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Abstract

This paper outlines a new approach to creating value from
the Smart Grid by incorporating individual households into
the response system that must be deployed to accommodate
increasingly large sources of intermittent renewable power.
We propose a framework that couples agent-based AI tech-
niques with envelope methods. Envelope methods provide a
unified mathematical framework to model intermittent renew-
able resources, conventional dispatchable resources, demand
side response, and storage. The overall goal of our system is
to develop a distributed autonomous agent architecture that
is able to facilitate market transactions among load serving
entities, residential consumers, conventional merchant power
producers, and intermittent power producers.

Introduction
The deployment of renewable power resources, such as
wind and solar, has grown rapidly because of policy ac-
tions, including renewable portfolio standards, that seek to
reduce the power industry’s carbon emissions. Increased
global adoption has led to dramatic cost reductions, cre-
ating positive feedback loops that drive further adoption.
However, to maintain stability, systems with large renew-
able portfolios must include dispatchable resources, usually
fossil fueled, that are ramped up and down to accommo-
date renewable variability. These dispatchable resources are
often run outside of their optimal operating specifications
with the paradoxical result that some systems can experi-
ence higher carbon emissions as the penetration of renew-
able power increases. The adverse effects can be directly ob-
served through increased negative nodal prices observed on
some systems, especially at night when more wind power is
generated than the system demands.

Because power demand and supply must be balanced in
real time, grid operators have maintained the balance. How-
ever, the assumption that the grid must absorb all variability
is becoming less true because building automation technol-
ogy is on the horizon. Importantly, houses and buildings are
an underutilized source of adaptability if properly used. In
particular, because of the thermal inertia of buildings and the
increasing controllability of power consuming systems, end-
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users can be directly incorporated into the response system
that must be deployed to accommodate renewable power.

In this paper we outline a system that utilizes artificial in-
telligence to manage power consumption based on end-user
preferences and system capacity. Our system is end-to-end
in the sense that household preferences for demand are ag-
gregated and communicated up through the supply network
in a hierarchical fashion. Variability in supply and demand
is incorporated through agents at each level of this hierarchy
using envelope bounds. Importantly, the envelope method
can characterize the quality of service at various levels of ag-
gregation and offers the possibility of a unified framework in
which the variability imposed from any supply side resource
and any demand side resource can be quantified in terms of
the impact on overall system reliability.

Envelope-based model of energy variability
Our approach implements a computational layer over the en-
ergy grid that is organized (Figure 1) to hierarchically man-
age system load. We believe this is the key aspect our ap-
proach that makes it possible to compute real-time responses
to rapidly changing supply and demand patterns driven by
renewable energy generation at both the household and grid.
The overall system is organized so that each entity in the hi-
erarchy has a computational agent that plays a role in bal-
ancing supply and demand. Within each agent, the basic
component of estimating supply and demand bounds is done
through the use of the envelope method. This method origi-
nates from the study of quality of service guarantees in net-
working, and has recently been shown to be useful in the
context of power system analysis (Jiang, Parker, and Shittu
2010; 2013).

Given a usage schedule (Figure 2(a1)) that gives instanta-
neous consumption, the first step of the envelope methodol-
ogy is to convert usage to the energy domain (i.e., cumula-
tive MWh over time) (Figure 2(a2)). Then, an upper enve-
lope α(t) is constructed for the energy flow (Figure 2(a3)),
which characterizes the maximum energy demand as a func-
tion of the time scale. More specifically, this upper envelope
is obtained by applying Legendre transforms to the original
energy flow, where the corresponding Legendre conjugates
describe the net excessive electricity demand (in MWh)
above a constant demand flow at given capacity levels (in
MW), and are realized through the leaky bucket mechanism
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the efficiency of Western transmission prices using a co-integration
approach and price index data. This analysis, however, focused on a
decentralized bilateral-based market in the Western United States.

