obstacles can be jumped over (like log on the
ground), while some cannot (like wall). The agent senses
the environment in its heading direction and decides
which type of obstacle it is dealing with.

Implementation Issues

“One vs one” in a DeathMatch game is a simple scenario in
which the agent only needs to focus on killing the only op-
ponent and surviving from the combat. A game consisting
of more players will be more complicated. Besides identi-
fying each opponent, the agent faces other challenges. For
example, which opponent should the agent attack first, when
is the appropriate time to engage fire, and how to find a po-
sition that receives the least assault. Our agent does not take
considerations of these strategies so far.

We also need a more accurate reward system. Rather than
giving 0.5 for a successful hit and 1 for a successful kill in
the current weapon reward system, we should provide re-
ward values in proportion to the exact damage done to the
opponent. However, this feature is limited by the develop-
ment tool Pogamut, since it currently only provides infor-
mation on whether the opponent is hit, but not on the exact
amount of the damage.

Competition Results

Table 1 shows the final competition results. Our agent
(ISC4) came in the third place in terms of the humanness
rating, while we tied in the first place in terms of the num-
ber of judges convinced5. The performance of our agent was
satisfactory and encouraging.

Agent ID Mean Rating Judges Convinced

AMIS 2.4 2
ICE 2.2 1
ISC 2.0 2

Utexas 0.8 0
Underdog 0.4 0

Table 1: Humanness ratings.

The top three teams were very close in terms of human-
ness rating. On average, there was only a difference of 0.4
point (i.e., 2 points out of the total 20 points)6 between the
winner and our team, and a difference of 0.2 point (1 point
out of the total 20) between the runner-ups.

Furthermore, in terms of the number of judges convinced,
our team tied in the first place with another team. Both con-
vinced two judges that the agents were actually human.

Table 2 shows the game score (computed as the number
of kills minus the number of deaths) in the final competition.

4Named after Intelligent Systems Centre.
5All the results of this competition as well as video recordings

are available on its official website.
6There are five judges and each judge could give a maximum

score of 4, so the maximum total score is 20. 2 points divided by
five judges gives a difference of 0.4 point on average.

177

Round AMIS ICE ISC UTexas Underdog

1 1 3 6 2 6
2 0 2 17 3 3
3 1 2 5 4 4
4 0 2 2 4 8
5 1 3 4 1 7

total 3 12 34 14 28

Table 2: Game scores.

The total game score of our agent is 34, while all the other
team only scored 14.25 on average. Although we did not
win the competition in terms of the human-like rating, our
bot has obtained the highest total game score.

By utilizing FALCON networks, our agent bot acquires
knowledge which can be interpreted as rules during run time.
Two sample rules learned during the final competition for
behavior and weapon selection are illustrated in Table 3 and
4. These rules indicate that the agent has acquired sensible
knowledge when playing the game.

IF health is 0.4, and being damaged, and
opponent is in sight, and has adequate ammo,
and currently in collecting item state;

THEN go into engaging fire state;
WITH reward of 0.718.

Table 3: Sample rule for behavior selection.

IF distance between agent and opponent is 0.1;
THEN use flak cannon;
WITH reward of 0.826.

Table 4: Sample rule for weapon selection.

Conclusion

In this paper, we have described how we have built an in-
telligent agent that is capable of playing a well known first
person shooter game in real-time. FALCON networks which
perform reinforcement learning were employed to overcome
certain limitations found in related works. The performance
of our agent is satisfactory as it does not only act like human,
but also play the game effectively by acquiring and utilizing
rules at run time.

In the future, we will extend our work in this game appli-
cation domain and carry out more empirical experiments. In
addition to addressing the implementation issues mentioned
in the previous section, we are now incorporating a plan exe-
cution module that the agent will identify its goals as well as
sub-goals and pursue them in the order of priorities. We
are also conducting experiments and analyzing the results to
find out how to make the agent perform better.

References

Carpenter, G. A., and Grossberg, S. 2003. Adaptive Reso-
nance Theory. In The Handbook of Brain Theory and neu-
ral Networks. MIT Press. 87–90.

Carpenter, G. A.; Grossberg, S.; and Rosen, D. B. 1991.
Fuzzy ART: Fast Stable Learning and Categorization of
Analog Patterns by an Adaptive Resonance System. Neural
Networks 4:759–771.

Cook, D. J.; Holder, L. B.; and Youngblood, G. M. 2007.
Graph-Based Analysis of Human Transfer Learning Using
a Game Testbed. IEEE Transaction on Knowledge and
Data Engineering 19:1465–1478.

Hy, R. L.; Arrigoni, A.; Bessiere, P.; and Lebetel, O. 2004.
Teaching Bayesian Behaviours to Video Game Characters.
Robotics and Autonomous Systems 47:177–185.

Kim, I. C. 2007. UTBot: A Virtual Agent Platform for
Teaching Agent System Design. Journal of Multimedia
2:48–53.

Louis, S. J., and Miles, C. 2005. Playing to Learn: Case-
Injected Genetic Algorithms for Learning to Play Com-
puter Games. IEEE Transaction on Evolutionary Compu-
tation 9:669–681.

Miles, C., and Louis, S. J. 2006. Towards the Co-Evolution
of Influence Map Tree Based Strategy Game Players. In
Proceedings of IEEE Symposium on Computational Intel-
ligence and Games, 75–82.

Spronck, P.; Ponsen, M.; Sprinkhuizen-Kuyper, I.; and
Postma, E. 2006. Adaptive Game AI with Dynamic Script-
ing. Machine Learning 63:217–248.

Stanley, K. O.; Bryant, B. D.; and Miikkulainen, R. 2005.
Real-Time Neuroevolution in the NERO Video Game.
IEEE Transaction on Evolutionary Computation 9:653–
668.

Tan, A.-H.; Carpenter, G. A.; and Grossberg, S. 2007. In-
telligence through Interaction: Towards a Unified Theory
for Learning. In Proceedings of International Symposium
on Neural Networks, 1094–1103.

Tan, A.-H.; Lu, N.; and Xiao, D. 2008. Integrating Tempo-
ral Difference Methods and Self-Organizing Neural Net-
works for Reinforcement Learning with Delayed Evalu-
ative Feedback. IEEE Transactions on Neural Networks
9(2):230–244.

Tan, A.-H. 2004. FALCON: A Fusion Architecture for
Learning, COgnition, and Navigation. In Proceedings of
International Joint Conference on Neual Networks, 3297–
3302.

Tan, A.-H. 2007. Direct Code Access in Self-Organizing
Neural Networks for Reinforcement Learning. In Proceed-
ings of International Joint Conference on Artificial Intelli-
gence, 1071–1076.

Xiao, D., and Tan, A.-H. 2007. Self-Organizing Neural Ar-
chitectures and Cooperative Learning in Multi-Agent Envi-
ronment. IEEE Transactions on Systems, Man, and Cyber-
netics - Part B 37(6):1567–1580.

178

	IAAI09
	Contents
	Index
	Help
	Terms

	Doctoral Consortium
	AAAI

