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Abstract

For a sustainable integration of wind power into the
electricity grid, a precise prediction method is required.
In this work, we investigate the use of heterogeneous
machine learning ensembles for wind power prediction.
We first analyze homogeneous ensemble regressors that
make use of a single base algorithm and compare deci-
sion trees to k-nearest neighbors and support vector re-
gression. As next step, we construct heterogeneous en-
sembles that make use of multiple base algorithms and
benefit from a gain of diversity of the weak predictors.
In the experimental evaluation, we show that a combi-
nation of decision trees and support vector regression
outperforms state-of-the-art predictors (improvements
of up to 37% compared to support vector regression)
as well as homogeneous ensembles while requiring a
shorter runtime (speed-ups from 1.60× to 8.78×). The
experiments are based on large wind time series data
from simulations and real measurements.

1 Introduction
Precise predictions of the wind power production are crucial
for the integration of wind turbines into the power grid. Be-
sides numerical weather predictions, machine learning algo-
rithms yield good forecasting results (Kramer, Treiber, and
Gieseke 2013; Salcedo-Sanz et al. 2014). E.g., support vec-
tor regression (SVR) or k-nearest neighbors (k-NN) regres-
sion can provide suitable results for short-term forecast hori-
zons. However, there are two main drawbacks: First, in order
to reach the best prediction accuracy possible with these al-
gorithms, the computation time for both training and testing
grows infeasibly large. Second, the prediction performance
needs to be improved further to cope with the actual energy
markets needs.

It has been shown that a good alternative to the well-
known machine learning algorithms is to combine several
basic models to machine learning ensembles: By employing
a number of so-called weak predictors, which use standard
machine learning algorithms, and combining their outputs,
the accuracy of classification and regression can be amelio-
rated while reducing the computation time, see Dietterich
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(2000). Especially for real-world problems, machine learn-
ing ensembles are promising approaches. In contrast to state-
of-the-art machine learning algorithms, ensemble methods
require less tuning and expert domain knowledge. Neverthe-
less, in order to find an optimal ensemble predictor, usually
a trade-off between multiple objectives has to be made: For
example, a lower prediction error is often achieved by in-
vesting more computation time, see Rokach (2010).

In this work, we discuss the practical use of bagging en-
sembles for the task of wind power forecasting, which can
be formulated as regression problem. We investigate which
ensemble setting can offer the best results in a reasonable
runtime. In the first step, we compare homogeneous ensem-
ble predictors, where every weak predictor makes use of the
same base algorithm. In this paper, we use decision trees,
k-NN regression, and support vector regression as base al-
gorithms.

Going further, we propose the use of heterogeneous en-
semble predictors for wind power prediction. We investigate
the question, if heterogeneous ensembles that consist of dif-
ferent types of base predictors, perform better than homo-
geneous ensembles. A reason for the success is the gain of
diversity of the weak predictors. Our comprehensive exper-
imental results show that a combination of Decision Trees
(DT) and SVR yields better results than the analyzed homo-
geneous predictors while offering a decent runtime behavior.

1.1 Related Work
Kusiak, Zhang and Song (2009) successfully apply differ-
ent methods to short-term wind power prediction, one of
which is the bagging trees algorithm. Fugon et al. (2008)
compare various algorithms for wind power forecasting and
show that random forests with and without random input
selection yield a prediction performance similar to SVR,
but recommend to prefer a linear model when the compu-
tation time grows too large. Heinermann and Kramer (2014)
achieve good wind power prediction results using support
vector regression ensembles.

In the field of numerical weather forecasts, it is quite com-
mon to use ensemble postprocessing: Gneiting et al. (2005)
found ensembles to reduce the prediction error by apply-
ing the ensemble model output statistics (EMOS) method
to diverse weather forecasts. Similarly, Thorarinsdottir and
Gneiting (2010) are using a so-called “heteroscedastic cen-
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sored regression” for maximum wind speed prediction over
the American Pacific Northwest.

A similar domain to wind power prediction is time se-
ries prediction for solar power output: Chakraborty et al.
(2012) built up an ensemble of a weather forecast-driven
Naı̈ve Bayes Predictor as well as a kNN-based and a Motif-
based machine learning predictor. The results of the three
predictors are combined with a Bayesian Model Averaging.
Chakraborty et al. show that the prediction error can be re-
duced by inducing ensemble methods to forecasting power
output.

