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Abstract

Taxi service is an indispensable part of public transport in
modern cities. The taxi system is operated by a large num-
ber of self-controlled drivers lacking of centralized schedul-
ing and control, which makes it inefficient, difficult to ana-
lyze and optimize. It is thus important to take into account
taxi drivers’ strategic behavior in order to optimize taxi sys-
tems’ efficiency. This paper reviews existing taxi system re-
searches for modeling taxi system dynamics, introduces the
taxi system efficiency optimization problem, and presents a
game theoretic approach for optimizing the efficiency of taxi
systems.1 Challenges and open issues in the taxi system effi-
ciency optimization problem are also discussed.

Introduction
Taxi service has long been an indispensable part of pub-
lic transport in modern cities. Unlike other types of public
transportation systems (e.g., bus and metro systems), the taxi
system is a highly decentralized system operated by a large
number of self-controlled taxi drivers who can freely choose
their operation schedules and movements. Though the de-
centralized nature makes taxi service more flexible and ac-
cessible than other modes of public transport, it makes the
taxi system inefficient. Many practical issues thereby arise
in taxi markets, and how to optimize the efficiency of taxi
systems becomes an important but challenging problem.

The difficulties are two-fold. Firstly, the taxi system can
be affected by many factors, such as road condition, cus-
tomer demand, fare price, etc., which not only depend on
each other in very complex ways, but also vary with time.
Secondly, the efficiency of the taxi system relies deeply
on the taxi drivers’ behaviors and their operation strategies.
Whereas advanced transportation researches have provided
thorough studies on the interdependencies among factors in
the taxi system and have built taxi system models (Yang,
Wong, and Wong 2002; Yang et al. 2005b), little has been
done to answer how taxi drivers, as a group of intelligent
agents, behave and choose their strategies, and how their
behaviors and strategies affect the system in turn. To ad-
dress the challenges, a game theoretic approach is proposed
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1This work has already been published in IJCAI’13 conference
(Gan et al. 2013).

to model the taxi drivers’ strategic behaviors. In the rest of
this paper, beginning with a review of related works in both
transportation and Artificial Intelligence (AI), we present the
Taxi system Efficiency optiMization Problem (TEMP), and
then the game theoretic solution approach. Challenges and
open issues of TEMP are also discussed in this paper.

Related Work
Researches concerning the models and economics of taxi
market dated back to 1969, when Orr studied the inade-
quacy of traditional cost-demand theory in application to the
taxi market research, with an analysis to the equilibrium of
a competitive taxi market. Later, Douglas (1972) introduced
an aggregate demand and supply model which assumes that
the amount of customer demand for taxi services depends on
the expected monetary and time cost, and the expected cus-
tomer waiting time depends on the total vacant taxi-hours.
The model provided a basis for extensive subsequent studies
on the economics of taxi market. For instance, based on the
model, Yang et al. incorporated congestion externalities and
time variance in service intensity in their study (Yang et al.
2005a; 2005b). Besides, some other studies particularly in-
vestigated the taxi fare pricing. For instance, Schaller (1998)
studied the effects of fare price increase on taxi market in
New York. Kim and Hwang (2008) studied an incremental
discount policy on the taxi fare with the objective of maxi-
mizing average profit of taxis. Yang et al. (2010) examined a
nonlinear fare structure and showed its advantages over the
existing linear fare structure in Hong Kong. Unfortunately, a
significant limitation of these researches is that taxi drivers’
strategic behaviors are unconsidered as they compete with
each other to maximize their profits. These behaviors are
the key to the decentralized nature of the taxi market, and
the main cause of the low efficiency of taxi markets.

AI techniques have provided a powerful tool to analyze
human behaviors in a computational approach, and have
been applied in many transportation studies, such as traf-
fic control and intersection management (Dresner and Stone
2007; 2008; Bazzan 2009; Au, Shahidi, and Stone 2011;
Pulter, Schepperle, and Böhm 2011) and, more relevantly,
decision support for taxi drivers (Varakantham et al. 2012)
and empirical multi-agent-based taxi system simulations
(Alshamsi, Abdallah, and Rahwan 2009; Seow, Dang, and
Lee 2010; Cheng and Nguyen 2011).
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Taxi System Efficiency Optimization Problem
The goal of TEMP is to maximize the efficiency of a taxi sys-
tem through adjusting the taxi fare. To this end, the first step
is to know how system efficiency is affected by fare price in
a taxi market. In this section, we present a multi-period taxi
market model based on advanced transportation researches
(Yang, Wong, and Wong 2002; Yang et al. 2005b), and then
formulate TEMP as a bilevel optimization program.

