Proceedings of the Twenty-First Innovative Applications of Artificial Intelligence Conference (2009)

Real-time Automatic Price Prediction for eBay Online Trading

Ilya Raykhel and Dan Ventura
Computer Science Department
Brigham Young University
iraykhel @ gmail.com, ventura@cs.byu.edu

Abstract

We develop a system for attribute-based prediction of
final (online) auction pricing, focusing on the eBay
laptop category. The system implements a feature-
weighted k-NN algorithm, using evolutionary compu-
tation to determine feature weights, with prior trades
used as training data. The resulting average prediction
error is 16%. Mostly automatic trading using the sys-
tem greatly reduces the time a reseller needs to spend
on trading activities, since the bulk of market research
is now done automatically with the help of the learned
model. The result is a 562% increase in trading effi-
ciency (measured as profit/hour).

Introduction

We consider the problem of product valuation for online
auctions and present a system that automates the market re-
search step that determines a “good” price for an item on
eBay. For the high-volume reseller, automating the (intelli-
gent) evaluation of a product offered for sale and predicting
its final auction price significantly reduces human involve-
ment, ultimately resulting in higher trading throughput and
reduced labor costs for a professional eBay merchant. For
the casual buyer, such a system will be helpful in determin-
ing whether to buy or not to buy an item, decreasing the
time he or she will have to spend manually researching the
market (or ameliorating the monetary cost of the absence of
such research). We focus our attention on laptops because
a) they can be evaluated by using well-structured data that
lends itself well to machine learning techniques, b) they are
representable as a set of easily quantified parameters, c) they
represent a large market (about 4000/day), and d) their prices
are predictable and relatively stable for short-term horizons.

There exist a large number of eBay automation tools, as
well as a substantial body of research in price estimation,
but the two fields appear to be largely separate. It seems that
the eBay trading community does not realize the benefits
that might be available to it, while computer scientists and
economists are more interested in theoretical aspects of price
prediction. We would like to think that our system may be
the first that bridges the gap between the two.

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

135

Common eBay trading tools include snipers and simple
monitors which are capable of alerting the buyer of all items
that match some static search criteria; these tools do not at-
tempt to decide whether an item is a good buy or not.

There are a number of studies analyzing factors that af-
fect the final price of an online auction, including the ef-
fect of particular attributes on final price (Lucking-Reiley
et al. 2007), the artificial domain Trading Agent Competi-
tion (Wellman et al. 2004), explicit price prediction for on-
line auctions using machine learning on data extracted from
item titles for very narrow domains (Ghani and Simmons
2004; Ghani 2005), and agent-based median price predic-
tion (Gregg and Walczak 2004).

The work most related to ours improves upon these ear-
lier approaches by mining product descriptions and using
boosted machine learning to predict the final price (Heijst,
Potharst, and Wezel 2008). It achieves much better gener-
ality than earlier approaches and is empirically applied to
entire product categories (Canon digital cameras and Nike
men shoes). While their approach is more general than ours
(they do not have to explicitly specify category-specific fea-
tures to be extracted), our application performs better on the
category of our choice. Their Mean Relative Error (MRE) is
34% on Nike shoes and 58% on Canon cameras. For com-
parison, we use the same metric to measure the accuracy of
our results and achieve an MRE of 16% for laptops.

Methods

The application consists of two primary components: a web-
based module written in PHP, and an offline module written
in C. The web component is responsible for communicat-
ing with both eBay and end users of the program, as well as
for testing instances against a model in real time. The lo-
cal component is responsible for learning the pricing model.
A database stored on the web server is the single point of
contact between the two components of the software.

System overview

Our application periodically gathers data for past laptop auc-
tions and stores that data in a database. It periodically runs a
training algorithm on that data and builds a price prediction
model and stores this model in the database as well. For the
casual buyer, a public web form is maintained that allows

\\eb serye,.

Data gatherer

Runs once an hour

1: Send request
< !

