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Abstract

Although techniques for finding Nash equilibria in ex-
tensive form games have become more powerful in re-
cent years, many games that model real world interac-
tions remain too large to be solved directly. The current
approach is to create a smaller abstracted game, allow-
ing the computation of an optimal solution. The strategy
can then be used in the original game. Considering pub-
lic information to create the abstraction can be strategi-
cally important, yet very few of the previous abstrac-
tion algorithms specifically consider public information
or use an expert approach. In this paper, we show that
the public information can be crucial, and we present
a new, automatic technique for abstracting the public
state space. We also present an experimental evaluation
in the domain of Texas Holdem poker and show that it
outperforms state-of-the-art abstraction algorithms.

Introduction

An extensive game with imperfect information is a general
model for interactions of multiple agents in real world situ-
ations. Even though there has been substantial progress in
solving techniques for these games (Zinkevich et al. 2007;
Johanson et al. 2012), the size of many problems makes
the computation intractable. For example, no-limit Texas
Hold’em Poker (played at the Annual Computer Poker Com-
petition) has approximately 1065 game states (Johanson
2013), making it impossible to even store such big strategy.

The current approach to deal with large extensive-form
games is to create a smaller, abstracted game. The strategy
computed in the abstracted game is then mapped back to
the original game. Ideally, an equilibrium from the abstract
game results in an equilibrium in the original game (lossless
abstraction). Finding lossless abstractions for a subclass of
extensive form games called game of ordered signals was
studied in (Gilpin and Sandholm 2007).

Unfortunately, lossless abstraction can still produce a
game that is far too large, necessitating lossy abstraction.
In that case, the goal is to produce a lossy abstraction that
retains some guarantees about the strategy’s performance
(exploitability bounds) in the original game. This was elab-
orated in (Kroer and Sandholm 2014), where authors present
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an algorithm that 1. given the maximum number of nodes
for the abstraction, finds the abstraction having the mini-
mal bound 2. given the desired bound, finds the smallest
abstraction. Unfortunately, both of these algorithms are no
easier than finding the equilibrium in the original game (and
the fact that we cannot solve the original game is the very
reason why we usually seek an abstracted game).

This leaves us with the framework of creating the ab-
stracted game, computing the strategy for the abstracted
game and finally checking the performance of the result-
ing (mapped) strategy of the original game. These works
include (Johanson et al. 2013) (Gilpin, Sandholm, and
Sgrensen 2007) (Ganzfried and Sandholm 2014), all of them
focusing on Texas Hold’em poker.

Abstraction techniques from these publications consider
only the overall properties of the hand. This informa-
tion does not correctly capture whether these properties
come from the community cards (public information) or the
agent’s private cards. It is strategically important to distin-
guish information about the game state that is public (each
player can see it), and the information that is private (known
only by one player).

Surprisingly little attention was devoted to handling the
public information. For example, at the Annual Computer
Poker Competition (ACPC), most of the participants do not
deal with public information at all, or use an abstraction cre-
ated by human experts to do so. The only automatic public
information abstraction, that we are aware of, appeared in
(Waugh et al. 2009), but the used metric does not capture
the public state distance well. As far as we know, the au-
thors did not use this public information abstraction in their
submission for the no-limit Hold’em Poker in ACPC (while
our algorithm shows substantial performance gains in this
particular game).

In this publication, we present new technique for abstract-
ing public information. To examine our algorithm, we show
that it outperforms state of the art techniques in the domain
of no-limit Texas Hold’em poker.

Motivation

In this section, we argue that considering public information
separately can be crucial to creating a good abstraction. Pre-
vious abstraction techniques evaluated only Texas Hold’em
poker, and even within the poker domain it is possible to find



counterexamples in which these techniques fail (although
the weaknesses of these approaches are not limited to the
poker domain).

