
E-HBA: Using Action Policies for
Expert Advice and Agent Typification

Stefano V. Albrecht Jacob W. Crandall Subramanian Ramamoorthy
The University of Edinburgh Masdar Institute of Science and Technology The University of Edinburgh
Edinburgh, United Kingdom Abu Dhabi, United Arab Emirates Edinburgh, United Kingdom
s.v.albrecht@sms.ed.ac.uk jcrandall@masdar.ac.ae s.ramamoorthy@ed.ac.uk

Abstract

Past research has studied two approaches to utilise pre-
defined policy sets in repeated interactions: as experts, to
dictate our own actions, and as types, to characterise the
behaviour of other agents. In this work, we bring these
complementary views together in the form of a novel
meta-algorithm, called Expert-HBA (E-HBA), which can
be applied to any expert algorithm that considers the av-
erage (or total) payoff an expert has yielded in the past.
E-HBA gradually mixes the past payoff with a predicted
future payoff, which is computed using the type-based
characterisation. We present results from a comprehen-
sive set of repeated matrix games, comparing the per-
formance of several well-known expert algorithms with
and without the aid of E-HBA. Our results show that
E-HBA has the potential to significantly improve the
performance of expert algorithms.

1 Introduction
Many multiagent applications require an agent to quickly
learn how to interact effectively with previously unknown
other agents. Important examples include electronic markets,
adaptive user interfaces, and robotic elderly care. Learning
effective policies from scratch in such applications (e.g. us-
ing reinforcement learning or opponent modelling) can be
difficult because of the essentially unconstrained nature of
the interaction problem, by which we mean that the other
agents may, in principle, have any kind of behaviours.

One approach to make this problem more tractable is to
assume that we have access to a set of policies, or experts,
which make action recommendations based on the current
interaction history. Such experts may be specified by a hu-
man user or generated automatically from the problem spec-
ification. The goal, then, is to find the best expert through
some repeated exploration strategy. Several such strategies,
or expert algorithms, have been defined, e.g. (Crandall 2014;
de Farias and Megiddo 2004; Auer et al. 1995).

Another approach is to use such policies, then called types,
to characterise the behaviour of other agents. In this approach,
the observed actions of an agent are compared with the predic-
tions of the types, resulting in a posterior distribution which
describes the relative likelihood that the agent implements any

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the types. This distribution can then be used in a planning
procedure to compute best-response actions, e.g. (Albrecht
and Ramamoorthy 2014; Barrett, Stone, and Kraus 2011;
Carmel and Markovitch 1999).

While both approaches have been shown to be effective
under various circumstances, they have certain limitations:
Most expert algorithms are reactive in the sense that they rely
heavily on the past performance of experts, typically in the
form of the average payoff an expert yielded. However, this
can be problematic when interacting with adaptive agents, in
which case past performance is not necessarily a good indi-
cator of future performance. On the other hand, type-based
methods such as HBA (Albrecht and Ramamoorthy 2014) are
proactive in that they make explicit predictions about future
interactions and choose actions accordingly. However, such
methods are not designed for situations in which none of the
types account for the observed behaviour of an agent (i.e. all
posterior probabilities are zero or undefined).

To illustrate these limitations, suppose we are playing the
Prisoner’s Dilemma game against a simple adaptive opponent
that cooperates only if we cooperated in the past 4 rounds, oth-
erwise it defects. Assume we are given two experts, C and D,
where C always cooperates and D always defects. A typical
expert algorithm would try both experts and may find that D
has a higher average payoff than C, if C is not tried for a suffi-
cient number of consecutive rounds. Thus, it would favour D,
which in the long-run is the worse expert. On the other hand,
if the opponent’s behaviour was provided to HBA as a type,
it would eventually learn the true type and play optimally
against it (that is, provided that its planning horizon is deep
enough). However, if the true type is unknown to HBA, then
the posterior may become undefined in the worst case and
HBA would play randomly.