A Multi-period Taxi Market Model
A taxi market is a dynamic time-varying system. To deal
with such variances, we discretize the optimization horizon
T (e.g., a whole day) into a set of n equal-length periods,
such that when the duration of each period is sufficiently
short, the market can be treated as uniform in each period.
Within a single period, say period i, the number of cus-
tomers served by the whole taxi system is determined by
average monetary and time cost of a trip (Yang, Wong, and
Wong 2002), i.e.,

Di(F i, Li,W i)=D̄i exp{−β(F i/γ+φ1L
i+φ2W

i)}, (1)

where F i is the average fare price, Li is the average travel
time, and W i is the average customer waiting time; β > 0
is a sensitivity parameter; φ1 and φ2 are parameters used for
converting time costs into monetary costs; γ is the average
number of passengers per ride; D̄i is the number of potential
customers, which is obtained when the total cost is zero. The
waiting time W i in turn depends on Di as

W i(Di, Li, pi) =
ω

pi ·NT −DiLi/(γ · τ)
, (2)

where ω > 0 is a parameter depending on the density of taxi
stands; pi is the Percentage of Working taxis (PoW); NT is
the total number of taxis; and pi ·NT −DiLi/(γ · τ) repre-
sents vacant taxis in period i. It can be proven that when F i,
Li and pi are fixed, Di and W i are uniquely determined by
Eqs. (1) and (2) (Yang et al. 2005b). Therefore, Di and W i

are in fact implicit functions of F i, Li and pi. We denote
them as Di = Di(F i, Li, pi) and W i = W i(F i, Li, pi).

Given the average trip distance di, the travel time can be
represented by travel speed V i as Li = di/V i. Travel speed
in a road network can be approximated by a linear func-
tion of number of on-road vehicles (Smith and Cruz 2012),
which is furthermore linear to PoW pi as we assume that
the number N i

v of non-taxi vehicles on the road is a period-
specified constant. Thus, V i is a linear function of pi, i.e.,
V i(pi) = µ(pi ·NT + N i

v) + λ, where µ and λ are param-
eters depending on the the road condition. We furthermore
denote Li, Di, and W i as Li=Li(pi), Di=Di(F i, pi), and
W i=W i(F i, pi), respectively.

We adopt a distance-based fare structure (the model can
also be extended to other fare structures): F i = f0 + f i ·
(di − d0), where f0 is the initial charge and d0 is the dis-
tance covered by f0; f i is the charge rate for period i, i.e.,
the per unit distance charge. We optimize the fare structure
through adjusting the charge rate f i, and thus treat F i as a
function F i(f i). Accordingly, all the market factors, partic-
ularly the number Di of served customers, now depend on
f i and pi, i.e., Di = Di(f i, pi). For ease of description,

we denote a market factor over T as a column vector with
each component corresponding to a period. For example, we
denote charge rate over all periods as f = 〈f i〉.

Model the Taxi drivers’ strategy
From a game theoretic perspective, the taxi drivers have a set
S of pure strategies, and they adopt a mixed strategy (strat-
egy for simplicity), which is a probability distribution x over
their pure strategies in S. Each pure strategy is a schedule
that specifies working and resting periods. Formally, a pure
strategy is denoted as a 0/1 vector s∈{0, 1}n, where si=1
(resp. si=0) represents working (resp. resting) in period i.
Each pure strategy has to satisfy some constraints to ensure
its feasibility in practice. For example:
• Constraint 1 (C1): A taxi driver should not work for

more than n̂w periods in any schedule in S.
• Constraint 2 (C2): A taxi driver should not work contin-

uously for more than n̂c periods in any schedule in S .
We assume that the taxi drivers adopt the same strategy.
Thus when they choose strategy x, PoW is determined as:

p(x) =
∑

s∈S
xs · s. (3)

Furthermore, since taxi drivers are profit-driven, they always
choose the best strategy which maximizes their utility, i.e.,

x∗ ∈ arg max
{x|x≥0, 1Tx=1}

U
(
f ,p(x)

)
. (4)

The utility function U(f ,p) is defined as the sum of utilities
in all periods, i.e., U =