Consider the “stud” variants of poker. In stud poker
games, players are dealt a combination of private and pub-
licly visible cards, but there are no community cards. Bet-
ting rounds take place after every deal. For instance, there
are five rounds in seven-card stud. In the first round, each
player is dealt two private cards and one public. In the sec-
ond, third and fourth rounds, each player is dealt one public
card. Finally, in the fifth round, players are dealt one private
card (making it seven cards in total, three private and four
public).

The distinguishing property between Texas Hold’em and
stud from the public information perspective is that some of
the cards dealt to the player are visible to the opponent. Con-
sider a situation where the player holds (AMA®) — 2979
at the second round (the first two cards are private, the other
ones public). Current bucketing techniques would merge
this situation with (297%) — A& A#, since they consider
only the overall situation. This is clearly wrong, since these
situations are actually extremely different (in the first one
the opponent knows that the player holds a pair of aces, in
the second one the player also holds a pair of aces, but the
opponent does not know it).

In this example, the necessity to consider the public in-
formation comes from the need to distinguish situations that
differ only in the knowledge that the opponent have about
them. This property is not limited to these card games, and
our abstraction algorithm would be a good choice in these
cases.

In the games where the opponent can see some of the
player cards (such as the stud example), abstraction algo-
rithm that can separate states based on the public situation
would be superior to the current approaches. Looking back
to the Texas Hold’em, one could still benefit from the public
information - the community cards in this case. The board
structure can provide some information about the opponent
(although not as directly as seeing the opponent’s card), and
considering this information can lead to better performing
strategies as we will show in the experimental section.

Overview of Our Approach

Our work naturally falls to the class of abstraction algo-
rithms referred to as the abstraction as clustering (Johanson
et al. 2013). In these settings, creating the abstraction falls
down to 1. definition of a distance measure 2. computing
the desired number of clusters using a clustering algorithm

Public State Distance

We view the distance between two public states as a distance
between two sets. The set members are all possible games
states sharing the same public information. In the poker, the
set members would be all hands that the player can hold on
a specific board.

To compute the distance between two sets, we use the
Earth Movers Distance (EMD), which naturally extends
the notion of distance between elements to distance between
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entire sets. The distance between two sets is then a function
of distances between any two elements from these sets.

It is crucial to define a measure of the distance between
two elements (the ground distance) that is meaningful in
the target domain. In this paper we examined two differ-
ent choices of ground distance for no-limit Texas Hold’em
Poker

Our Clustering Technique

Although most of the state space abstractions use k-means as
the clustering algorithm (Johanson et al. 2013; Gilpin, Sand-
holm, and Sgrensen 2007), our approach uses k-medoids
clustering. In our settings, the number of nodes (sets) is
relatively small, while computing the distance between two
nodes is not a cheap operation. This contrasts with previ-
ous approaches, where the number of nodes is large, while
the distance function is cheap. Using k-medoids, we can
precompute the distance table (containing the distances be-
tween any two public states) and then compute the clusters
easily.

Public State Distance
Earth Mover’s Distance

The EMD defines a distance between two signatures (a sig-
nature is a set of tuples (element, weight)) and is based on
a solution of well-known transportation problem. The trans-
portation problem is used for signature matching by defining
one signature as the supplier and the other as the consumer,
and solving the optimal transportation of weight using the
cost matrix D. D = [d; ;] is called the ground distance
matrix, where the element d; ; is the ground distance be-
tween element ¢ in the first signature and element j in the
second.

Intuitively, EMD measures the "minimum work” needed
to change one signature into another. If we think of a sig-
nature as a mass of earth properly spread in space , then a
unit of work is defined as moving a unit of earth by a unit
of ground distance. For the formal definition see (Rubner,
Tomasi, and Guibas 2000).

The EMD naturally extends the notion of distance be-
tween single elements to distance between sets of elements.
If the ground distance is a metric and the total weights of
two signatures are equal, the resulting distance also defines
a metric. EMD was successfully used in the poker domain
by state-of-the-art poker abstractions (Johanson et al. 2013;
Ganzfried and Sandholm 2014).