In this paper, we propose to address these limitations by
combining the two approaches. Specifically, we present a
novel meta-algorithm, called Expert-HBA (E-HBA), which
can be applied to any expert algorithm that considers the
average (or total) payoffs the experts yielded when following
their recommendations. E-HBA gradually mixes the past pay-
off an expert yielded with a predicted future payoff, which
is computed using the type-based approach. The mixing is
gradual in that the weight of the predicted payoff is propor-
tional to the confidence E-HBA has in the correctness of its
predictions (to be made precise shortly). We present results

2

Multiagent Interaction without Prior Coordination: Papers from the 2015 AAAI Workshop

from a comprehensive set of repeated matrix games, compar-
ing the performance of several well-known expert algorithms
with and without the aid of E-HBA. Our results show that, if
the true (or a similar) type of the opponent is in E-HBA’s set
of types, then it can significantly improve the performance
of the expert algorithm, while in all other cases it performs
similarly to the original expert algorithm.

2 Related Work
A number of expert algorithms have been defined. Some of
the more well-known ones include the ’Weighted Majorities’
algorithm (Littlestone and Warmuth 1994), Hedge (Freund
and Schapire 1995), the Exp-family (Auer et al. 1995), the
UCB-family (Auer, Cesa-Bianchi, and Fischer 2002), EEE
(de Farias and Megiddo 2004), and S (Karandikar et al. 1998).

E-HBA itself is not an expert algorithm. Rather, it is a
meta-algorithm that can be applied to any expert algorithm
which considers the average (or total) payoff an expert has
yielded. This includes all of the above algorithms, to which
E-HBA can be applied in a straight-forward manner.

Our work is closest in spirit to (Crandall 2014), who pro-
posed a meta-algorithm that prunes the set of selectable ex-
perts to those which it considers most promising. This is done
using a variant of aspiration learning, similar to (Karandikar
et al. 1998). E-HBA can be combined with Crandall’s meta-
algorithm since they target different aspects in expert algo-
rithms: E-HBA modifies the average payoffs of experts while
Crandall’s algorithm prunes the set of experts.

Most expert algorithms are evaluated in terms of regret
(e.g. Foster and Vohra 1999), which is the difference between
the received payoffs and the payoffs of the best expert against
the observed actions. However, it has been argued that this
view of regret may be inadequate in interactive settings with
adaptive agents (Crandall 2014; Arora, Dekel, and Tewari
2012). In this work, we evaluate expert algorithms in terms
of the average payoffs they achieved.

E-HBA is based on HBA (Albrecht and Ramamoorthy
2014; 2013), which is informally described in Section 1 and
formally defined in Section 3.3. Related methods were stud-
ied by Barrett, Stone, and Kraus (2011) and Carmel and
Markovitch (1999). We focus on HBA because it is a rel-
atively simple and general method with well-known guaran-
tees (Albrecht and Ramamoorthy 2014).

The methods used in I-POMDPs (Gmytrasiewicz and
Doshi 2005) are closely related to HBA. However, as they are
designed to handle the full generality of partially observable
states, complex nested beliefs, and subjective optimality cri-
teria, their solutions can be very hard to compute. We focus
on HBA because we are not aware of any expert algorithm
that was specifically designed to handle partially observable
states. However, we believe that our work can be extended to
more complex models such as I-POMDPs.

3 Preliminaries
This section introduces some basic notation and definitions
which we will use in the remainder of the paper.

3.1 Model
To simplify the exposition, we focus on 2-player repeated
matrix games. However, our definitions can be extended to
more complex models such as stochastic Bayesian games
(Albrecht and Ramamoorthy 2014) and I-POMDPs (Gmy-
trasiewicz and Doshi 2005).

We use i to refer to our player and j to refer to the other
player. At each time t in the game, each player k ∈ {i, j}
independently chooses an action atk ∈ Ak and receives a
payoff uk(ati, a

t
j) ∈ R. This process is repeated for a finite

number of rounds. We assume we know Ai, Aj , and ui.

3.2 Expert Algorithms
Let Φi be a set of experts for player i. Each expert φi ∈ Φi
specifies an action policy for player i. We write πi(Ht, ai, φi)
to denote the probability that expert φi chooses action ai af-
ter the history Ht = 〈(a0

i , a
0
j), ..., (a

t−1
i , at−1

j)〉 of previous
joint actions. Furthermore, we use Ū to denote the vector
of average payoffs the experts have yielded when following
their recommendations (i.e. one entry for each expert).