2: Get data

ey
€ S[Ore
%agg

%Quy Tester12: Get model Database

11:Return

Sniper

7: Send request
< r

Runs once
a minute

—>
8: Get new BINs|
and ending
auctions

estimate A
5

ejep 19 1

|opow 2101 :9

Local computer

o
v
Reseller Casual buyer ‘?}WO\ @

Figure 1: Graphic overview of the entire system. Numbers
in the figure represent a rough temporal ordering of informa-
tion exchange. The system consists of two primary compo-
nents: a local one, responsible for learning, and a web-based
one, that performs the communication with eBay.

anyone to enter desired laptop parameters which are evalu-
ated against the stored model, resulting in a price estimate
that is returned to the user. For resellers, the system peri-
odically queries eBay for laptop auctions that are ending in
the next minute, and for buy-it-now laptops that were listed
in the last minute; evaluates each of these items against the
stored model; for ending auctions, checks if current auction
price is ¢ below the price estimate and if so, emails the re-
seller; for new buy-it-now items, checks if buy-it-now price
is 0 below the price estimate and if so, emails the reseller (§
is a profit margin set by the reseller). An overview of the
system is presented in Figure 1.

Some of the web-based components run periodically us-
ing cron job scheduling. The local training module is run
manually every week to update the model in accordance
with market changes (this is likely more frequently than nec-
essary). This periodic retraining assimilates large-scale mar-
ket trends, such as a change in the market’s valuation of a
particular technology or a gradual increase in netbook sales.

Since laptop prices go down rapidly, for training we only
use the latest 10,000 collected instances (roughly corre-
sponding to 50 days of data gathering). Our statistics show
that laptop prices drop by 6% in this timeframe, an interest-
ing correspondence with Moores Law since 6% in 50 days
translates to a 50% price drop in 1.5 years.

Data acquisition and selection

Our data acquisition process is largely predetermined by
eBay procedures and its APIs. Specifically, eBay allows
searching for items through its APIs and gives an XML-
based set of search results, but these results are not complete.
To acquire all the required information, we need to send an

136

individual get-item-by-id request for every laptop in which
we are interested. Additionally, eBay limits the number of
daily requests to 5000 per developer, unless the application
is manually approved by eBay staff. Furthermore, eBay al-
lows searching only for items that are being sold at the mo-
ment of the request, not for auctions that have already ended.
However, if one requests an ended auction by item id, eBay
will return the information, including the final selling price.

Data acquisition Data is accumulated using tools pro-
vided by eBay: search, marketplace research and Terapeak.
Where applicable, these statistics assume a $200 minimum
price for all laptops (introduced to remove laptop accessories
listed in the wrong eBay category). About 4000 new laptops
are listed for sale every 24 hours. At any given moment the
number of active laptop auctions is around 13, 000 in addi-
tion to approximately 14, 000 laptops listed at fixed prices.
Of these items, we are only interested in laptops that sold
on auctions, because fixed prices are preset by the sellers
and do not necessarily reflect the real market price. Of 4000
laptops listed daily, 2500 are listed on auctions, and 78% of
these sell. These approximately 2000 laptops are our poten-
tial training data.

From these, we cull a set of “good” examples represented
by the following list of attributes: brand, family, series, CPU
type, multi-core configuration, CPU speed, RAM size, disk
size, LCD size, operating system, optical drive type, con-
dition, seller feedback count, seller feedback percentage,
seller powerseller level and auction duration. There is a
mix of nominal and numerical attributes, and as part of our
data selection process we impose restrictions on the ranges
of some of the features. Most of these attributes are gathered
from an eBay-defined set of parameters that is specific to the
laptop category and is available through the API. In addition
to these, we extract some information from the title and also
record some auction- and seller-related data.

