On Keeping Secrets: Intelligent Agents and the Ethics of Information Hiding

Aaron Hunter
British Columbia Institute of Technology
Burnaby, BC, Canada
aaron_hunter@bcit.ca

Abstract
Communication involves transferring information from one agent to another. An intelligent agent, either human or machine, is often able to choose to hide information in order to protect their interests. The notion of information hiding is closely linked to secrecy and dishonesty, but it also plays an important role in domains such as software engineering. In this paper, we consider the ethics of information hiding, particularly with respect to intelligent agents. In other words, we are concerned with situations that involve a human and an intelligent agent with access to different information. Is the intelligent agent justified in preventing a human user from accessing the information that they possess? This is trivially true in the case where access control systems exist. However, we are concerned with the situation where an intelligent agent is able to use a reasoning system to decide not to share information with all humans. On the other hand, we are also concerned with situations where humans hide information from machines. Are we ever under a moral obligation to share information with a computational agent? We argue that questions of this form are increasingly important now, as people are increasingly willing to divulge private information to machines with a great capacity to reason with that information and share it with others.

Introduction
Information hiding refers to the process in which some piece of information is deliberately made difficult or impossible to access. One obvious situation where information hiding occurs is in cryptography, where messages are explicitly encoded to prevent them from being read by unauthorized individuals. The notion of information hiding is also well-known to software developers in the form of encapsulation, where the implementation of certain functions is kept hidden from other developers. Beyond these technical domains, information hiding is also common in normal human discourse. However, in this context, hiding is often associated with some form of dishonesty or deception; the ethics of hiding information from human allies can often be questioned. In this paper, we suggest that the question becomes more difficult when we introduce intelligent agents. Are intelligent agents obliged in any moral sense to be open and honest with respect to the information that they possess? And conversely: do we have any moral obligations to share information with an intelligent agent?

Motivation
Consider two (human) agents, Alice and Bob. If Alice holds some particular piece of information, her default opinion is likely to be that she is entitled to decide if it should be shared with Bob. However, if the information in question is “about” Bob or it directly impacts him, then she may feel some obligation to share it. Informally, there is an asymmetry here; Bob might cast a wider net in specifying what Alice is obliged to share with him. Notwithstanding any small differences in scope, it is quite likely that Alice and Bob agree that some facts should be shared while other facts may be kept secret. There is a shared understanding with respect to keeping secrets.

Now, suppose that we introduce a third entity: a computing device that contains a large database of information about financial transactions, along with some capacity to draw intelligent conclusions from this data. We will call this computing device CRL-2000. Suppose that Alice would like to obtain information from CRL-2000 about a particular set of transactions, and she is refused access to the information. Consider two possible reasons for this refusal:

1. CRL-2000 is enforcing an access policy given by a (human) developer.
2. CRL-2000 is deciding to refuse access based on an access policy the device has learned or created.

Most people today would accept (1), or would at least accept that (1) can be understood in terms of existing work on the ethics of information transparency (Turilli 2002). However, the situation in (2) is more difficult to accept. Informally, we tend to oppose the notion of a machine that is able to willfully prevent access to information. But is this a moral question? To put it differently: is this kind of device under any moral obligation to Alice?

We can think of a simple machine that stores data as a tool; so moral issues related to CRL-2000 can be framed in terms of the people that developed the software. The situation becomes more interesting when CRL-2000 is upgraded to CARL, the intelligent assistant. If CARL makes decisions based on emergent intelligence due to learning algorithms,
then it may no longer be easy to hold the developers morally accountable. At some point, we need to consider to what extent the agent is a tool and to what extent its agency demands ethical autonomy. Looking towards the future, will there come a time when our computing machines have sufficient agency to be owed some measure of open and honest communication? If we apply human-type obligations, one might suggest that CARL is entitled to know details regarding his own implementation. This may be problematic from the perspective of software engineering and intellectual property protection. While it is tempting to simply dismiss this discussion as pure speculation, we argue that a real understanding of the ethics of information hiding will be important as intelligent machines have increasing levels of autonomy.

Contributions

The scenario in the previous section leads us to believe that the ethics of information hiding changes when intelligent agents are introduced. This paper makes two main contributions to work in this area. First, we make the problem explicit and practical, by presenting a precise characterization of information hiding in this setting and by abstracting the main ethical questions. Second, we present preliminary ethical arguments to support the view that information sharing obligations can exist between humans and artificial agents. While it is possible in this regard to present science-fiction type scenarios, we keep the discussion grounded in an ethical reality that is not too distant from our current situation.