2 Background
In this section, we briefly describe our machine learning ap-
proach to wind power prediction and provide the relevant
background to machine learning ensembles.

2.1 Machine Learning Approach to Wind Power
Prediction

Short term wind power prediction can be treated as a regres-
sion problem. In contrast to numerical weather predictions,
statistical learning methods usually make only use of the
time series data itself. The objective is to predict the mea-
surement after a forecast horizon λ. The input patterns con-
sist of a past of µ time steps, which we call the feature win-
dow. In this work, we use a spatio-temporal model based on
the one proposed by Kramer, Treiber, and Gieseke (2013),
which showed the benefit of involving neighboring turbines
to the input vector. Let pi(t) be the measurement of a turbine
i at a time t, and 1 ≤ i ≤ m the indices of them neighboring
turbines. Then, for a target turbine with index j we define a
pattern-label-pair (x, y) for a given time t0 as

(
p1(t0 − µ) . . . p1(t0)

. . . . . . . . .
pm(t0 − µ) . . . pm(t0)

)
→ pj(t0 + λ) (1)

In our experiments, we use the NREL western wind re-
sources dataset1. It consists of simulated wind power out-
put for 32, 043 wind turbines in the US, given in 10-minute
time resolution for the years 2004 - 2006. For every turbine,
there are 157, 680 wind speed and power output measure-
ments available.

2.2 Machine Learning Ensembles for Supervised
Learning

The idea of ensemble methods can be described as as build-
ing “a predictive model by integrating multiple models”
(Rokach 2010). One of the advantages is the possible im-
provement of prediction performance. Another reason for
utilizing ensemble methods is the reduction of computa-
tional complexity, which can be helpful on very large data
sets. There are countless variants of different ensemble al-
gorithms. A comprehensive overview and empirical analy-
sis for ensemble classification is given by Bauer and Kohavi
(1999). Another, more up-to-date review paper is given by
Rokach (2010).

1http://wind.nrel.gov/

An important and famous approach is bagging, which
stands for bootstrap aggregating, and was introduced by
Breiman (1996). The main idea is to build independent pre-
dictors using samples of the training set and average (or
vote) the output of these predictors. Breiman shows that bag-
ging ensembles of decision trees as well as regression trees
work very well in comparison with single trees. Further-
more, he gives arguments for the question “why bagging
works” (Breiman 1996). A popular variant of bagging ap-
proaches is the random forest algorithm (Breiman 2001) that
“uses a large number of individual, unpruned decision trees”
(Rokach 2010). Every decision tree is built with a subset
sample from the training set, but only uses N of the avail-
able features of the patterns.

There exist more sophisticated ensemble approaches like
AdaBoost (Freund, Schapire, and others 1996) or Stacked
Generalization (Wolpert 1992), but, as we want to give a
proof of concept, we limit ourselves here to bagging.

One key ingredient to successful building of ensem-
bles is the concept of diversity: All the weak predictors
should behave different if not uncorrelated (Rokach 2010;
Brown et al. 2005). Then, the ensemble prediction improves.
There are many ways to generate such diversity, like manip-
ulating the used training sample, the used features, and the
weak predictors’ parameters. Another possibility is the hy-
bridization. An example is given by Kramer et al. (2012):
support vector machine and k-NN classification are com-
bined and complement each others behavior.

3 Regression Ensembles for Wind Power
Prediction

Our objective is to find out, if heterogeneous machine learn-
ing ensembles are a superior alternative to state-of-the-art
machine learning predictors. We decided to implement a
relatively simple bagging approach with weighting, which
has some advantages. While the implementation is straight-
forward and offers a moderate computational cost, we con-
sider the approach sufficient for a proof of concept, which
is also shown in the experimental evaluation. Another mo-
tivation for this kind of ensemble algorithm is that the fa-
mous Random Forest method yields very good results, too,
and is relatively fast compared to boosting algorithms. The
latter ones could outperform bagging algorithms for some
applications, but also tend to overfitting, and can hardly be
parallelized. A comparison to more sophisticated ensemble
approaches like AdaBoost as well as stacked generalization
will be subject to future work.