Data selection Our data selection process consists of three
layers. The first layer is applied when we are searching for
ending auctions on eBay. It primarily consists of the key-
words we specify in the search query submitted to eBay: “*
-(broken, parts, cracked, dead, damaged, as is, bad, no, not,
lot, only, repair, repairs, fix, for)”. This query is applied
only to the auction title and it allows us to remove most of
the broken laptops from our dataset. Some additional re-
strictions are also specified in this step: the item must have
at least one bid, the item price can not exceed $2500, the
item must not be listed as a lot, and the seller must accept
PayPal as a payment method. Of the 2000 laptops that are
our potential (daily) training set, this step leaves about 1500.

The second selectivity layer is applied when we retrieve
individual data for every sold laptop using a get-item-by-
id type of request. First, it imposes some of the range re-
strictions mentioned above: laptops must have CPU speed,
RAM size, Hard disk size and LCD size parameters speci-
fied; shipping costs must be specified and not exceed $100;
seller must have a feedback count of at least 20, and a feed-
back percentage of at least 93%; buyer must have a feed-
back count of at least 10, and a feedback percentage of
at least 80%. Second, the free-form laptop description is

searched for the word “warranty”; if it is not present (or
present in the no warranty form), the description is then
searched for words “bad”, “not working”, “broken”, “dam-

aged”, “parts”,“repair”, “p&r”, “cracked”, “dead”, “no ac”,
13 ba] 13 M b Y 1o s t5 13 ka 13

no power”, “as is”, “as-is”, “mystery”, “freezes”, “no bat-
tery”, “no video” and “missing”. If any of these are present,

the laptop is discarded. This final procedure removes all
the broken laptops not filtered out in the first selectivity
layer, while attempting to preserve good data by assum-
ing that warranty information guarantees good laptop con-
dition. Of the 1500 laptops remaining after the previous
step, only about 450 are at this point actually written to the
database; most of the laptops are removed because of miss-
ing attributes.

The final selectivity layer is applied right before the train-
ing algorithm is started (and, to some degree, during its exe-
cution). First, it imposes additional range conditions (for ex-
ample, all laptops with more than M missing nominal values
are discarded). Second, for the various nominal features it
counts the number of unique values encountered. If a partic-
ular nominal value is encountered fewer than 6 times in the
dataset, the laptops that have this value are removed. This is
done to ensure that rare, misspelled and incorrect values do
not skew our results. Third, the training algorithm builds an
initial prediction model for laptop prices and tests all of the
dataset instances against this model. The instances which
the model places far away from any other instances are re-
moved from the dataset as outliers (any point that is a factor
of 7 further from its nearest neighbor than the average dis-
tance between nearest neighbors). These instances are usu-
ally the result of scamming activity or severe discrepancies
between laptop presentation in its attribute set and free-form
description. This final selectivity layer leaves about 200 in-
stances out of 450, and these represent our daily training
data. The entire process is summed up in Figure 2.

Mining the title While most of the features are supplied
to us by eBay in a form ready to be stored, two features
need to be extracted from the free-form item title: laptop
family and laptop series. Laptop titles are free-form; how-
ever the length is limited to 55 characters. Typically sellers
specify laptop brand, family, model and the best features of
their laptop, possibly including common words like “laptop”
or “notebook”. Our goal is to extract the family, which is
typically a sensible-sounding made-up word, and the model,
which is a jumble of letters, digits, dashes etc. that follows
the manufacturers own cryptic naming convention.

To facilitate this, we have compiled a table of every laptop
model released by all major manufacturers. This database
table has the following fields:

1. Brand: One of the eBay-predefined features, extracted
from the attribute set of the laptop listing.

2. Family: Manufacturer-defined words such as “Latitude”,
or “Satellite Pro”.

3. Series: A common name for all similar laptops, for exam-
ple “D610”.

4. Model: A regular expression representing laptops falling
under the same series, for example “D610(-\ w{0,5})?”

137

eBay

First layer

are specified as broken in the title
have no bids
PayPal is not accepted for

Remove laptops that

Second layer

were sold by sellers with low feedback
were bought by buyers with low feedback
have missing numerical attributes

are specified as broken in the description
have overinflated shipping costs

Remove laptops that

DamaSe

Third layer

have attributes outside range restrictions
have rare nominal attribute values

are far away from all the other laptops
(outliers in terms of distance)

\
Learner

Remove laptops that

Figure 2: Overview of data selection process. Only about
10% of all sold laptops are eventually used as training data.