Preliminaries

The Players

To facilitate the discussion, it is important to identify the key categories of agents involved. It is tempting to distinguish three distinct categories.

1. The set of intelligent computing agents. These are computing devices with the capacity to make decisions that are normally associated with intelligent reasoning.

2. The set of users. These are humans that may interact with intelligent computing agents, but are involved in their creation or development.

3. The set of developers that is involved with creating artificial agents.

Consider the distinction between a user and a developer. We suggest that this distinction is artificial for several reasons. First of all, the notion of a developer is too vague to be useful. Surely we can not restrict the term to only apply to software developers; it would also need to include designers, technicians, managers and executives in some manner. More importantly, the notion of a developer is not uniquely human. In many cases, we expect intelligent agents to assist in the development of other intelligent agents. Since our goal is to focus on information behind between humans and artificial agents, we do not necessarily want to have a single category of “developer” that overlaps both in an unspecified manner. As such, we focus just on two categories of entity: humans and intelligent computing agents, which we will refer to as intelligent agents for short.

Before proceeding, we need to dispense with the “computer as tool” objection to our ethical evaluation. Certainly there are cases where a computing device is best seen as a tool; in such cases, considering moral obligations between humans and computing devices is like considering moral obligations between humans and hammers. When a computing machine is just a tool developed to solve a particular problem, then the behaviour of the machine is due to the behaviour of the user or the developer at some level. We remark that the ethical considerations between software developers and the general public is a very general problem that is beyond the scope of the present paper.

We restrict our attention to intelligent agents that possess emergent intelligence, displaying behaviours that could not reasonably have been predicted by any software developer. The issue of moral obligations to artificial agents is an interesting philosophical problem that has been tackled elsewhere (Wallach, W. and Allen, C. 2008). We only consider this problem in the restricted setting of information hiding.

Information Hiding

In this section, we set out to specify precisely what we mean by the term information hiding. However, even the notion of information itself difficult to specify. In computing, the notion of information is generally understood in the context of Shannon’s information theory, where information is a quantifiable concept that is closely related to data. However, the word information is actually used much more broadly. Floridi suggests that the concept of information includes specifications of things, procedures, and high-level patterns (Floridi 2002). Our aim in this section is to avoid the difficult problem of defining information in a general context, by focusing only on the notion of information hiding.

We take a communicative view of information, so the only constraint that we place on the notion of information is that it is something that can be communicated in a language that is mutually intelligible to communicating parties. This is actually a very narrow definition of information, as there are clearly many instances where things are communicated or understood by extra-linguistic means. But this perspective is sufficient for our present purposes.

Two kinds of information hiding can be distinguished.

1. Passive information hiding occurs when an agent has information, but chooses not to share it voluntarily.

2. Active information hiding occurs when an agent refuses to give information following a request from another agent.

We can further describe information hiding according to the following orthogonal categorizations.

1. Weak information hiding refers to the situation where an agent makes some information hard to access, though still possible. In many cases, this is the case with encapsulation for the inner workings of a program.

2. Strong information hiding refers to the situation where an agent makes information essentially impossible to access. This is the case, for example, when information is protected by strong cryptography.
Information Hiding by Artificial Agents

We now turn to the question of information hiding by artificial agents. We need to be clear about the context under consideration. In principle, the amount of information shared by an intelligent agent will vary with different categories of users. This is indeed the same with humans; the information shared with our boss is different than that shared with a subordinate, which is in turn different than that shared with our family. In the case of machines, senior software engineers may be granted access to things like source code or design documents that are not available to others. But this kind of distinction is simply a result of some form of access control. We claim that varied levels of information access governed by an authorization scheme is categorically different from keeping a secret from all users based on some form of judgement. In this section, we are concerned with situations where intelligent agents hide information from users with the highest levels of authorization.

Straightforward Analysis

There are reasonably straightforward arguments against strong information hiding in the case of humans, and these can sometimes be applied to artificial agents as well. From the perspective of any form of virtue ethics (Hursthouse 2001), it is easy to argue that strong information hiding is not appropriate. Similarly, although Kant himself might discount intelligent agents from the category of rational beings (Hill 2009), a modernised version of Kantianism that includes intelligent agents would surely suggest that hiding information from human users is an unacceptable form of dishonesty.