Public State Distance via EMD

The way we use EMD for a distance between the public
states, the signature corresponds to one public state and the
elements in that signature are all information sets from that
public state. An arbitrary constant w is used for the weights
of signature’s elements, same for each element.

More specifically, in the case of poker boards, signature
represents a specific board and the signature’s elements are
are all hands which a player can hold on that board. Mean-
ingful ground distance definition is crucial, and we present
two ground distances later in the text.



Computing the EMD

To compute EMD, we can use linear programing (note that
the transportation problem can be formulated as a system
of linear equations). This optimization problem is also an
instance of the minimum-cost flow problem and, when the
weight and the count of elements in signature are constant,
also an instance of the minimum-weight perfect matching
problem. There are fast, polynomial time, combinatorial
algorithms to address both of these problems.

Poker Application

Poker has become a standard test bed for large imperfect-
information games, with Annual Computer Poker Compe-
tition the leading evaluation framework for the computer
agents (ACPC 2014). We decided to evaluate our algorithm
in this game as well.

While our approach would probably perform very well in
the stud-like games (see the motivation section), there are
no other automatic abstraction approaches published for this
domain. Since this would make empirical evaluation im-
practical, we decided to limit ourselves to the well studied
and active field of Texas Hold’em Poker. We test our imple-
mentation against current abstraction algorithms to assess
the impact of considering public information.

We used our public state distance to cluster the public
states on the second round (flop) and existing abstraction
algorithms for the subsequent rounds (turn and river).

When computing the distance between two boards
using the EMD, each signature represents a specific
board and the elements are all of the hands the player
can possibly hold on that board. For example, one
board/signature is (342#2&) and the elements are
{{(AMAW), (AMK®),...(7T67&),...}

For the EMD computation, we need to specify a ground
distance between hands and we will now discuss the two
ground distances.

344959 : 4484
3a4v5y : 8vOv
344959 : 84904
344959 | 2464 <

4484 1 546474
8YOY 1 5aGe74
849¢: 546474
3 2464 54647

Figure 1: Board distances viewed as the minimum-weight
perfect matching problem. Edge’s weight corresponds to
the ground distance. The board on the left is (30495%)
and (5464 74) on the right. The bold red edges show how
this small matching problem should be solved. For example,
448 from the left is paired with 286G, since these hands
form a straight on corresponding flops.

Distribution Aware Ground Distance

The first ground distance we examined was presented in (Jo-
hanson et al. 2013). They defined the distance between a pair
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of hands as the EMD between their hand strength distribu-
tions.

A hand strength distribution is a histogram that summa-
rizes the distribution over possible end-game hand winning
probabilities against the random opponent hand distribution.

Unfortunately in the case of Texas Hold em, the resulting
clusters had a poor quality. To leverage the public informa-
tion in card games where the player’s cards are not visible,
we examined a different distance. The second ground dis-
tance between two hands we evaluated was based not only
on the current properties of the hand, but on the hand prop-
erties on all previous rounds as well.

Distribution History Aware Ground Distance

While the EMD between hand strength distributions is ade-
quate for describing a hand’s properties on the current round
of the game, it makes sense to include consideration of how
its potential has changed. To capture the hand properties for
previous rounds, we will not represent hands with a single
hand strength histogram, but rather as a vector of several
histograms, one for each preceding round and one more for
current one. We call this vector the distribution history
vector.

We define the ground distance d between two distribution
history vectors p = (p;,..,pn) and ¢ = (¢, ..., qn) as the
mean of corresponding EMD distances.

Z EMDTEanz')

)

dp,q =

i=1...n

and call it distribution history aware distance . Using
this distance as a ground distance resulted in good empirical
results in the domain of no-limit Texas Hold’em poker.