5. Status: 1 for laptops added to this table manually; O for
words added automatically

6. Count: For words added automatically, count of how of-
ten the word was encountered during data acquisition.

When we process the title, we look for regular expres-
sion matches against the “Model” field in the table, and if a
match is found, the extracted model is the value of the “Se-
ries” field. However, if a matching regular expression is not
found in the table, we perform the second step of the algo-
rithm. First, we remove common words from the title, such
as “notebook”, “wireless”, “centrino”, etc. Second, we re-
move all common symbol combinations used to represent
numerical features. Each word or symbol combination that
remains in the title after this step is added to the laptop ta-
ble, and its status field is assigned to be 0. If this word is
already in the table, we increment its count field. We peri-
odically manually inspect the instances that have the highest
count and, if needed, either add these words as new mod-
els, or add these words to the blacklist of common words
that are removed from the title. This approach allows us
to detect the releases of new laptops by the manufacturers
without monitoring the manufacturers themselves. This al-
gorithm manages to extract the model from 83% of all the
titles for laptops that manage to bypass the first two selectiv-
ity layers. We do not know how many titles actually have the
model specified. The family is extracted for 91% of laptops
not made by Gateway (which does not have families).

Model selection

We use feature-weighted k-Nearest Neighbor for the price
prediction model, with the following design decisions: for
continuous attributes, we use the (weighted) L,-norm to
compute distance; the distance between nominal attributes
is set to 1 if they do not match, or to O if they do match; if a
nominal attribute is missing, it does not match anything, and
we do not allow missing numerical attributes.

For setting the weights, we use evolutionary computation
to find the feature weights that minimize the price predic-
tion error (see Algorithm 1). Since this means running £-NN
against the dataset for each fitness evaluation, training time
can be significant because the dataset is growing every hour,
and because of k-NN’s O(n?) complexity. This is amelio-
rated by the fact that weight optimization need be done only
infrequently. To further ameliorate the time complexity of
the search, we note that the set of nearest neighbors for ev-
ery instance in the dataset changes infrequently. This allows
us to cache the set of potential nearest neighbors for every
instance, and during the algorithm execution look for near-
est neighbors only in this cached set, rather than in the whole
dataset. The size I' of this cache is determined empirically.
This approach decreases computation time, while having al-
most no effect on accuracy.

We sort our population by its predictive error and use the
following formula to determine the probability s of a mem-
ber of the population surviving to the next generation:

1
rank\ -
= 1—

where rank is the index of this member of the population in
an array sorted by MRE (increasing), P is population size,
and r is a survival rate. The formula has a number of prop-
erties: the best member always survives, for » = 0.5 the
survival chance of the middle member of the population is
0.5, and smaller 7 results in fewer survivors. The remain-
der of the population is filled by children, whose parents are
chosen at random from the survivors with equal probability.

The mutation multiplier A is introduced to increase the
variability of the population. This number can take random
values around 1, with the possible range of the values deter-
mined by a variability parameter v. In our experiments we
found that decreasing A over time yields the best results—
changing emphasis from exploration to exploitation, similar
to the temperature parameter in Simulated Annealing algo-
rithms. In general, A is chosen randomly from the range
(1 — 9,14 v9), where v is the variability parameter and g
is the current generation.

Empirical Results

Our validation mechanism is two-fold: standard statistical
measures to evaluate prediction accuracy, and an estimation
of the effect on trading efficiency. For measuring prediction
accuracy, we use the Mean Relative Error (MRE) metric:

1 <~ |pi — ol
_ L lpiz o

138

Algorithm 1 Evolutionary computation for feature weight-
ing, driven by search for weights that result in the lowest
MRE on the training data. The type of crossover is selected
randomly between three options.