3.1 Ensemble Algorithm
Our algorithm is outlined in Algorithm 1. As usual in su-
pervised learning, a training set Xtrain with known labels
is given. The most important meta-parameters of the algo-
rithm are the number n of weak predictors, the number s of
samples, and the types of base algorithms used for each pre-
dictor. Both n and s have to be chosen large enough in order
to provide satisfying results. However, the best choice for n
and s depends on the base algorithm used, which also influ-
ences the runtime significantly. The main work of the algo-
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Algorithm 1 Training of Ensemble Predictor
1: Inputs:

Xtrain = {(x1, y1) . . . , (xm, ym)} ⊂ Rd × R
Number of predictors: n
Number of samples: s
Types of Algorithm to use: A={ai|i ∈ 1 . . . n}

2: Returns:
Predictors: P = {pi|i = 1, . . . , n}
Weights: W = {wi ∈ R|i = 1, . . . , n}

3: for i = 1 to n do
4: Xsample ← sample(Xtrain, s)

5: Xval ← Xtrain −Xsample

6: pi ← trainPredictor(ai, Xsample)

7: wi ← 1
MSE(pi,Xval)

8: end for

rithm takes place in the for-loop beginning in line 5. Each
pass trains one weak predictor pi and its assigned weight
wi. For each weak predictor, a subset of Xtrain with size
s is sampled and used as training set Ti for the particular
predictor pi. In order to calculate weight wi, the remaining
training patterns are used as a validation set Tval. The value
wi is then obtained by testing pi on Tval and taking the in-
verse of the mean squared error (MSE).

When the training algorithm computed the predictors and
weights, for an unknown distance x the predicted label is
computed by:

ŷ =

∑k
i=1 wi · pi(x)∑k

i=1 wi

(2)

Each predictors output pi(x) is computed and then weighted
by wi in the resulting weighted average. In a realistic sce-
nario, one would perform all calls of pi in parallel using
multi- or manycore processors. In our experiments, we only
employed one CPU core for the runtime measurements.

As pointed out by Ho (1998), random forests and bag-
ging classifiers in general my benefit from sampling from
the feature space, i.e., taking only a random subset of the
available features into account. Besides the number of fea-
tures used, the choice can be done with or without replace-
ment. Although replacement is sometimes considered as
useful (Rokach 2010; Dietterich 2000), there is no explicit
rule when to use it. In a preliminary experiment, we found
no evidence that random feature subspaces help to increase
the accuracy, but of course can help to decrease runtime.
Because we did not find a significant difference between
sampling with replacement and sampling without replace-
ment, we employ sampling without replacement. For the ba-
sic comparison of the weak predictors, all features are used.
For the comparison of heterogeneous ensembles with state-
of-the-art predictors, the number of features sampled will be
considered again because of the possible trade-off between
runtime and accuracy. Concerning the sampling from the
training set, we also found no evidence for the supremacy
of replacement, but due to the recommendations in litera-
ture (Breiman 1996; Rokach 2010), we decided to employ
sampling with replacement in the following experiments.

3.2 Choice of the Base Algorithms and Training
of Weak Predictors

Since the number of possible settings is huge, one has to
make some assumptions to limit the number of combina-
tions. First, we want to give an overview over the choice of
base algorithms and parameters.

The decision tree algorithm is a powerful yet simple tool
for supervised learning problems (Hastie, Tibshirani, and
Friedman 2009). The main idea is to build a binary tree,
which partitions the feature space into a set of rectangles.
The assignment of the unknown pattern to one of these rect-
angles is used for computing the sought label. While there
are different algorithms for building up decision trees, we
limit ourselves to the famous CART algorithm (Breiman et
al. 1984). Besides moderate computational costs, the main
advantage of decision trees is their interpretability.

The SVR algorithm often provides very good prediction
results and is regarded as state-of-the-art regression tech-
nique. In general, the support vector machine (SVM) algo-
rithm maximizes a geometric margin between the instances
of the classes to be separated. Similar to SVM classifica-
tion, the SVR algorithm aims at finding a prediction func-
tion f̂ : Rd × R → R that computes an accurate prediction
value for an unseen pattern x ∈ Rd. For more detailed in-
formation about the algorithm, we refer to, e.g., (Steinwart
and Christmann 2008). We utilized a RBF kernel and choose
regularization parameter C = 10, 000 and kernel bandwidth
σ = 1e− 5.