Final Abstraction

Computing the distance for all boards and clustering the
boards based on this distance is the first step in creating the
abstraction for the flop round. Once we have all boards clus-
tered, we still need to bucket the hands within these clusters.

For this purpose, an existing bucketing algorithm can be
used and we chose the distribution aware bucketing due
to its good performance, low computational cost and easy
implementation (Johanson et al. 2013).

Implementation

To compute the EMD, we model the problem as the
minimum-weight max-flow problem. Since there are 1176
private hands the players can hold after the flop, the final
graph has 2352 nodes (42 for source, target) and 1385328
edges. To solve this combinatorial problem, we used the
lemon library (Dezsd, Jiittner, and Kovacs 2011), which is
a C++ library providing efficient implementations of combi-
natorial optimization tasks.

Running the minimum-weight perfect matching on the
graph of this size took around 100ms on average. Since we
need to compute this distance between any two boards, it
would take around 200 cpu-days to compute all these dis-
tances between non-isomorphic flops. Fortunately, these



Hand: 5429, Board: 242&2¢ Hand: AMAWY, Board: A¢A&Ka

Preflop histograms Flop histograms

Figure 2: Hands strength histograms for two poker hands
and two rounds of Texas Hold’em poker. Histograms for
the flop round are on the top row, histogram for the preflop
round on the bottom row. Each column represents a single
combination of private hand and board cards. Both hands
form the best possible combination on the flop round, conse-
quently resulting flop histograms are the same and the EMD
between these histograms is 0. Thus also distribution aware
ground distance would consider these two hands as same
situation. However, the starting hands were very different.
The 5429 is one of the weakest starting combination with
low potential to improve. The AMAY is the strongest pos-
sible starting hand. Therefore also their preflop round hand
strength histograms are very different as we can see in the
second row of figure. The EMD of these two histograms is
50.854. Thus the resulting distribution history aware ground
distance between the hands is 25.427 and they are consid-
ered as very different. It is very important to capture this
difference since both hands would be played very differently
on the preflop round by any reasonable strategy.

distances can be computed independently, and we ran 20
instances in parallel, finishing the computation in approxi-
mately 10 days.

Since we computed the distances for less than 2000
boards, running the k-medoids algorithm using this distance
table is very fast. We calculated the final 20 clusters in less
than a minute.

Resulting Clusters

The ultimate reason for doing our public state space clus-
tering is to improve the abstraction performance. However,
having the resulting clusters, it’s interesting to see whether
the clusters have any human interpretation. To create these
clusters manually, domain experts typically write a set of
rules to cluster the flop (same colors, pair on the board, high
card, ...).

Investigating the Figure 3, we see that the clusters indeed
have an easy domain interpretation. For example the cluster
number 2 consists of flops forming a possible straight. Clus-
ter 12 consists of flops where the cards have the same color,
and cluster 15 contains pairs and a high card. Clusters 19
and 20 look similar (ace and a high card), but the later one
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contains flops having a higher third card.

T [ 36242& | 161426 | 565Mi% | 565Mik
2 | SOAM3M | GOIA2® | GOOA3h | Ge-ALe
3| S6362& | SOIA3A | 063624 | 061A2&
4 | SeGe3A | 00563A | 00Ge2A | 06Gei%
5| SeiMidk | Te262& | TOTASS | T6262&
6 | 0OSAI% | 0OSAIe | 06SeTh | T AL
T | TOTM56 | JOTAI® | JOTA R | JOTAA
S | J#S6Ghk | J8SeTA | TOOASE | JE0GA
9 | 565M5&% | 000AGe | TOTAZA | TOTA3A
10| JOGO3M | Q®5A3® | Q®shih | 065638
1| J#063& | JEO63A | J60ei& | J 60614
12 765646 | TOGE26 | J67626 | 63656
I3[ J#0A3® | JOTAIA | Q8T 3% | Q¢ Al
14| JOTAT® | QO TMSK | QO T60h | KOTATS
15[ QO0MT® | K1hik | K460h | KTATS
16 | QOGAidh | KOCA R | A®362& | ASCAL®
17| KO0A2® | ASTA2® | AS763% | A3A2&
IS | KOTMCE | KOOAGA | K08Gh | ASTAGS
10 AS RI® | A6 8k | AGONS® | A6 638
20 | AST®0M | AS AS® | AGKAIA | ASKASA

Figure 3: The resulting 20 clusters. Four flops from every
cluster were randomly sampled to create this table.

