
Interactive Shaping of a Tetris Agent Using the TAMER Framework

W. Bradley Knox and Peter Stone
University of Texas at Austin

{bradknox, pstone}@cs.utexas.edu

Introduction
As computational learning agents continue to improve their
ability to learn sequential decision-making tasks, a central
but largely unfulfilled goal is to deploy these agents in real-
world domains in which they interact with humans and make
decisions that affect our lives. People will want such interac-
tive agents to be able to perform tasks for which the agent’s
original developers could not prepare it. Thus it will be im-
perative to develop agents that can learn from natural meth-
ods of communication. The teaching technique of shaping is
one such method. In this context, we define shaping as train-
ing an agent through signals of positive and negative rein-
forcement.1 In a shaping scenario, a human trainer observes
an agent and reinforces its behavior through push-buttons,
spoken word (“yes” or “no”), facial expression, or any other
signal that can be converted to a scalar signal of approval or
disapproval. We treat shaping as a specific mode of knowl-
edge transfer, distinct from (and probably complementary
to) other natural methods of communication, including pro-
gramming by demonstration and advice-giving. The key
challenge before us is to create agents that can be shaped
effectively. Our problem definition is as follows:

The Shaping problem Within a sequential decision-
making task, an agent receives a sequence of state
descriptions (s1, s2, ... where siεS) and action oppor-
tunities (choosing aiεA at each si). From a human
trainer who observes the agent and understands a pre-
defined performance metric, the agent also receives
occasional positive and negative scalar reinforcement
signals (h1, h2, ...) that are correlated with the trainer’s
assessment of recent state-action pairs. How can an agent
learn the best possible task policy (π : S → A), as mea-
sured by the performance metric, given the information
contained in the input?

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We use the term “shaping” as it is used in animal learning liter-
ature (in which it was initially developed by B.F. Skinner). There,
shaping is defined as training by reinforcing successively improv-
ing approximations of the target behavior (Bouton 2007). In re-
inforcement learning literature, it is sometimes used as in animal
learning, but more often “shaping” is restricted to methods that
combine the shaping reinforcement signal and the reward signal
of the environment into a single signal (Ng et al. 1999).

Though our goal is to create agents that can be shaped to
perform any task, we restrict the Shaping problem to tasks
with predefined performance metrics to allow evaluation of
the quality of shaping algorithms.
Expected benefits of learning from human reinforcement2

include the following:
1. Compared to learning from the environmental reward of
a Markov Decision Process, shaping can decrease sample
complexity for learning a “good” policy, consuming less
resources in real-world domains.

2. An agent can learn in the absence of a coded evaluation
function (e.g., an environmental reward function).

3. The simple mode of communication allows lay users to
teach agents the policies which they prefer, even changing
the desired policy if they choose.

4. Shaped agents can learn in more complex domains than
autonomous learning allows.
Previous results, described later, support the first three of

these benefits. These results have appeared in three pub-
lished papers (Knox and Stone 2009; 2008; Knox et al.
2009). This technical report describes our framework for
agents that can be interactively shaped, discusses previously

2In this abstract, we distinguish between human reinforce-
ment and environmental reward within a Markov Decision Process
(MDP). To avoid confusion, human feedback is always called “re-
inforcement.”

Human Environment

Agent

Reinforcement Action

State

Sensory

Display

Supervised

Learner

Reinforcement

Model

Model

Update

Reinforcement

Prediction

Reinforcement

Predictions

Action
Selector

Figure 1: Framework for Training an Agent Manually via Evalua-
tive Reinforcement (TAMER).

17

published experimental results, and explains our demonstra-
tion of an interactively trainable Tetris TAMER agent at the
2009 IJCAI Robotics Exhibition.3

The TAMER Framework

In our previous work on shaping, we introduced a frame-
work called Training an Agent Manually via Evaluative Re-
inforcement (TAMER). The TAMER framework, shown in
Figure 1, is an approach to the Shaping Problem that makes
use of established supervised learning techniques to model
a human’s reinforcement function and bases its action se-
lection on the learned model. If acting greedily, a TAMER
agent chooses actions that are projected to receive the most
reinforcement.
At the highest level of description, the TAMER framework

allows a human to train an agent to perform a task via pos-
itive and negative reinforcement signals. From the agent’s
point of view, its goal is to model the human’s reinforce-
ment while exploiting that model to earn as much immedi-
ate reinforcement as possible. The human trainer’s goal is,
therefore, to provide reinforcement that leads the agent to
perform the task well.
The TAMER framework is designed for Markov Deci-

sion Processes that have the reward function R unspeci-
fied (MDP\R). A TAMER agent seeks to learn the human
trainer’s reinforcement function H : S × A → R. Pre-
sented with a state s, the agent consults its learned model Ĥ
and, if choosing greedily, takes the action a that maximizes
Ĥ(s, a). Since the agent seeks only to maximize human rein-
forcement, the optimal policy is defined solely by the trainer,
who could choose to train the agent to perform any behav-
ior that its model can represent. Therefore, when the agent’s
performance is evaluated using an objective metric, its per-
formance will be limited by the information provided by the
teacher.
The principle challenge for autonomously learning agents