For the purposes of this exposition, we abstractly define an
expert algorithm as a function f(Ū) which returns a proba-
bility distribution over the set Φi of experts. This distribution
specifies what experts to choose at any given time. We note
that many expert algorithms use auxiliary statistics, such as
the number of times an expert has been chosen. However, in
the interest of clarity, we omit such details here.

3.3 Harsanyi-Bellman Ad Hoc Coordination
Our meta-algorithm is based on Harsanyi-Bellman Ad Hoc
Coordination (HBA) (Albrecht and Ramamoorthy 2014).
HBA utilises a set Θ∗j of hypothesised types which specify
complete action policies for player j. The types are hypothet-
ical in the sense that player j may or may not implement one
of the types in Θ∗j , but we do not a priori know this.

We write πj(Ht, aj , θ
∗
j) to denote the probability that

player j chooses action aj if it is of type θ∗j , given the history
Ht of previous joint actions. HBA computes the posterior
belief that player j is of type θ∗j , given Ht, as

Prj(θ∗j |Ht) = η Pj(θ
∗
j)

t−1∏
τ=0

πj(H
τ, aτj , θ

∗
j) (1)

where η is a normalisation constant and Pj(θ∗j) denotes the
prior belief (e.g. uniform) that player j is of type θ∗j .

Using the posterior Prj , HBA chooses an action ai which
maximises the expected average payoff 1

hE
ai
h (Ht), where

Eaih (Ĥ) =
∑
θ∗j∈Θ∗j

Prj(θ∗j |Ht)
∑
aj∈Aj

πj(Ĥ, aj , θ
∗
j)Q

(ai,aj)
h−1 (Ĥ)

(2)

Q
(ai,aj)
h (Ĥ) = ui(ai, aj)+

{
0 if h = 0, else
maxa′i E

a′i
h

(
〈Ĥ, (ai, aj)〉

)
and h specifies the depth of the planning horizon. Note that
Ht is the current history while Ĥ is used to construct all
future trajectories in the game.

3

4 Expert-HBA
Expert-HBA (E-HBA) is a meta-algorithm that can be applied
to any expert algorithm which is in the general form of f(Ū).
A schematic of E-HBA is provided in Algorithm 1.

4.1 Future Payoffs of Experts
E-HBA mixes the vector Ū of observed (past) average pay-
offs of each expert with a vector U∗ of expected (future)
average payoffs for each expert. In order to compute U∗,
E-HBA uses an adapted version of HBA.

Similar to HBA, E-HBA maintains a posterior distribution
Prj over a set Θ∗j of hypothesised types for player j, which
can be obtained in the same way as the expert set Φi. This
distribution is computed using (1). To obtain the vector U∗,
E-HBA computes the expected average payoff of each expert
φi ∈ Φi, using a modified version of (2) which redefines

Q
(ai,aj)
h =

ui(ai, aj) +

{
0 if h = 0, else∑
a′i
πi(Ĥ, a

′
i, φi)E

a′i
h

(
〈Ĥ, (ai, aj)〉

)
.

(3)
The difference between (3) and the original definition is

that (3) only follows the expert when expanding future tra-
jectories in the game, whereas the original definition has to
consider all possible trajectories in order to implement the
max-operator. Depending on the stochasticity of the experts
(i.e. the number of actions with positive probability), this
may mean that (3) can be computed more efficiently than the
original definition. Note that, as with the original definition,
(3) may be approximated efficiently using Monte-Carlo Tree
Search, e.g. (Kocsis and Szepesvári 2006).

4.2 Mixing with Confidence
Given the vectors Ū and U∗, E-HBA executes the expert
algorithm as f

(
(1− Ct)Ū + CtU∗

)
, where Ct ∈ [0, 1] is

the key mixing factor that gradually combines the expert and
type methodologies. Intuitively, Ct can be interpreted as the
confidence E-HBA has at time t in the correctness of U∗,
such that Ct = 1 corresponds to absolute confidence and
Ct = 0 corresponds to no confidence at all.