∑
i U

i, and U i is defined as

U i(f i, pi) = Di · F i/(γ·NT )− pi · cg · τ,

whereDi·F i/(γ·NT ) represents the income asDi·/(γ·NT )
is the average number of trips each taxi serves, and cg is
the cost of gasoline per unit time. Thus the fare price de-
termines the taxi drivers’ strategy via the optimization in
Eq. (4), and taxi drivers’ strategy in turn determines PoW via
Eq. (3). U(f ,p) is strictly concave with respect to p (Gan
et al. 2013), so that given a convex feasible set of p there
is only one p that maximizes U (Boyd and Vandenberghe
2004). This means even if there are more than one solutions
to Eq. (4), the solutions must all yield the same PoW, and a
one-to-one correspondence from f to p is guaranteed.

A Bilevel Optimization Problem
We measure the system efficiency with the total number of
served customers, and formulate a TEMP as the following
bilevel optimization program.

max
f ,x∗

D
(
f ,p(x∗)

)
(5)

s.t. x∗ = arg max
x:x≥0, 1Tx=1

U
(
f ,p(x)

)
(6)

The model can also handle other measures of the system effi-
ciency with the same form of optimization program as long
as the optimization objective is a function of f and p. To
solve this bilevel optimization problem, a practical way is
to discretize the continuous fare price space into a small set
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of candidate prices, e.g. {U1.00,U1.20, . . . ,U5.00}n, and
solve the lower level program (Eq. (6)) under each of the
candidate prices to find the optimal fare price. Thus the key
is to compute the lower level program. Unfortunately, the
lower level program suffers from a scalability issue caused
by the exponential explosion of the taxi drivers’ pure strat-
egy space. Next, we introduce the atom schedule method
(ASM) to address the scalability issue.

Solve TEMP–the Atom Schedule Method
ASM works for TEMP problems with constraints C1 and
C2 considered. The idea is to represent each feasible sched-
ule (i.e., schedules satisfying C1 and C2) with a set of
atom schedules (atom, for short), such that the set of atoms
needed for representing all feasible pure strategies has a
much smaller size than the pure strategy set. The lower level
program is then reformulated as a much compacter one that
optimizes over the set of atoms.

             

Figure 1: ASM: represent a schedule with a set of atom schedules.

We denote an atom as a tuple o〈j, k〉, where j and k are
the indices of its beginning and ending periods, respectively.
Following o〈j, k〉, a taxi driver works continuously from pe-
riod j to k. A schedule is represented by a set of atoms, each
representing a section of working periods (Figure 1), i.e.,

s = {o〈j, k〉 | 1 ≤ j ≤ k ≤ n, sj = sj+1 = · · · = sk = 1}.

Note that for notational simplicity, a pure strategy s is de-
noted as either a 0/1 vector or a set of atoms. Let the set
of all needed atoms be O={o | o ∈ s, s ∈ S}. A weight
wo is assigned to each o ∈ O to represent the percentage of
drivers who use it. It follows that PoW can be computed as:

pi =
∑

o∈O
wo · δ(o, i), ∀i = 1, . . . , n,

where δ
(
o〈j, k〉, i

)
=

{
1, if j ≤ i ≤ k (i.e., o covers period i)

0, otherwise

Thus p is now defined as a function of w = 〈wo〉, denoted
as p = p(w); and the optimization program can be refor-
mulated as a compact one that takes w, instead of x, as the
variable. Specially, when C2 are enforced on S, we only
need atoms no longer than nc periods, so that

O ⊆ {o〈j, k〉 | 1 ≤ j ≤ k ≤ n, 0 ≤ k − j < nc},

and there are less than nc · n atoms in O and as many vari-
ables in the compact formulation. Specifically, the compact
formulation is structured as follows.

max
w∗,f

D
(
p(w∗), f

)
(7)

s.t. w∗ ∈ arg max
w∈W

U (p(w), f) , (8)

(a) System efficiency (b) Total working time

Figure 2: Effects of scheduling constraints

(a) Runtime scaling-up (b) Memory use scaling-up

Figure 3: Performance of ASM

where

W =

w ∈ R|O|
∣∣∣∣∣∣

0 ≤ wo ≤ 1, ∀o ∈ O
pi(w) + qi(w) ≤ 1, ∀i=1, . . . , n∑n

i=1 p
i(w) ≤ nw


and, similar to PoW, qi(w) is the percentage of taxis switch-
ing from working to resting in period i − 1. Namely,
qi(w) =

∑
o∈O wo · δ′(o, i), where δ′

(
o〈j, k〉, i

)
= 1, if

k = i− 1 (i.e., o ends at period i−1), and δ′
(
o〈j, k〉, i

)
= 0

otherwise. It can be proven that the feasible setW ensures
that the compact formulation is equivalent to the original for-
mulation 2013. Namely, the two formulations have the same
solution in terms of the objective value D and fare price f .