These bilateral energy contracts are over-the-counter contracts
between two counterparties at various “hub” delivery locations and
prices are not calculated in a centralized market or exchange. The
difference in prices between two traded hubs can be thought of as a
proxy “transmission price.” In a LMP market, transmission constraints
directly affect locational energy prices and transmission costs are
calculated for every transaction in every hour. Our paper analyzes the
more recent centralized LMP approach. Neuhoff (2004) examined
transmission prices between Germany and the Netherlands and
whether these prices completely arbitraged differences between the
German and Dutch power exchanges. However, this analysis focused
on explicit transmission capacity auctions rather than the implicit
mechanisms we study. Siddiqui et al. (2005) conducted an initial
analysis of NYISO FTR auction efficiency by direct comparison of
forward auction prices against the realized congestion price differ-
ences. These authors conclude that the NYISO FTR market was highly
inefficient in its early operations, circa 2000–2001. However, their
analysis examined only four auctions in the early years of the market
(and is hence based on only four independent data points). Adamson
and Englander (2005) examined a limited set of NYISO FTR auctions
over a somewhat longer time period, using time series techniques.
Their analysis also suggested that NYISO FTR auctions were initially
highly inefficient, although efficiency did improve somewhat over
time. The use of a much larger and richer data set in the presentFig. 2. Example of NYISO congestion prices over a day.

Fig. 1. NYISO load control zones. New York system load zones. Source: NYISO.
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Figure 1: Overview of Agent Organization. (a) The regional topography of the New York Independent Operator is shown, which pricing
nodes indicated as squares. (b) In our proposed system, agents at the consumer level are leaves of an aggregation tree that is defined according
to the regional energy market being modeled. The root of this tree corresponds to a pricing node (indicated by colored letters in (a)).

(Figure 2(a4)) (Jiang, Parker, and Shittu 2013). By further
taking variable sources of energy (for example, wind or so-
lar power) as a negative load (Figure 2(a5)), lower envelopes
(Figure 2(a6)) of generation can also be derived. The lower
envelope of wind generation represents the guaranteed min-
imum output over any period of a given duration. The time
granularity of the boundary calculations can be chosen for
specific applications such as planning (years), forward con-
tracting (months/weeks), day-head trading (hours), and op-
erations (minutes).

Figure 2(b) demonstrates the ability of the envelope
method to model real-world variability in power genera-
tion, showing data from July 2009 for energy from resources
including wind farms, solar plants, and geothermal plants
within the California ISO region. As described above, we
construct the upper and lower envelope of system load to
study the demand pattern for capacity. In particular, Fig-
ure 2(b) compares these envelopes of system load and net
load (e.g., Load - Wind), which shows the impact of wind
energy. The shift of the right tail of the conjugate curve
quantifies the reduction of the system peak load due to wind
power, which is wind’s capacity contribution to the system.
The shift of the right tail is also accompanied with a shift of
the left tail, which quantifies the reduction of system base
load, confirming the negative impact on the system. These
bounds quantify the intuitive idea that variability in wind
generation is a challenge. In Figure 2(b) we can see that the
system must be able to handle about 4GWh in load vari-
ability in order to accomodate wind generation. Using this
knowledge we can deploy a utility-scale pumped storage,
for example HELM in California, to “shift” the curves so
that surplus and deficit bounds match. This approach can
currently be adopted only on a utility-scale level, while our
system manages this type of gap in a distributed fashion at
the household level.

A hierarchical multi-agent model of an energy
market

Our system is organized hierarchically as an aggregation
tree and has two fundamental types of agents, consumer
agents (CA) and aggregation agents (AA). Consumer agents
are leaves of the aggregation tree, and each consumer agent
is responsible for managing the energy demands of an indi-
vidual consumer. The basic role of a consumer agent is to
produce an accurate demand plan for a given time window,
taking into account possible sources of uncertainty, such as
weather or plan changes of the inhabitants, preferences and
energy efficiency. The aggregation tree is rooted at pricing
nodes of a local energy market and models that particular
market (see Figure 1). Each local market has hundreds of
thousands of customers, and thus a tree-structured approach
is a necessity. That is, it offers the possibility of highly con-
current processing of household preferences, with synchro-
nization staged at each aggregation node.