A famous yet relatively simple approach for classification
and regression is the k-nearest neighbors (k-NN) model, see
(Hastie, Tibshirani, and Friedman 2009). The prediction av-
erages the label information of the k nearest neighbors, i.e.,
via f(x) = 1

k

∑
i∈Nk(x)

yi, where Nk denotes the set of in-
dices for the k nearest neighbors in T w.r.t. a distance metric
like Euclidean distance. While a naı̈ve implementation takes
O(|S| · |T |) time for a training set T and a test set S, more
efficient implementations with spatial data structures, e.g.
k-d trees, are available (Hastie, Tibshirani, and Friedman
2009). Logarithmic runtime is offered for small dimension-
alities d ≤ 15. For parameter k, we make a random choice
in the interval [1; 25].

In a preliminary experiment, we compare different regres-
sion algorithms composed to ensembles: Table 1 shows a
comparison of decision trees, SVR, and k-NN used as weak
predictors. A general observation is that increasing n and
s decreases the prediction error. With the given n and s, no
clear decision between decision trees and SVR can be made,
but we stick to these two basic algorithms in the further ex-
periments rather than k-NN.

3.3 Heterogeneous Ensembles
Of course, when dealing with forecasting tasks, the first
goal is to reach the lowest error possible. While it is pos-
sible to decrease the prediction error by using ensembles,
a feasible runtime is equally important. If it takes hours to
train a regressor for one turbine, a model would be unus-
able for a large number of turbines to be forecasted – the
time needed for parameter-tuning and cross-validation not
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Table 1: Comparison (MSE) of ensemble predictors consisting of different base algorithms used as weak predictor. For every
turbine, the best result is printed in bold. Each experiment has been repeated 10 times.

Base Algorithm Decision Tree SVR k-NN
n 32 32 256 256 32 32 256 256 32 32 256 256

s 500 1, 000 500 1, 000 500 1, 000 500 1, 000 500 1, 000 500 1, 000

Casper 11.17 10.93 10.89 10.62 10.99 10.84 10.95 10.87 13.10 12.44 13.02 12.44
Las Vegas 10.84 10.61 10.51 10.27 10.26 10.26 10.27 10.27 12.84 12.36 12.81 12.30
Hesperia 7.98 7.82 7.76 7.59 7.62 7.61 7.60 7.59 9.41 8.96 9.36 8.98

Reno 14.76 14.53 14.47 14.19 14.11 14.10 14.00 13.98 18.92 18.03 19.14 18.14
Vantage 7.31 6.97 7.00 6.83 6.61 6.58 6.57 6.57 8.44 7.93 8.43 8.07

mentioned. Therefore, our goal is to reach a good prediction
performance as well as a short runtime for both training and
testing.

As seen in Table 1, there is no clear answer which algo-
rithm to prefer. We propose to use heterogeneous ensembles
built upon SVR and decision tree regressors. As shown in the
following experiments, the result is a robust prediction algo-
rithm that offers a reasonable runtime behavior. The exper-
iments in the following section address the question, if het-
erogeneous ensembles offer a better performance than ho-
mogeneous ensembles. The second question is: Can hetero-
geneous ensembles help to decrease the computation time
needed?

4 Experimental Results
In our experiments, we analyze heterogeneous ensembles
built upon SVR and decision tree regressors. As data source,
we use the NREL western wind resources dataset. Each
grid point has a maximum power output of 30MW and 10-
minute data is given for the years 2004 - 2006. Therefore, for
every station there are 157, 680 wind speed and power out-
put measurements available. In our experiments, we use the
power output data of ten wind parks2 that consist of the tar-
get wind turbine and the 10 neighbored turbines. Therefore,
As training data set, the data from 01/2004 until 06/2005 is
used and the data from 7/2005 until 12/2006 serves as test
data set. The experiments were run on an Intel Core i5 at
3.10GHz with 8GB of RAM. The algorithms were imple-
mented in Python utilizing the kNN, decision tree, and SVR
implementations of Scikit-learn (Pedregosa et al. 2011). As
metric for the prediction performance we use the MSE.