Inputs:
Number of generations G, population size P, variabil-
ity v, survival rate r
Initialize:
Pop. Cur of weight vectors w;; = rand(0.001,1.0),
1<i< Pand1 < j < Numattr
mrate < v
for g=1to G do
calculate fitness €; and rank rank; for each w;
for each w; in Cur do
s; « survive(w;, rank;, P,r)
add w; to new population New with probability s;
while |[New| < P do
randomly select parent v from Cur
randomly select from {C1, C2, C3}
if C1 then {single parent mutation }
for each child weight v; do
A — 1+ rand(—mrate, mrate)
Vj)\Uj
if C2 then {2-parent multi-point crossover}
randomly select parent z from Cur
for each child weight v; do
A < 14 rand(—mrate, mrate)
randomly choose v; < Auj or v; «— Az;
if C3 then {2-parent average}
randomly select parent z from C'ur
for each child weight v; do
A < 1+ rand(—mrate, mrate)
v — A + 25) /2
include v in New
mrate < v * mrate
return member of New with highest fitness, wpest

where IV is a number of instances in the test set, p; is the
tth predicted price and o; is the ith observed price. This is
a fairly standard metric, and in particular, Van Heijst ef al.
report MRE scores from 0.34 to 0.58 for their approach, de-
pending on the product category (2008). Results we report
are averages acquired using 10-fold cross validation on sev-
eral months of (pre-processed) eBay trading data.

To evaluate trading efficiency, we measure trading time
and profit both for unassisted and assisted (by our system)
trading. For the unassisted case, we act as an eBay trader
willing to dedicate themselves to manually checking eBay
for new buy-it-now laptops for two hours every day. We ac-
tually perform the actions of a trader, buying the laptops and
then reselling them, tracking time spent and profit. For the
assisted case, we run the application in its “resellers” mode
for a period of time and again actually perform the actions of
an eBay trader, now accepting buying suggestions from our
application and evaluating the efficacy of those buying deci-
sions with a human trader. We measure the total time spent
making those decisions. We then resell all the laptops we

04

035
03
025

0164 0.155

=
015
01
0.05
0 T T

Average error

Average weights VanHeijst Nike's Shoes

Figure 3: Final MRE measurement. The first column shows
MRE using 20-fold cross-validation. The second column
shows MRE over the full dataset for averaged normalized
weights (used during trading efficiency validation). The
third column is Van Heijst et al’s. (2008) reported result.

bought and calculate the total profit. We compare the profit
made with and without using our system, as well as the to-
tal time spent on eBay. (A virtual comparison commonly
adopted for stock trading evaluation is infeasible here be-
cause it requires all laptops virtually bought to be virtually
re-sold; since most of the laptops bought on eBay are not
re-sold, it is impossible to measure the “real” auction [re-
]selling price, unless we are actually performing the sale.)

Parameter estimation

There are a large number of parameters that affect the perfor-
mance of our system (empirical range in parenthesis): num-
ber of neighbors k£ (1 — 19), the norm used for calculating
nearest neighbors 7 (0.1 — 3.0), max allowed missing values
M (1 — 6), rare values threshold 6 (0 — 6), neighbors cache
size I' (5—200), outlier elimination factor n (2.0 —6.0), pop-
ulation size P (0—700), survival rate r (0.0—1.0), variability
of weight mutation v (0.8 — 1.0), and number of generations
G (0—150). Our parameter tuning process consists of fixing
all parameters but one, then sweeping over different values
of this single parameter to determine its optimal value, using
10-fold cross validation. It can be argued that this process
is flawed if various parameters are not independent, but em-
pirical results suggest that it produces reasonably good pa-
rameter settings. The final values used in our evaluations are
k=5n=1M=2,0=0,T =30,n=438, P =50,
r=0.3, v =0.955, G = 80.

Pricing prediction error

We performed all our parameter estimation on the same “of-
fline” dataset of 5954 instances that passed the first two se-
lectivity layers of our data filter. By the time the parameter
estimation was completed the “online” dataset had grown
to 10521 instances, which we used with 20-fold cross-
validation to estimate ¢, the prediction error. Note that all
of the data that we use for training is highly sterilized, hav-
ing passed rigorous selection procedures. This is true for
both training and test folds (except that test subsets were not
subjected to any selections that required knowledge of the
model, for example outlier removal).