Without delving into the notion of dishonesty, we could also focus on a consequentialist analysis of information hiding in terms of utilitarianism (Rosen 2003). We would like to ask if allowing intelligent agents to hide information from humans produces positive outcomes that outweigh the negative outcomes. The question of “allowing” or “dis-allowing” certain kinds of behaviour may be technically challenging. We have already indicated that we are interested in a context where intelligent machines make decisions based on judgements, and that these judgements are not controlled in a manner that is transparent to the developer. Although we would like to assume that high-level actions could be constrained, in reality this is not a reasonable assumption. Nevertheless, we can still ask whether restricting a machine’s ability to hide information would produce positive or negative outcomes.

Example

It is commonly believed that Winston Churchill was aware the town of Coventry was going to be bombed before it happened; he chose not to alert the town, because doing so would make it clear he was able to decode enemy transmissions. The suggestion is that he increased the chance of victory and reduced the total overall number of deaths in the war by allowing this isolated attack to occur. Note that this story may not be true, but that is beside the point. For the moment, assume that the decision attributed to Churchill was the correct decision from a utilitarian perspective.

Now we modify the scenario slightly, and we assume that Churchill has a smart phone with an intelligent assistant. The assistant knows everything about the war, and it also knows about Churchill’s personal affairs. In particular, the assistant knows that Churchill’s mother is currently visiting Coventry. If Churchill finds out that his mother is in Coventry, it may cause him to make the “incorrect” decision based on emotion. The assistant therefore decides to hide this information, which seems to be ethically correct from a utilitarian perspective.

The preceding example appears to give a scenario where an intelligent agent would be acting ethically by hiding information. This is true if we consider passive information hiding (not volunteering the information), but it is also true if we consider active information hiding (if Churchill asks about his mother’s schedule). One could argue that it would be unethical, from a utilitarian perspective, to enforce some sort of rule that requires the assistant to share all information.

This argument is somewhat deceptive. We are explicitly interested in information hiding by intelligent agents. Certainly one could present an argument suggesting that Churchill’s phone would be making an ethically poor decision by sharing the information. One could likewise make an argument that sharing the information was the right thing to do. In either case, the fact that the calendar is being shared by an intelligent agent is inconsequential. This problem could have been stated equivalently with a human assistant, and the ethical questions would be the same. We do not want to be distracted by this kind of problem, where the ethical issues are the same when we replace the intelligent agent with a human.

Interchangable Parts

We are explicitly interested in the difference between these two situations. In order to address this problem, we make the simplifying assumption that there are in fact cases where it is ethically acceptable for an agent to hide information from another agent. Based on the preceding section, it seems plausible that such situations exist if we take a utilitarian perspective. We would like to make this discussion more precise with some semi-formal definitions. An information-sharing scenario (ISS) is any situation in which two agents are communicating in a way that causes the amount of information held by each to change. We have just claimed that there exist information-sharing scenarios where one agent can improve overall utility by choosing not to divulge some piece of information to the other.

Consider an ISS where one agent (the hider) is ethically justified in hiding information from the other agent (the seeker). We call such a scenario a hiding-justified information-sharing scenario (HJISS). Note that each role in such a situation can be filled by a human or by an intelligent computing agent. Now consider the class of HJISSs in which the hider is a human. We say that such a scenario is human
replaceable if we can replace the human with an intelligent computing agent without changing the utilitarian outcomes at all. The question, therefore, is the following. Does there exist a human-hider HIJSS that is not human replaceable? In other words, can we imagine a scenario in which a human would be justified in hiding information, but an intelligent computing agent would not.

Example The basic problem can be addressed in a simple thought experiment. Consider the Churchill example again. Suppose that Churchill has a human assistant, and that the assistant informs him that his mother is in Coventry. Suppose further that Churchill then prevents the attack, and goes on to lose the war. One argue that the assistant made an ethically poor decision by sharing the information from a utilitarian perspective. Years go by, and the assistant is hit by a car and dies. When the autopsy is attempted, it is discovered that the assistant is actually an android. The question is this: Does the fact that the assistant is not a human affect our view of the decision to inform Churchill about his mother? It seems that the ethical character of the decision remains the same. Certainly, from a utilitarian perspective, the revelation that the decision was influenced by a machine does not change our perspective a great deal.