4.1 Mixed Ensemble with Coefficient α
First, we analyze heterogeneous ensembles that employ both
SVR predictors and decision trees. We define a coefficient α
that specifies the amount of weak predictors trained with the
decision tree algorithm. Hence, 1 − α determines the num-
ber of SVR predictors in the ensemble. Figure 1 shows the
experimental results for two wind turbines. For both (a) and
(b), three ensemble settings were analyzed showing MSE
and training time: s is set to 1, 000 and n is set to 32, 64, or
128. The higher the number of predictors is, the lower the

2The corresponding IDs of the turbines in the NREL dataset
are: Casper = 23167, Hesperia = 2028, Las Vegas = 6272, Reno =
11637, Vantage = 28981

prediction error becomes. But also the runtime increase is
notably.3 With α = 0, we observe an ensemble with only
SVR predictors, with α = 1, only decision trees are cho-
sen. The interesting point is that, given a sufficient number
n, the prediction quality becomes maximal with an α in the
middle range. This points to an advantageous behavior of
heterogeneous ensembles: With an α of approximately 0.5,
the training and testing time of the ensemble predictor de-
creases dramatically compared to α = 0.0. Therefore, the
parameter α can be seen as explicit tuning parameter for the
trade-off between prediction performance and runtime.
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Figure 1: Mixing of SVR and DT. With a balanced mixture,
a better MSE is reached within a shorter training time.

4.2 Meta-Ensemble Combining SVR Ensembles
and Decision Tree Ensembles

While the results of the former experiment are promising,
we have to point out that the parameter α was varied for
fixed n and s. One has to consider that different weak predic-
tors show different behavior and could benefit from different
combinations of n and s. I.e., we will see that a large amount
of predictors is a good possibility to ameliorate decision tree
ensembles while the runtime does not suffer as much as in
SVR ensembles. Instead of combining some SVR predictors
and some decision trees, one could possibly better combine
a huge number of decision trees and maybe also increase
sample number s.

Therefore, we have to give a fair comparison, which con-
siders both prediction performance and runtime. First, we

3The testing time was similar to the training time.
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Table 2: Behavior of different setups of ensembles, which
are then combined.

(a) SVR ensembles
setup n s ttrain ttest MSE

1 4 500 7.58 7.11 10.78
2 4 1,000 14.69 13.09 10.43
3 4 2,000 29.94 25.46 10.58
4 32 500 59.73 55.91 10.30
5 32 1,000 117.86 105.61 10.26
6 32 2,000 245.85 206.68 10.35
7 64 500 119.40 111.91 10.20
8 64 1,000 236.26 211.83 10.26
9 64 2,000 489.92 410.81 10.26

(b) Decision Tree Ensembles
setup n s ttrain ttest MSE

1 32 2000 4.91 3.65 10.44
2 32 4,000 7.74 3.85 10.27
3 32 40,000 81.96 3.82 10.06
4 256 2,000 42.67 28.86 10.13
5 256 4,000 63.17 29.17 10.05
6 256 40,000 733.15 30.35 9.86
7 1,024 2,000 161.60 113.97 10.15
8 1,024 4,000 258.03 115.55 10.03
9 1,024 40,000 2,859.18 136.71 9.82

(c) Combinations of one DT ensemble and on SVR ensemble to
one heterogeneous ensemble. For every combination, the MSE
is shown. The row denotes which SVR ensemble is employed,
whereas the column shows which DT ensemble is used.

D1 D2 D3 D4 D5 D6 D7 D8 D9
S1 10.13 10.04 9.87 10.05 9.99 9.82 10.06 9.99 9.81
S2 10.03 9.96 9.75 9.97 9.91 9.70 9.97 9.90 9.69
S3 10.05 9.99 9.81 9.99 9.94 9.77 10.00 9.94 9.76
S4 10.02 9.95 9.76 9.95 9.90 9.72 9.97 9.89 9.71
S5 9.96 9.89 9.72 9.90 9.85 9.67 9.91 9.84 9.66
S6 9.98 9.92 9.75 9.92 9.87 9.70 9.93 9.86 9.70
S7 9.98 9.91 9.72 9.91 9.86 9.68 9.92 9.86 9.67
S8 9.99 9.92 9.74 9.92 9.87 9.69 9.93 9.86 9.68
S9 9.97 9.90 9.73 9.90 9.85 9.68 9.91 9.84 9.67