1 I I
0 5 10 15 20 25 30

Figure 4: Error function of k-medoids using different num-
ber of clusters. For each k ranging from 1 to 30, we ran
100 random initialization of the algorithm. Non-existence of
clear “elbow” point suggests that increasing the number of
clusters could further improve the abstraction performance.

Summary of Our Approach

First step in our approach is to cluster flops into 20 clusters.
For that, we need to compute the distance matrix between
all flops.

Each board card combination is represented as a set of
hands which a player can hold on that board. The distance
between boards is defined as EMD between these sets. We
used minimum-cost flow solver for EMD computation, and



distribution history aware distance as the ground distance.
Once the distance matrix is computed, public board combi-
nations are clustered into the buckets with k-medoids algo-
rithm.

When public bucketing was created, arbitrary hand clus-
tering algorithm can be used to cluster private hands. We
used distribution aware bucketing for this purpose.

Experiments

There are many options available for constructing abstrac-
tions in large games, such as Texas Hold’em, and typically
even the best abstraction techniques do not have any the-
oretical guarantees. Therefore, the majority of progress in
abstraction generation has been established through empiri-
cal evaluation. This involves creating abstract games, find-
ing the optimal strategy (Nash Equilibrium) in these games,
and evaluating resulting strategy in the real game.

There are multiple methods for evaluating the perfor-
mance of the resulting strategies. These include in-game
performance against other agents (one-on-one play), in-
game performance against an unabstracted Nash equilib-
rium, and exploitability in the real game. (Johanson et al.
2013) As the second and third methods are not yet tractable
in no-limit Texas Hold’em due to its size, we compared
strategies created with different abstraction methods using
the one-on-one play approach.

We computed strategies using our in-house implementa-
tion of the CFR algorithm (Zinkevich et al. 2007), and ran
the resulting strategies against each other in the unabstracted
game.

This comparison method is currently used to compare
abstraction algorithms in no-limit Texas Hold’em poker
(Ganzfried and Sandholm 2014), and it produces results
comparable to the more sophisticated methods (Johanson et
al. 2013).

We chose a combination of distribution aware abstrac-
tion and opponent hand strength clustering as the baseline
for the experiment. To make the experiment fair, both ab-
stractions, baseline and our new one, used identical betting
abstraction and equal number of buckets on each round.

Since we only computed our public state clusters for the
flop round, we also used the same bucketing for the preflop,
turn and river rounds in both abstractions.

The Abstracted Game

When comparing two abstractions using one-on-one play,
there are several game parameters affecting the final results.
In the case of Texas Hold’em poker, these include size of the
state space abstraction (number of buckets), stack size and
betting abstraction.

In the game we chose for the evaluation, the starting
bets were 100 chips for the big blind and 50 chips for the
small blind. These numbers were borrowed from the ACPC
competition, the most established platform for the computer
poker. In contrast to the ACPC, where the players have
20, 000 chips at the start of the game, we chose smaller num-
ber to make the abstracted game smaller and easier to solve.
In our experiment, the starting stack size for both players
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was 2, 500 chips. This fact also reduced variance during the
evaluation, allowing us to obtain very tight confidence inter-
vals.

State Space Abstraction

As has become prevalent in most recent poker abstractions,
we used imperfect recall for the state space abstraction.
This has shown to outperform perfect recall abstractions in
this particular domain (Waugh et al. 2009). At the start of
each round, the player forgets all information from previous
rounds.