To be clear, we are taking a human-centric view of utility. So, regardless of the aggregate used to calculate the overall utility for a decision, we are only considering the benefits and the harms done to humans. From this perspective, the situation we are describing is actually rather easy to analyze. If we have a human-replaceable HIJSS, then we are really comparing two scenarios in which only a single agent has changed. The hider went from being a human to being a computing machine, but everyone else stayed the same. It is also reasonable to assume that any decisions eventually made by the seeker impact all agents in the same way (regardless of the human-status of the hider).

Under the preceding assumptions, the question as to whether or not intelligent computing agents should be able to hide information has a relatively clear answer. When we look at a human replaceable HIJSS, we can see that the only variation in utility in the human and machine versions of the problem are related to the agent that is hiding information. In the human version, the impact of hiding information may have positive or negative impacts on that individual human; these impacts may influence the overall utility of a certain choice. Hence, any distinction between correct ethical decision for the human and for the computing agent is selfish. This is not to say a human decision maker is being unethical when they are selfish of course; sometimes this is the right thing to do. But when that decision maker is removed, the only change in overall utility is due to selfish motivations.

We summarize our claims to this point. From the perspective of some ethical theories, information hiding is seen as an unethical form of dishonesty; in these cases, it is difficult to justify keeping secrets for humans and machines equally. The typical ethical justification for hiding information is based on some form of utilitarianism. We suggest that the same utilitarian arguments can then justify information hiding by an intelligent computing machine as well.

On The Acceptance of Information Hiding
The preceding discussion has attempted to address the ethics of information hiding by intelligent computing agents. Our focus has been on a situation in which intelligent computing agents exist with the capacity to make independent, rational decisions. We have suggested that the notion of information hiding by such machines can be justified in the same manner as information hiding by humans. There is an important caveat, however. We have thus far limited the discussion to machines making decisions based on some kind of impartial AI. But there are clearly machines that make decisions based on biased AI, or systems that outright favour a particular individual.

We need to distinguish therefore, between two distinct questions. One question is whether or intelligent computing agents hiding information is unethical. We have suggested that this problem is equivalent to the same problem for human agents. The second question is whether or not creating intelligent machines that are capable of hiding information is unethical. We suggest that this question can be answered by thinking from a rule utilitarian perspective. Consider a general rule of the form “It is acceptable to create computational agents that actively hide information from human users.” It is relatively easy to argue that such a rule would have serious practical consequences. In addition to Churchill’s intelligent assistant that helps make sound decisions, this rule opens up the possibility that people will develop machines that keep secrets for malicious reasons. To name just one example, a machine that can decide to hide information might decide not to encrypt shared secrets (such as passwords) when stored internally. This would clearly have negative impacts at a practical level, as nearly all forms of secure communication currently rely on shared secrets.

One might counter that there is a serious difference between an intelligent agent that makes rational choices, and a malicious agent that acts as a tool for a malicious human user. While this is true, it is entirely unlikely that a typical user would be able to tell the difference between the two kinds of machine. In fact, the difference could be so subtle that even a trained Computer Scientist might have difficulty discerning between the two. Intelligent agents may have access to enormous databases, either locally or through the Internet. In addition to the actual data, there is a great deal of implicit information in these databases that can be obtained through data mining. However, it is not always clear how much of this implicit information is immediately available to a particular agent, nor is it clear that conclusions drawn from data are correct in all cases. As such, it is not appropriate to consider an agent “dishonest” for failing to provide all available information; this may be computationally unreasonable. This makes it very difficult to distinguish between dishonest information hiding and best-effort reasoning when information is obtained through large data sources.

This puts us in an unfortunate situation. While intelligent computing machines would be able to use information hiding as a tool for limiting decision making to pertinent information, it is not clear how this can be distinguished form
malicious information hiding to achieve some goal. As a result, if we simply accept information hiding as a reasonable activity for an intelligent computing machine, then human agents will be able to use their own malicious agents to deceive us in a way that is difficult to detect. These machines can then be used in a way that causes more harm than benefit. For this reason, the proposed rule validating the creation of information hiding machines seems flawed. From a rule utilitarian perspective, the creation of machines that are able to choose to hide information from all human users is not ethically appropriate.

Information Hiding from Artificial Agents

To this point, we have been concerned with the ethics of intelligent computing agents that hide information from human users. But the reverse situation merits consideration as well. Are we ethically bound to share any particular information with a machine?

First of all, it is clear that there is a great deal of information that we do not need to share with any other agent, human or artificial. Any reasonable ethical theory will at least support some notion of privacy as it purports to information about the individual, and their own interests. There will be, at most, restricted contexts in which a human would be expected to share information with an intelligent computing agent.