Let the true type of player j be denoted by θ+
j , and assume

for simplicity that we have a single hypothesised type θ∗j (any
pair (Prj ,Θ∗j) can be represented as a single type). Then, Ct

can be viewed as quantifying the similarity between θ+
j and

θ∗j . However, given that we only observe Ht and θ∗j but not
θ+
j , this can be an extremely difficult task. Indeed, even if we

knew the true type θ+
j , it would by no means be clear how to

best quantify a similarity between θ+
j and θ∗j .

In this preliminary work, we define confidence as the av-
erage weighted ratio of probabilities assigned to observed
actions and maximum probabilities prescribed by the types,
where the weight is given by the posterior Prj . Formally, for
t > 0,

Ct =
1

t

t−1∑
τ=0

∑
θ∗j∈Θ∗j

Prj(θ∗j |Hτ)
πj(H

τ, aτj , θ
∗
j)

maxaj πj(H
τ, aj , θ∗j)

(4)

Algorithm 1 Schematic of Expert-HBA (E-HBA)
Let Ū be vector of observed average payoffs of experts
Compute posterior Prj using (1)
Compute vector U∗ using (2)/(3)
Compute confidence Ct, e.g. using (4)
Execute expert algorithm f

(
(1− Ct)Ū + CtU∗

)
where C0 can be set arbitrarily in [0, 1], e.g. C0 = 1 to indi-
cate extreme optimism and C0 = 0 for extreme pessimism.
However, C0 has typically no bearing because most expert
algorithms choose the first expert randomly.

This definition of confidence is a useful baseline because it
often approximates the average probability overlap between
θ∗j and θ+

j , which is one possible quantification of similarity.
Again assuming a single hypothesised type θ∗j , the average
probability overlap between θ∗j and θ+

j at time t > 0 is

1

t

t−1∑
τ=0

∑
aj∈Aj

min
[
πj(H

τ , aj , θ
∗
j), πj(H

τ , aj , θ
+
j)
]
.

However, we do note that (4) is not a perfect choice due to sev-
eral shortcomings. For instance, (4) will always converge to
1 if θ∗j converges to uniform action probabilities. Thus, more
research is required to formulate a suitable theory around this
notion of confidence.

4.3 Guarantees
Since E-HBA maintains the posterior Prj in the same way
as HBA, it inherits all convergence guarantees of HBA. This
includes Theorems 1 to 3 in (Albrecht and Ramamoorthy
2014). For example, Theorem 1 states that, if the true type
of player j is included in Θ∗j and if the prior beliefs Pj are
positive (i.e. Pj(θ∗j) > 0 for all θ∗j ∈ Θ∗j), then E-HBA’s
predictions of future play will eventually be correct.

This reveals an interesting property of E-HBA: Once
E-HBA makes correct future predictions, and for sufficiently
high h, the predicted payoffs U∗ will be the true average pay-
offs of the experts. Therefore, mixing Ū and U∗ will be more
accurate than Ū alone (unless Ū = U∗), for any Ct > 0.
Thus, under these circumstances, the mixing will not degrade
the performance of the expert algorithm.

Of course, whether h is sufficient to produce accurate pre-
dictions U∗ depends on the types in Θ∗j . In the Prisoner’s
Dilemma example in Section 1, even if we knew the true
type from the onset, a depth of h = 3 would predict higher
average payoffs for the expert D, while C is more profitable
in the long-term. Thus, a higher h would be needed.

Likewise, U∗ may be inaccurate if the true type of player
j is not included in Θ∗j . However, in this case, the confi-
dence Ct should adjust the portion of U∗ used in the mix.
As we show in our experiments, this can ensure that the ex-
pert algorithm only suffers minor (or no) degradations in its
performance. Moreover, if there are types in Θ∗j which are
similar to the true type, in the sense that they assign sim-
ilar probabilities to actions, then the accuracy of U∗ often
remains at a level which is proportional to the similarity.

4

4.4 Total Payoffs
E-HBA can be applied to any expert algorithm which consid-
ers the average payoffs that experts yielded in the past, i.e. Ū .
However, there are some expert algorithms that consider total
rather than average payoffs, e.g. Hedge (Freund and Schapire
1995) and Exp3 (Auer et al. 1995).