This property made it both valid and easy to replace the
original flop bucketing in the baseline abstraction with our
new public bucketing, while keeping the abstraction un-
changed in all other rounds.

To evaluate the effect of the abstraction size, we created
abstractions of two sizes having 1000 and 2000 buckets for
flop, turn and river (there were 169 preflop buckets in both
abstraction).

In both cases, the baseline strategy used lossless abstrac-
tion for the preflop round, distribution aware bucketing (Jo-
hanson et al. 2013) for the flop and turn rounds and finally
the opponent cluster hand strength bucketing (Johanson et
al. 2013) for the last river round. This type of abstraction is
currently used by some of the top computer poker agents.

Our new abstraction differed only in the flop round, where
we used our public flop clusters. The game states were ini-
tially clustered using 20 top level clusters based on the com-
munity cards. For each top level cluster, we used distribution
aware bucketing to create 50 inner buckets (for the 1000 to-
tal bucket abstraction), and 100 inner buckets (for the 2000
total buckets abstraction).

The number of top level clusters was chosen using a very
little experimental evaluation. The best ratio of top level vs
inner level buckets can vary from domain to domain. Fig-
ure 4 suggests that increasing the granularity of the top level
buckets improves the quality of public information cluster-
ing in our domain, but one would have to evaluate the re-
sulting bucketing to see if increasing the number of top level
buckets leads to improved performance of the final agent.

Results

Results of the matches together with confidence intervals are
displayed in Figure 5, values are in milli big blinds per hand
(mbb/h).

1000 buckets
2000 buckets

3.473mbb/h £ 0.4 (95% conf. interval)
4.366mbb/h £ 0.04 (95% conf. interval)

Figure 5: The experimental results. The decimal point dif-
ference in confidence intervals is not a typo, we ran many
more iterations in the second case.

Our abstraction outperformed the baseline abstraction in
both evaluated games, suggesting that it is beneficial to con-
sider the public information when creating abstractions for
no-limit poker.

The winnings in the larger abstraction are greater, which
is somewhat intuitive. Once the hand strength distribution



abstraction is fine-grained, the gain from the additional pub-
lic information is much more significant.

It would be very interesting to compare our automatic
approach with human expert abstraction used by the top
ACPC competitors, but unfortunately, none of these is pub-
licly available.

Conclusion

While previous publications examined the effect of imper-
fect recall (Waugh et al. 2009) or hand potential (Ganzfried
and Sandholm 2014) on the domain of no-limit poker, this is
the first publication dealing with the effect of public infor-
mation in this domain.

We also presented a new public information abstraction
technique, which is a natural member of the “abstraction as
a clustering” class of algorithms.

Our algorithm improves the generality of the current state-
of-the-art toolkit for solving imperfect information games.
Applying this toolkit to a new domain consists of two sim-
ple steps - creating a game abstraction and solving the ab-
stracted game. Current state space abstraction algorithms
would fail to create well performing abstraction in games
where the public information plays a crucial role, thus our
algorithm should be very good choice for these games. Our
experimental results also showed a significant improvement
in the standard test bed for games with imperfect informa-
tion, the no-limit Texas Hold’em Poker.

Interestingly enough, our clusters for public poker boards
presented in the paper displayed an easily interpretable do-
main structure. This structure can be of interest to domain
experts.

Future Work

It would be very interesting to evaluate performance of
our new abstraction on other imperfect information games.
There is also lot of space for improvement in the no-limit
poker, since we implemented our technique only on the flop
round. Applying our technique for the later rounds could
significantly increase the performance of the resulting ab-
straction.

To make these experiments possible, we are planing to
speed up our algorithms by sampling the data, and by using
approximations and heuristics for the EMD computations,
presented in (Ganzfried and Sandholm 2014).
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