Figure 3 shows the estimated prediction error for laptop
prices. The first column shows the average error on the test

139

set over 20 folds of cross-validation. The second column
shows the result of averaging the normalized best weights
produced over 20 folds, and testing the entire dataset with
these weights (these averaged weights are used for the trad-
ing efficiency evaluation). For comparison, the third column
shows the results of Van Heijst et al. (2008) on the Nike
shoes category (note the generality/performance trade-off).

Trading efficiency

While many measures of efficiency might be consid-
ered, here we focus on the intuitive and useful metric of
profit/hour. The denominator only includes the amount of
time taken by the reseller to make a buying decision. It does
not include time for the following reseller tasks:
e going through the eBay/PayPal bureaucracy
e testing/repairing the laptop upon its arrival
e listing the laptop back on eBay
e packing the laptop
o shipping the laptop
These quantities are effectively constant for a single laptop
and do not depend on whether the reseller uses our system or
not. As for profit, eBay and PayPal fees, as well as shipping
costs, are factored in. In addition to profit/hour we calcu-
late a number of secondary metrics: total amount of profit
made, and percentage return on investment. While we focus
our validation on resellers, we also provide a web form that
anyone can access for free: http://ebay.xirax.net.
For this experiment, we lift most of the restrictions on
the tested instances—while we would want only perfectly
working laptops for our training data, quite frequently the
most profit is to be made on semi-broken laptops that can be
repaired, or on laptops listed with incorrect or incomplete
information. As a result, the main function of the human
trader is a feasibility evaluation of recommended instances.
Before we can evaluate our system, we need to establish
profit metrics for a reseller not using our system. For that
benchmark we combine two sets of data:

1. For a period of two weeks we spent two hours per day on
eBay looking for under-priced, buy-it-now laptops. Those
found were resold. As such, we know both the profit we
made, and the time we spent making it.

2. For a period of a couple of months, we bought and resold

laptops without explicitly tracking our time spent on-
line evaluating potential laptops. This data contains a
much larger number of laptops bought and sold (increas-
ing the reliability of the data) and if we assume that the
time/purchase value is roughly equivalent between the
two data sets, we can estimate the time for the second
data set from the first one.

For comparison, assisted trading efficiency validation was
performed in a fashion similar to the manual benchmarking.
We activated the sniper module in our system to query eBay
every minute for buy-it-now laptops listed in the last minute.
The sniper passes laptop data to the tester, which evaluates
it against the model. If the tester decides that the laptop is
underpriced by at least 20% and $50, the sniper sends an

Number Profit Profit/hr Return Time spent
10 $443 $15.82 10.7% 28 hours
41 $2052 $17.87 10.9% 115 hours
51 $2495 $17.45 10.8% 143 hours
19 $585 $98.04 10.3% 5.97 hours

Table 1: Trading efficiency baseline and validation results.
The first row is data from the unassisted 2-week trading ex-
periment (2 hours/day). The second row is data from an
earlier (unassisted) trading cycle with estimated time spent.
The third row is the sum of rows one and two. The fourth
row is data from the assisted 2-week trading experiment.
Our system provides dramatic profit/hour improvement and
also a slight increase in the amount of overall profit.

email alert to a specified email address. Over the course
of two weeks the system sent us alerts for 236 laptops, an
overwhelming majority of which were broken beyond inex-
pensive repair, had errors in listings, or were not laptops at
all. Based on these alerts, we purchased 19 laptops that we
deemed to be actually underpriced. We measured the time
it took us to evaluate all 236 alerts. Most were discarded
or acted on in less than a minute; however a few required
more extensive research, up to five minutes or so in a few
cases. The results for both unassisted and assisted trading
are summarized in Table 1, with the most notable being a
562% increase in trading efficiency when using our system.