Both consumer and aggregation agents, regardless of
level, interact in order to synthesize demand information in
a bottom up fashion: information from each consumer flows
up the agent tree, being aggregated at each level. The syn-
thesis of information at each aggregation agent yields a de-
mand envelope and cumulative energy flow that is passed
up to the next level. Once information passes upward to the
pricing node, the aggregate demand is compared with the
desired demand and negotiation requests are then computed
in a downward fashion. Thus each aggregation agent may
receive a request to change its usage from its parent, neces-
sitating the calculation of a new demand envelope. These
requests are in the form of pricing (or usage) changes and
are used to compute a new cumulative energy flow (and re-
sulting demand envelope) for that agent. The basic role of
an aggregation agent is to fairly split requests for changes
among its children, based on their respective energy needs.
Bottom-up and top-down interaction between agents pro-
ceeds as long as some change is initiated at the consumer
level (due to new production or consumption of energy), or
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These panels illustrate how to generate the upper- and 
lower envelopes (α, β) for any given power flow (x)   

The two solid curves correspond to the (conjugate) upper- and lower envelopes 
of CAISO system load; they respectively represent the maximum net cumulative 
surplus/deficit of the load w.r.t. constant power flow at different capacity level. 
The dashed curves are the envelopes for Load-Wind, thus the difference between 
these two sets of curves demonstrates the impact of wind power to the system. 
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Figure 2: Envelope Method. (a) Overview of the computation of upper and lower envelopes; (b) Example of envelope calcula-
tions on Cal-ISO data quantifying the effect of variability from wind power generation with respect to capacity.

Figure 3: Architecture of the consumer agent.

a change in supply (and thus pricing) at a higher level ne-
cessitates new downward requests. We describe each agent
in detail below.

Consumer Agents
The model of the consumer agent we envision is depicted in
Figure 3 and has two fundamental components: a constraint-
based model including temporal constraints on loads, pref-
erences and uncertainty, and an envelope-driven module in
charge of optimizing with respect to capacity efficiency
within the agent. The constraint-based model of the do-
mestic energy domain will represent: (a) the temporal con-
straints involving energy consuming or producing activities
within the consumer; (b) the preferences in terms of comfort
of the consumer inhabitants and in terms of energy efficient
behaviors; and, (c) the uncertainty arising from a dynam-
ically changing environment (such as weather) as well as
changes in the usage patterns of the inhabitants.

The core technology underlying the constraint-based
module are temporal constraint satisfaction prob-
lems (Dechter, Meiri, and Pearl 1991) where activities
are modeled by their end and start time and by intervals
containing all possible durations. This very general repre-
sentation paradigm is amenable for incorporating temporal
information and requirements of both loads with fixed
durations, such as washing machines and dish washers (also
called shiftable static loads in the literature (Ramchurn et
al. 2011)), as well as thermal loads controlled by smart
thermostats.

We exploit several appealing features of this paradigm.
First of all, different types of preferences can be easily in-
corporated to model comfort and energy efficiency, despite
their clearly different semantics (Khatib et al. 2007; Bartak,
Morris, and Venable 2014). For example, the (min,+) ap-
proach to preferences, where they are treated as penalties
the sum of which should be minimized, appears as a natu-
ral choice to model energy efficiency. Moreover, solutions to
temporal constraint problems are not fixed schedules for the
activities, but rather, a compact representation (known as the
minimal network) from which all the consistent schedules
can be computed very efficiently. We exploit this to mini-
mize the need of schedule recomputation while adapting to
change. Finally, different types of uncertainty, such as the
presence of events which are outside of the control of the
automated agent or conditional information on the presence
of certain activities can be handled (Morris, Muscettola, and
Vidal 2001; Vidal and Fargier 1999). This is essential to be
able to incorporate the actions of inhabitants into the model.

The output of the constraint-based model is a compact
representation of dynamically dispatchable, comfort optimal
and energy efficient schedules obtained by applying tech-
niques which extend those described in (Rossi, Venable,
and Yorke-Smith 2006). While the execution of the sched-
ule is done incrementally we need to produce an estimate
of the energy demand of the household in the future. In
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the temporal constraint literature the concept of energy en-
velopes has been used to model the bound on energy con-
sumption associated to the set of schedules represented com-
pactly by a minimal dispatchable network (Muscettola 2002;
2004). We extend these results to identify a particular future
schedule to pass on to the envelope-driven module which
then computes the cumulative energy flow and associated
envelope. Other options we are investigating are to consider
worst case schedules in terms of energy consumption or
most probable schedules assuming additional probabilistic
information on uncertain events.