analyze the behavior of the homogeneous ensembles based
on SVR or decision trees. We try to find good combinations,
which are computable in a feasible time. The result can be
seen in Table 2: Like assumed, one can train more decision
trees with a larger sample in the same time than SVR pre-
dictors. The central point of the experiment is the equally-
weighted combination of one SVR ensemble and one DT
ensemble at a time to one heterogeneous ensemble. The re-
sults of these combinations are depicted in Table 2(c), which
has the form of a matrix. In every cell of the matrix, the used
SVR ensemble is given by the row and the used decision tree
ensemble is given by the column. In the table, only the MSE
is given for clear arrangement. The training and test times
for one predictor is approximately the sum of the respec-
tive times of the two combined ensembles. Besides the very
promising results, which outperform the homogeneous en-
sembles, we also can see that the combination of two weaker
ensembles takes less time to deliver the same prediction er-
ror. We visualize this behavior for two wind turbines in Fig-
ure 2.

4.3 Comparison with State-of-the-Art Predictors
At last, we give a comparison of our heterogeneous ensem-
ble method to SVR, which is considered as state-of-the-art
regressor. Because SVR outperformed k-NN in all cases,
we do not visualize k-NN results. The parameters k and
accordingly C and σ were optimized with a 10-fold cross-

 9.6

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 0  500  1000  1500  2000  2500  3000  3500

M
S
E

Training Time

dec
svr

dec+svr

(a) Las Vegas: MSE depending
on training time

 9.6

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 0  100  200  300  400  500  600

M
S
E

Test Time

dec
svr

dec+svr

(b) Las Vegas: MSE depending
on test time

 6.3

 6.4

 6.5

 6.6

 6.7

 6.8

 6.9

 7

 0  500  1000  1500  2000  2500  3000  3500

M
S
E

Training Time

dec
svr

dec+svr

(c) Vantage: MSE depending
on training time

 6.3

 6.4

 6.5

 6.6

 6.7

 6.8

 6.9

 7

 0  100  200  300  400  500  600

M
S
E

Test Time

dec
svr

dec+svr

(d) Vantage: MSE depending
on test time

Figure 2: Behavior of runtime and prediction performance
for homogeneous and heterogeneous ensembles for two
wind turbines near Las Vegas and Vantage. The heteroge-
neous combinations can outperform the homogeneous en-
sembles. In particular, the solutions in each bottom left cor-
ner show ensembles with a very short computation time as
well as a very low error.

validation. The training times are measured using the opti-
mal parameters, so the huge amount for parameter tuning
is not included. The testing times showed similar behavior.
In Figure 3, we visualized three setups: First, standard SVR
with RBF kernel and tuned C and σ. As comparison, we
show two heterogeneous ensembles in the style of Section
4.2: Both consist of one SVR ensemble with n = 32 an
s = 1, 000 and one decision tree ensemble with n = 256
and s = 10, 000. The first one uses all 33 features available,
whereas the second only makes use of 15 randomly chosen
features without replacement. The comparison shows that
in most cases the ensemble predictor outperforms classical
SVR. Further, the training time is much shorter. If one must
make a trade-off and decrease training or testing time, he
might want to use a feature-reduced variant.

5 Conclusions
Wind power can only be integrated into the power grid, if a
reliable forecast can be given in a reasonable time. After an-
alyzing different types of ensemble predictors, we presented
a heterogeneous ensemble approach utilizing both DT and
SVR. In our comprehensive experimental evaluation, we
showed that our approach yields better results within a much
shorter computation time. The trade-off between prediction
performance and computation time can easily be managed
by adapting the parameters like number of predictors, num-
ber of samples, and number of features used. In the future,
we plan to implement automatic ensemble optimization and
the integration of other regression algorithms.
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Figure 3: Comparison of MSE and training time for five
wind turbines. Our ensemble using all features yields the
best MSE in four cases, but only takes a small amount of the
time taken by standard SVR. If training time is considered
more important than MSE, on can reduce the number of fea-
tures used without loosing much of prediction performance.
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