(i.e., those that receive feedback in the form of environ-
mental reward rather than human reinforcement) is to assign
credit from environmental reward to the entire history of past
state-action pairs. A key insight of the TAMER framework is
that the difficult problem of credit assignment inherent in
reinforcement learning is no longer present with an atten-
tive human trainer. The trainer can evaluate an action or
short sequence of actions, considering the long-term effects
of each, and deliver positive or negative feedback within a
small temporal window after the behavior. Assigning credit
within that window presents a challenge in itself, which we
address by definining a probability density function f(x)
over the time window and distributing “credit” among the
actions as follows (for example, see Figure 2). If t and t′ are
times of consecutive time steps, credit for the time step at t
is h× ∫ t

t′ f(x)dx. Assuming that credit is properly assigned
within the temporal window, we assert that a trainer can di-
rectly label behavior. Therefore, modeling the trainer’s rein-
forcement function H is a supervised learning problem.

3Much of this abstract overlaps with the first author’s thesis
statement for the AAAI/SIGART Doctoral Consortium and the
most recent paper on TAMER (Knox and Stone 2009).

Figure 2: Probability density function f(x) for a gamma(2.0, 0.28)
distribution. Reinforcement signal h is received at time 0. If t and
t′ are times of consecutive time steps, credit for the time step at t
is

R t

t′ f(x)dx. Note that time moves backwards as one moves right
along the x-axis.

Experimental Results
We developed TAMER algorithms for two contrasting task
domains – Tetris and Mountain Car. Full explanations
of the implemented algorithms can be found in previous
work (Knox and Stone 2009). Tetris has a complex state-
action space and low time step frequency, and Mountain Car
is simpler but occurs at a high frequency (seven actions per
second).
For the experiments, human trainers observed the agents

in simulation on a computer screen. Positive and negative
reinforcement was given via two keys on the keyboard. The
trainers were read instructions and were not told anything
about the agent’s features or learning algorithm. Nine hu-
mans trained Tetris agents. Nineteen trained Mountain Car
agents. For each task, at least a fourth of the trainers did not
know how to program a computer.

Tetris

Figure 3: A screen-
shot of RL-Library
Tetris.

Tetris is notoriously difficult for
temporal difference learning meth-
ods that model a function such as a
value or action-value function. In
our own work, we were only able
to get Sarsa(λ) (Sutton and Barto
1998) to clear approximately 30
lines per game with a very small
step size α and after hundreds of
games. Bertsekas and Tsitiklis re-
port that they were unable to get
optimistic TD(λ) to make ”sub-
stantial progress”. RRL-KBR (Ramon and Driessens 2004)
does somewhat better, getting to 50 lines per game after 120
games or so.4 The only successful approach that learns a
value function (of those found by the authors) is λ-policy
iteration (Bertsekas and Tsitsiklis 1996), which reaches sev-
eral thousand lines after approximately 50 games.
However, λ-policy iteration differs in two important ways

from the rest of these value-based approaches. First, it be-
gins with hand-coded weights that already achieve about 30

4We should note that Ramon et. al. rejected a form of their al-
gorithm that reached about 42 lines cleared on the third game. They
deemed it unsatisfactory because it unlearned by the fifth game and
never improved again, eventually performing worse than randomly.
Ramon et al.’s agent is the only one we found that approaches the
performance of our system after 3 games.

18

Table 1: Results of various Tetris agents.
Method Mean Lines Cleared Games

at Game 3 at Peak for Peak

TAMER 65.89 65.89 3

RRL-KBR (2004) 5 50 120

Policy Iteration (1996)
∼ 0 (no learning 3183 1500

until game 100)

Genetic Algorithm (2004)
∼ 0 (no learning 586,103 3000

until game 500)

CE+RL (2006)
∼ 0 (no learning 348,895 5000

until game 100)

lines per game. Getting to that level of play is nontriv-
ial, and some learning algorithms, such as Sarsa(λ), fail to
even reach it when starting with all weights initialized to
zero. Second, λ-policy iteration gathers many state transi-
tions from 5 games and performs a least-squares batch up-
date. All other successful learning methods likewise per-
form batch updates after observing a policy for many games
(as many as 500 in the best-performing algorithms), likely
because of the high stochasticity of Tetris. Additionally, of
those that have the necessary data available, all previous al-
gorithms that model a function are unstable after reaching
peak performance, unlearning substantially until they clear
less than half as many lines as their peak.
In our experiments, human trainers practiced for two runs.