Experimental Evaluations
We evaluate the effect of scheduling constraints and the scal-
ability of ASM. This is in addition to experimental evalua-
tions of the existing work (Gan et al. 2013).

Effects of the Constraints We compare experimental re-
sults with and without constraints C1 and C2 to examine
their effects. As shown in Figure 2(a), system efficiency
peaks at U2.60 when constraints C1 and C2 are considered,
whereas the curve continues to increase when constraints are
ignored, leading to an imprecise optimal fare of U5.00 (or
even higher). The extra system efficiency improvement is in
fact unreachable due to impractical overworking of the taxi
drivers. This can be seen from Figure 2(b), where the vari-
ances of PoW show that taxi drivers are reluctant to work
during the peak time because of the scheduling constraints.

Performance of ASM The scalability of ASM is exam-
ined with problems with up to 100 periods. Figures 3(a)
and 3(b) depict the scalability of runtime and memory use
of ASM, in comparison with scalability of the naı̈ve formu-
lation (Eqs. (5)–(6)). Whereas the naı̈ve formulation runs
out of memory at 15 periods, ASM can handle problems of
up to 100 periods very easily.
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Challenges and Open Issues
While the current model and algorithm are capable of han-
dling TEMPs with specific settings, they are still inadequate
for more extensive and complex real-world scenarios.

More Scalable Algorithms
In practice, customer demand and road condition might be
different in different days of a week. The cycle of the taxi
market is more likely to be a week rather than a day. In order
to cover a whole week at the same level of granularity, more
periods are required. Moreover, when the model needs to be
more fine-grained to achieve higher accuracy, shorter peri-
ods, such as half an hour or even 10 minutes, are required
and the number of periods increases accordingly.

Arbitrary Scheduling Constraints
To enhance the practical effectiveness of the optimized fare,
it is also necessary to consider other types of scheduling
constraints in some other real-world scenarios. For exam-
ple, when the model is more fine-grained, each period has
a shorter duration (e.g., half an hour), and it is unrealistic
that a taxi driver rests or works for only one period each
time since it takes time and effort to find parking when they
switch. Therefore, the following constraints may need to be
considered.

• C3: A taxi driver should not work continuously for less
than ňc periods in any schedule in S.

• C4: A taxi driver should not rest for less than ňr periods
in any schedule in S.

Besides, in a well regulated market, it is essential to take
into account the impact of market regulations. For exam-
ple, in some cities, taxi drivers are not allowed to switch
from working to resting during peak hours. The regulation
was introduced because it was frequently reported that large
numbers of taxi drivers refuse to take passengers in the name
of a daily working switch (in these cities, a taxi is usually
operated by two drivers working on alternative days, so that
when one’s shift ends, the driver needs to hand the taxi to
the other driver).When the regulations are effectively imple-
mented (if not in megacities such as Beijing and Shanghai)
with the help of intensive supervision and heavy fines, un-
derstanding taxi drivers’ reaction to the regulations is essen-
tial for the optimization. We consider:

• C5: A taxi driver should not switch from working to rest-
ing during peak time in any schedule in S.

Unfortunately, ASM is designed for TEMPs with only con-
straints C1 and C2, and cannot handle the above constraints.

Heterogenous Taxis and Taxi Drivers
The modeling of taxi drivers’ strategic behaviors is currently
established based on the assumption that all taxis and their
drivers in the system are homogenous. Although this is gen-
erally true in taxi systems of many cities, there are excep-
tions which require special consideration. For example, as
mentioned before, in some cities a taxi can be operated by
more than one drivers—usually two, such that one works

for the daytime shift, and the other works for the night-
time shift. In this case, taxis might run for a longer time,
and constraints C1 and C2 might actually be violated. Be-
sides, in some cities, taxis might not all belong to the same
class. Taxis from different companies, or of different car
models might adopt a slightly different fare scheme. An-
other remarkable case is the dispatching mode, instead of
roaming mode, adopted by some taxis. All these cases re-
sult in heterogenous strategy spaces or utility functions of
the taxi drivers, and call for relaxation of the homogeneity
assumption.