Given the envelope and a desired goal in terms of ca-
pacity efficiency, the envelope module computes a new cu-
mulative energy flow satisfying such a requirement. This
is done exploiting a linear time complexity algorithm de-
scribed in (Jiang, Parker, and Shittu 2013). Similarly, aggre-
gation agents will provide energy flows computed in order to
meet requests coming from higher levels in the hierarchy. In
either case, the system needs to understand if there is a feasi-
ble schedule with that cumulative flow and to produce an op-
timal such schedule in terms of preferences and robustness
to uncertainty. We plan to address this problem by starting
from the original schedule produced by the constraint-based
module and obtaining the required schedule by iterated mod-
ifications of the current one.

Aggregation Agents
The computation of a demand envelope is computation-
ally efficient given several forms of information: the actual
schedule of planned usage, a cumulative energy flow, and a
collection of demand envelopes. Moreover, cumulative en-
ergy flows can be combined additively, and thus the upward
step of aggregation is relatively straightforward. However,
once a change in demand occurs and there must be a reorga-
nization of supply, downward requests to aggregation agents
must be incorporated, and decomposed further until individ-
ual consumers can make changes to their usage patterns.

Thus, the two key computational steps at each aggregation
agent are to: 1) compute a new cumulative energy flow and
demand envelope upon receiving a request to change usage,
and 2) distribute the change in usage to children aggregation
nodes. The aggregation tree will be structured according to
the energy market and number of households, but changes
to usage will always be sent downward level by level. Once
we calculate the new cumulative energy flow at a particu-
lar agent, we must then consider the demand envelopes of
its children agents, compute change requests (in the form
of new cumulative energy flows) and distribute them down-
ward. Given a target cumulative energy flow D, and a set
of demand envelopes α1, α2, . . . , αk, we seek to compute a
set of modified demand envelopes that respect the target cu-
mulative energy flow D. We outline an exact and a heuristic
method that can be used to solve this problem.

Suppose that we are considering D over n time points.
Then, for each time point x ∈ [1, n], we must modify αi(x)
(1 ≤ i ≤ n) so that

∑n
i=1 αi(x) ≤ D(x) for all time

points x. Since we are starting with a set of envelopes αi,
we can structure this problem as a linear programming prob-
lem in which we introduce variables that modify the enve-

lope points to satisfy the above constraints for D. In this
basic form, we have a linear program on nk variables and n
constraints. To enforce fairness, we can simply add k2 addi-
tional constraints that attempt to balance the change in usage
among all pairs of children agents.

Depending on how the aggregation tree is structured,
a mathematical programming approach may not be com-
putationally efficient, and we must examine approximate
methods. An alternate strategy is to use a greedy approach
to computing modified demand envelopes. This algorithm
seeks to compute the same weighting factors discussed
above, but can do so utilizing a round-robin scheduling ap-
proach. In particular, we can consider each child envelope
in turn, considering usage peaks (i.e., largest sequential in-
creases in the cumulative energy flows) and adding a request
to trim these for each child. Fairness is naturally enforced by
the round-robin nature of the computation, and the compu-
tation ends when the requirements of the target cumulative
energy flow D have been met.

Now, it is important to note that regardless of the ap-
proach, at some stage of the aggregation tree it is possible
that we have an infeasible problem. That is, neither the ex-
act or heuristic method can compute a set of requests that
will meet the requirements of D. There are two ways to deal
with this. First, we can initiate a higher demand request to
be send upward, and wait for a modified D. Second, we can
loosen the restriction to enforce D exactly, in both the exact
or heuristic approaches.

The exact approach described above is most feasible when
nk+k2 yields a linear program that can be solved on the or-
der of milliseconds. In general, we must enforce a time bud-
get so as to perform all computations within the time neces-
sary to meet a desired time-resolution. Each agent can select
between an exact or heuristic approach depending on these
calculations. The specific choice of time budget will depend
on the desired overall response time of the system (i.e., how
quickly we may wish to make changes on the supply side of
the grid), as well as the level of the aggregation agent (i.e.,
if the tree structure is more sparse near the pricing node).
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