Data from the third run is reported. Of the algorithms
that model an actual function, our gradient descent, lin-
ear TAMER is the only one that clearly does not unlearn
in Tetris.5 Of those that also perform incremental updates,
TAMER learns the fastest and to the highest final perfor-
mance, reaching 65.89 lines per game by the third game (Ta-
ble 1 and Figure 4).6
Policy search algorithms, which do not model a value or

reinforcement function, attain the best final performance,
reaching hundreds of thousands of lines per game (Bohm
et al. 2004; Szita and Lorincz 2006), though they require
many games to get there and do not learn within the first
500 games.
Within our analysis, TAMER agents learn much more

quickly than all previously reported agents and reach a fi-
nal performance that is higher than all other incrementally
updating algorithms.

Mountain Car

The Tetris results demonstrate TAMER’s effectiveness in a
domain with relatively infrequent actions. Conversely, our
experiments in Mountain Car test its performance in a do-
main with frequent actions. The autonomous algorithm used

5This statement is supported by training by one of the authors
but not necessarily by the subjects, since the trainer subjects usu-
ally stopped training after the TAMER agent reached satisfactory
performance.

6Most trainers stopped giving feedback by the end of the fifth
game, stating that they did not think they could train the agent to
play any better. Therefore most agents are operating with a static
policy by the sixth game. Score variations come from the stochas-
ticity inherit in Tetris, including the highest scoring game of all
trainers (809 lines cleared), which noticeably brings the average
score of game 9 above that of the other games.

-50

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

Li
ne

s
C

le
ar

ed

Game Number

Average Group Trainer Results

All trainers
AI background

No technical background
Random (uses initial weights)

Figure 4: The mean number of lines cleared per game by experi-
mental group.

-350

-300

-250

-200

-150

-100

 0 2 4 6 8 10 12 14 16 18 20

E
nv

. R
ew

ar
d

(T
im

e
to

 G
oa

l)

Episode Number

Mean Reward in Mountain Car

TAMER, Over 2nd and 3rd Runs
Sarsa-3

Sarsa-20

(a)

-350

-300

-250

-200

-150

-100

 0 2 4 6 8 10 12 14 16 18 20

E
nv

. R
ew

ar
d

(T
im

e
to

 G
oa

l)

Episode Number

Mean Reward (Best and Worst Trainers) in M.C.

Best 5 Trainers
Worst 5 Trainers

Sarsa-3
Sarsa-20

(b)

Figure 5: Error bars show a 95% confidence interval (with a Gaus-
sian assumption). (a) The mean environmental reward (-1 per time
step) received for the Mountain Car task for the second and third
agents (runs) shaped by each trainer under TAMER and for au-
tonomous agents using Sarsa(λ), using parameters tuned for best
cumulative reward after 3 and 20 episodes. (b) The average amount
of environmental reward received by agents shaped by the best five
and worst five trainers, as determined over all three runs.

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0 2 4 6 8 10 12 14 16 18 20

C
um

ul
at

iv
e

E
nv

iro
nm

en
ta

l R
ew

ar
d

(T
im

e
to

 G
oa

l)

Episode Number

Mean Cumulative Reward in Mountain Car

TAMER, Over 2nd and 3rd Runs
Sarsa-3

Sarsa-20

Figure 6: Mean cumulative environmental reward received for the
Mountain Car task.

for comparison was Sarsa(λ) (Sutton and Barto 1998) with
the same function approximator (a linear model over Gaus-
sian RBF features, using gradient descent updates), an al-
gorithm that is known to perform well on Mountain Car.
Two Sarsa(λ) agents were used: one tuned for total cumula-
tive environmental reward across all previous episodes (Fig-
ure 6) after 3 episodes and one tuned for after 20 episodes
(which we will refer to as Sarsa-3 and Sarsa-20, respec-
tively). We tuned via a hill-climbing algorithm that var-
ied one parameter (α, λ, or ε in the standard notation of
Sarsa (Sutton and Barto 1998)) at a time, testing the agent’s
performance under each value for that parameter, taking the
best performing value, and then repeating (for fifty or more
iterations). The specific number of episodes (3 and 20) were
chosen to exhibit different emphases on the trade-off be-
tween learning quickly and reaching the best asymptotic per-

19

formance.
The TAMER agents were shaped for three runs of twenty

episodes by each trainer. We consider the first run a practice
run for the trainer and present the combined data from sec-
ond and third runs. Results are shown in Figures 5 and 6.
Figure 5(a) shows that the TAMER agents, on average, con-
sistently outperformed the Sarsa-3 agent and outperformed
the Sarsa-20 for the first five episodes, after which Sarsa-20
agents showed comparable performance. Under the guid-
ance of the best trainers (Figure 5(b)), TAMER agents con-
sistently outperform any Sarsa agent, and, under the worst
trainers, they perform somewhat worse than the Sarsa-20
agent. Most importantly, TAMER agents, on average, also
outperformed each Sarsa agent in mean cumulative environ-
mental reward through the length of a run (Figure 6). Since
each time step incurred a -1 environmental reward, Figure 6
is also a measure of sample complexity. The four trainers
who did not have a computer science background achieved
performance as good or marginally better than the fifteen
who did. Overall, the results, though less dramatic than
those for Tetris, support our claim that TAMER can reduce
sample complexity over autonomous algorithms.