Uncertainties in Human Behaviors
Uncertainties have always been issues in modeling human
being’s intelligent behaviors. In a taxi system, taxi drivers
face uncertainties when implementing their strategies. Since
a taxi driver cannot decide the time needed to serve the next
customer, when it is approaching the end of her schedule,
she will need to decide whether to take another customer or
not: taking another customer, the taxi driver may have to
work overtime when it takes too long to serve the next cus-
tomer; otherwise, the taxi driver ends her work ahead of the
scheduled time, resulting in less revenue generation. Usu-
ally, a taxi driver chooses her action according to the time
and the market conditions. The way taxi drivers cope with
the uncertainties might also differ among individuals. This
might also be attributed to the heterogeneity of taxi drivers.

Impact of App-based Services
The fast development of smart phones in recent years has
made available vast new apps and services at hand. Ride
sharing apps and customer-to-driver taxi-booking apps, such
as Uber and Didi Dache, which connect taxi drivers with
customers looking for a ride, are reshaping the traditional
taxi market. Notably, these services are more than a sim-
ple dispatching systems as it also makes available negotia-
tion between customers and taxi drivers, and provides wider
choices to not only the customers but also the taxi drivers.
Growing uses of these new services suggest the necessity of
considering them in taxi system researches.

Spatial Variances
The existing model only considered the time variances of
the taxi system, while spatial variances is also common in
taxi systems of modern cities, especially megacities. Den-
sity of customer demand, and levels of congestion might all
vary over different locations. These variances pose signifi-
cant impact on the taxi system’s performance, and need to
be considered in the future work.

Conclusions
This paper presents a game theoretic approach for the taxi
system efficiency optimization problem. The approach in-
cludes the following key components: 1) a multi-period
taxi system model considering taxi drivers’ strategic behav-
iors; 2) a bilevel optimization program as the formulation
for TEMP; 3) ASM—a compact representation to address
the scalability issue of the bilevel program. By modeling
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taxi drivers’ strategic behavior from a game theoretic per-
spective, the approach opens a new door to taxi system re-
searches.

References
Alshamsi, A.; Abdallah, S.; and Rahwan, I. 2009. Mul-
tiagent selforganization for a taxi dispatch system. In 8th
International Conference on Autonomous Agents and Multi-
agent Systems, 21–28.
Au, T.-C.; Shahidi, N.; and Stone, P. 2011. Enforcing
liveness in autonomous traffic management. In Proceed-
ings of the 8th AAAI Conference on Artificial Intelligence
(AAAI’09), 1317–1322.
Bazzan, A. L. 2009. Opportunities for multiagent sys-
tems and multiagent reinforcement learning in traffic con-
trol. Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS) 18:342–
375.
Boyd, S. P., and Vandenberghe, L. 2004. Convex optimiza-
tion. Cambridge university press.
Cheng, S.-F., and Nguyen, T. D. 2011. Taxisim: A mul-
tiagent simulation platform for evaluating taxi fleet opera-
tions. In Proceedings of the 2011 IEEE/WIC/ACM Inter-
national Conferences on Web Intelligence and Intelligent
Agent Technology-Volume 02, 14–21. IEEE Computer Soci-
ety.
Douglas, G. W. 1972. Price regulation and optimal service
standards: The taxicab industry. Journal of Transport Eco-
nomics and Policy 116–127.
Dresner, K. M., and Stone, P. 2007. Sharing the road: Au-
tonomous vehicles meet human drivers. In IJCAI, volume 7,
1263–1268.
Dresner, K., and Stone, P. 2008. A multiagent approach to
autonomousintersection management. Journal of Artificial
Intelligence Research 31:591–656.
Gan, J.; An, B.; Wang, H.; Sun, X.; and Shi, Z. 2013. Opti-
mal pricing for improving efficiency of taxi systems. In Pro-
ceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence (IJCAI’13), 2811–2818.
Kim, Y.-J., and Hwang, H. 2008. Incremental discount pol-
icy for taxi fare with price-sensitive demand. International
Journal of Production Economics 112(2):895–902.
Orr, D. 1969. The “taxicab problem”: A proposed solution.
The Journal of Political Economy 77(1):141–147.
Pulter, N.; Schepperle, H.; and Böhm, K. 2011. How agents
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