Using the automatic system significantly decreases the
time that needs to be spent on eBay looking for newly-listed
laptops, and as a result the profit/hour measure increases dra-
matically. In addition, the system has a positive effect on
the overall generated profit, since it queries eBay for the en-
tire 24 hours every day, instead of the 2 hours/day spent for
the manual benchmarking. There is, however, room for im-
provement. During the manual benchmarking, our two hour
block of time spent on eBay covered about 20% of all the
laptops offered for sale on a given day. Assuming that these
2 hours (7-9pm MST) are the busiest hours every day (which
is close to reality), and assuming further that the human per-
formance during the manual benchmarking was the best pos-
sible, the total potential profit using the automatic system
is about 5 times what was made during the manual bench-
marking, or approximately $2200 for the two-week period.
The automatic system only achieves about one fourth of that
value, due to two main factors: inconsistent availability of
human trader and errors in the prediction estimate. While
we did not count the number of missed alerts, we can give
a rough ballpark estimate of about 25%. As for the second
problem, we can combat it it by easing the automatic alert
thresholds, with the tradeoff being more time spent evaluat-
ing the alerts.

Discussion

Our system facilitates significant improvements in trading
efficiency on eBay by delegating the market research step
to a computer; this turns what could be a full-time job into
a non-intrusive activity that requires minutes, rather than

140

hours, of human intervention. Additionally, our application
directly boosts revenues, since unlike a human trader it is
able to monitor eBay 24 hours/day.

For a casual one-time shopper, this application may also
prove useful, since it provides a reasonably accurate price
very quickly, is completely free, and is capable of storing
and evaluating more data than the Terapeak tool provided by
eBay Marketplace Research (currently the state-of-the-art).

The market in which our system is currently operat-
ing has a small capacity (estimated maximum net profit of
$1100/week). However, there are many opportunities for
expansion: auction items, additional computer categories
(desktop, Macintosh), other eBay categories, and even other
online auction sites.

Within the laptop category we are currently only deal-
ing with buy-it-now items; however the functionality is in
place to deal with auctions as well (though this will likely
require additional human involvement as auction prices of-
ten experience severe volatility during the last minutes of
an auction). Since the attribute sets are very similar, ex-
panding to the desktop computers category and the Macin-
tosh computers category should require only minor modifi-
cations, mostly to the model/family extraction routine. Ex-
panding the approach to other eBay categories should also
be straightforward—the feature set must be redesigned in
accordance with category specifics, but everything else is al-
ready in place. Additionally, as the tool is expanded to mul-
tiple categories, it may become feasible to sell access to the
tool instead of, or in addition to, directly using it.

Finally, it is interesting to consider fully automating the
process, allowing the system to make purchases based solely
on its evaluation without per-item sanction by a human.

References

Ghani, R., and Simmons, H. 2004. Predicting the End-
Price of Online Auctions. In Proceedings of International
Workshop on Data Mining and Adaptive Modelling Meth-
ods for Economics and Management.

Ghani, R. 2005. Price Prediction and Insurance for Online
Auctions. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovering in
Data Mining, 411-418.

Gregg, D., and Walczak, S. 2004. Auction Advisor: An
Agent-Based Online Auction Decision Support System.
Decision Support Systems 41(2):449-471.

Heijst, D. V.; Potharst, R.; and Wezel, M. V. 2008. A
Support System for Predicting Ebay End Prices. Decision
Support Systems 44(4):970-982.

Lucking-Reiley, D.; Bryan, D.; Prasad, N.; and Reeves,
D. 2007. Pennies from eBay: The Determinants of Price
in Online Auctions. The Journal of Industrial Economics
55(2):223-233.

Wellman, M.; Reeves, D.; Lochner, K.; and Vorobeychik,
Y. 2004. Price Prediction in a Trading Agent Competition.
Journal of Artificial Intelligence Research 21:19-36.

	IAAI09
	Contents
	Index
	Help
	Terms

	Doctoral Consortium
	AAAI