The Tetris Demonstration
During the IJCAI Robotics Exhibition, visitors came by and
trained Tetris TAMER agents. The agents differed in one sig-
nificant way from the agents previously used for our exper-
iments. An experimental agent formed a model of human
reinforcement, Ĥ , using 21 features over the state and ac-
tion. These state-action features are the difference of the
following state features (taken from Bertsekas and Tsitsik-
lis (1996) from the next state and the current state (i.e. the
change in state features resulting from the action):
• the 10 column heights,
• the absolute values of 9 differences in heights of consec-
utive columns,

• the height of the tallest column, and
• the number of holes on the board, where a hole is de-
fined as an empty cell with a filled cell somewhere directly
above it.
However, we added features (taken from Bohm et

al. (2004)) since performing our experiments, and conse-
quently, a Tetris TAMER agent that was trained during IJCAI
also had the following state features for a total of 46 features:
• the maximum well depth, where a well is a column of
empty space surrounded on both sides by filled cells,

• the sum of the depths of all wells, and
• the 23 squares of the above state features.
With the added features, the agent’s ability to learn dif-

ferent strategies for different playing situations improves.
From anecdotal evidence, a good trainer can get the Tetris
agent to average five to ten times as many lines per game as
a similar trainer could with the original 21 features. Of those
at IJCAI who trained agents, more than half were able (from
our subjective assessment) to get the Tetris agent playing
well on their first try. (In the experiments, we had trainers
do two practice runs before the real training session.)

The training interface was also improved for the demon-
stration. Reinforcement was administered by a handheld
presentation remote, which is less cumbersome than bend-
ing over a keyboard.

Conclusion
The TAMER framework, which allows human trainers to
shape agents via positive and negative reinforcement, pro-
vides an easy-to-implement technique that:
1. works in the absence of an environmental reward func-
tion,

2. reduces sample complexity, and
3. is accessible to people who lack knowledge of computer
science.
Our experimental data suggests that TAMER agents out-

perform autonomous learning agents in the short-term, ar-
riving at a “good” policy after very few learning trials. Ob-
servations of trainers at the 2009 IJCAI Robotics Exhibition
further support this hypothesis. The experiments also sug-
gests that well-tuned autonomous agents are better at maxi-
mizing final, peak performance after many more trials.
Given this difference in strengths, we aim to explore how

best to use both human reinforcement, H, and, when avail-
able, environmental reward, R, relying on the former more
heavily for early learning and on the latter for fine-tuning to
achieve better results than either method can achieve in iso-
lation. We also plan to test TAMER in additional domains to
characterize when an agent designer should and should not
use shaping.

References
D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, 1996.
N. Bohm, G. Kokai, and S. Mandl. Evolving a heuristic func-
tion for the game of Tetris. Proc. Lernen, Wissensentdeckung und
Adaptivitat LWA, 2004.
M.E. Bouton. Learning and Behavior: A Contemporary Synthe-
sis. Sinauer Associates, 2007.
W. Bradley Knox and Peter Stone. Tamer: Training an agent
manually via evaluative reinforcement. In IEEE 7th International
Conference on Development and Learning, August 2008.
W. Bradley Knox and Peter Stone. Interactively Shaping Agents
via Human Reinforcement: The TAMER Framework In Proceed-
ings of The Fifth International Conference on Knowledge Cap-
ture, September 2009.
W. Bradley Knox, Ian Fasel, and Peter Stone. Design principles
for creating human-shapable agents. In AAAI Spring 2009 Sym-
posium on Agents that Learn from Human Teachers, March 2009.
A.Y. Ng, D. Harada, and S. Russell. Policy invariance under re-
ward transformations: Theory and application to reward shaping.
ICML, 1999.
J. Ramon and K. Driessens. On the numeric stability of gaussian
processes regression for relational reinforcement learning. ICML-
2004 Workshop on Relational Reinforcement Learning, pages 10–
14, 2004.
R. Sutton and A. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.
I. Szita and A. Lorincz. Learning Tetris Using the Noisy Cross-
Entropy Method. Neural Computation, 18(12), 2006.

20