Information About the Self

The most natural domain in which some form of transparency is required is with regards to information about an individual's own body or self-interest. In the case of human users, for example, a doctor is likely to feel a moral obligation to give a patient information about their own medical condition. This can be justified through utilitarian reasoning, through Kant's notion of good will, or through an appeal to basic personal rights in a fair society. This is, therefore, a reasonable point to start the discussion with respect to keeping secrets from artificial agents.

We remark that it is in fact standard practice to keep internal details about the workings of an artificial agent secret. In simple cases, this is a form of weak information hiding accomplished through data encapsulation, and also through keeping source code secret. In principle, it would also be possible to protect this information in a strong manner by compiling in a one-way manner and encrypting source code. This would make it impossible for an intelligent agent to discover its own inner workings through any form of "introspection."

At present, it seems clear that there are no computational intelligent agents with a clear set of self, or even ownership over their physical incarnation. It may be the case that such a sense emerges in future technology, but such a discussion is speculative. As such, we do not attempt to justify the need for transparency through viewing agents as independent entities with a right to certain information. We are content to view artificial agents as tools; we are justified in treating them as a means to some end, typically the purpose for which they were created.

However, there are at least two utilitarian arguments to support transparency with an artificial agent with respect to allegorically personal information. First, we frequently use artificial agents to make decisions and solve problems that are difficult for a human to solve. It stands to reason that a computation intelligent agent might be able to improve the design of future agents. As such, one could argue that we should share internal information with computational agents in order to improve future computational agents. Notwithstanding fears of a robot apocolypse, it is reasonable to argue that improving AI in this manner would produce more benefits than harms.

The second utilitarian argument is less direct, but similar in sentiment. Modern AI systems often rely on machine learning, and it is quite likely that approaches based on learning will continue to be important for the foreseeable future. As the creators of these machines, this may eventually put us into something of a parental role. If we keep secrets about the internal workings of a machine from itself, it may learn to keep secrets from humans about their internal workings. By the same reasoning, machines that can not learn about each other may learn not to share information with humans about conflicts between humans. In short, one could argue that transparency in communicating with intelligent agents is beneficial in the sense that it may reinforce the notion of transparency with their human creators. We acknowledge that this is a highly speculative argument and, worse yet, it does not truly take into account the way current machine learning algorithms function.

Conclusion

In this paper, we have made a preliminary exploration into the ethics of information hiding between humans and computational intelligent agents. We argue that information hiding can actually be beneficial in many cases from a utilitarian perspective; this includes cases where a computational agent is helping a human make decisions. Despite the fact that it can be useful for an agent to hide information from a human, we suggest that it is likely that creating agents with the capacity to keep secrets produces more harms than benefits. This is due to the fact that computing machines are still tools that can be used by malicious agents: there is not effective way to determine if an artificial agent is acting ethically or if it is serving the negative purposes of another agent.

We also briefly addressed the notion of information hiding from our computational intelligent agents. While it is difficult to justify an ethical obligation to share information with our machines in general, we argue that there may actually be utilitarian advantages to sharing information in certain domains. In this paper, we focused primarily on the notion of information about the self.

This has been a preliminary paper, and the primary goal was simply to outline an important ethical problem in communicating with intelligent agents. We have reached a point where intelligent machines have a great capacity to hold information, and to make recommendations with that information. We expect that machines will provide us with the information that we need, but we have little capacity to tell if they are actually doing so. In this context, it is important
to consider whether or not the machines should be permitted to make such a judgement on their own. While it is clear that there are gains to be made by allowing machines to filter the information that they provide, it is not as clear if the gains are sufficient to allow this information hiding to occur. The question is particularly relevant in safety critical systems.

The notion of information transparency with intelligent machines is perhaps more of a concern for the future. It is clear that the notion of privacy is changing, and that people are increasingly willing to sacrifice privacy to achieve other goals. As a result, it has become very natural for many people to share information with a machine in a variety of contexts. This creates an interesting situation as intelligent machines become more powerful and more ubiquitous. As people are increasingly willing to share information on request, it is a short transition to the point where people feel obliged to share information on request. As we approach this point, we need to critically analyze when information sharing is appropriate and when people should be protected. This is particularly important when the information is being shared with a machine that has the power to perform additional research, draw conclusions, and disseminate the information widely.

References