One way in which E-HBA can be applied to such expert
algorithms is to modify them to use average rather than total
payoffs. This is possible because, when payoffs are observed
iteratively, the total payoff can be mapped into the average
payoff. However, it is likely that such a modification would
invalidate the performance guarantees of the expert algorithm.
For example, Hedge and Exp3 will not converge to the best
expert if they are modified to use average payoffs.

Another way to apply E-HBA to such expert algorithms is
to modify the definitions of E-HBA to use total rather than
average payoffs. That is, we redefine Ū to be the total payoff
the expert yielded when following their recommendations,
and we compute U∗ using (2)/(3) but without dividing by h.
This is the approach we have chosen in our experiments.

However, there are two potential complications with the
latter approach, both of which are due to the fact that Ū is the
total payoff over (up to) t steps while U∗ is the total payoff
over h steps. Firstly, this means that there is no notion of
accuracy of Ū and U∗, hence our correctness claim in Sec-
tion 4.3 regarding the accuracy of the mixing does not hold
anymore. Secondly, as the game proceeds with ever increas-
ing t, the impact of U∗ in the mix will diminish over time for
Ct < 1. Nonetheless, as we show in our experiments, if Ct
converges to 1, then E-HBA can still significantly improve
the performance of the expert algorithm.

5 Experiments
We conducted experiments in a comprehensive set of repeated
matrix games, comparing the performance of several well-
known expert algorithms with and without E-HBA.

5.1 Games
We used a comprehensive set of benchmark games introduced
by Rapoport and Guyer (1966), which consists of 78 repeated
2× 2 matrix games (i.e. 2 players with 2 actions). The games
are strictly ordinal, meaning that each player ranks each of
the 4 possible outcomes from 1 (least preferred) to 4 (most
preferred), and no two outcomes have the same rank. Fur-
thermore, the games are distinct in the sense that no game
can be obtained by transformation of any other game, which
includes interchanging the rows, columns, and players (and
any combination thereof) in the payoff matrix of the game.

The games can be grouped into 21 no-conflict games and
57 conflict games. In a no-conflict game, the two players have
the same most preferred outcome, and so it is relatively easy
to arrive at a solution that is best for both players. In a conflict
game, the players disagree on the best outcome, hence they
will have to find some form of a compromise.

5.2 Experts & Types
We used three automatic methods to generate parameterised
sets of experts and types for a given game. The generated

policies cover a reasonable spectrum of adaptive behaviours,
including deterministic (CDT), randomised (CNN), and hy-
brid (LFT) policies. All parameter settings can be found in
the appendix (Albrecht, Crandall, and Ramamoorthy 2015).

Leader-Follower-Trigger Agents (LFT) Crandall (2014)
described a method to automatically generate sets of “leader”
and “follower” agents that seek to play specific sequences of
joint actions, called “target solutions”. A leader agent plays
its part of the target solution as long as the other player does.
If the other player deviates, the leader agent punishes the
player by playing a minimax strategy. The follower agent
is similar except that it does not punish. Rather, if the other
player deviates, the follower agent randomly resets its posi-
tion within the target solution and continues play as usual. We
augmented this set by a trigger agent which is similar to the
leader and follower agents, except that it plays its maximin
strategy indefinitely once the other player deviates.

Co-Evolved Decision Trees (CDT) We used genetic pro-
gramming (Koza 1992) to automatically breed sets of deci-
sion trees. A decision tree takes as input the past n actions
of the other player (in our case, n = 3) and deterministically
returns an action to be played in response. The breeding pro-
cess is co-evolutional, meaning that two pools of trees are
bred concurrently (one for each player). In each evolution, a
random selection of the trees for player 1 is evaluated against
a random selection of the trees for player 2. The fitness cri-
terion includes the payoffs generated by a tree as well as its
dissimilarity to other trees in the same pool. This was done
to encourage a more diverse breeding of trees, as otherwise
the trees tend to become very similar or identical.

Co-Evolved Neural Networks (CNN) We used a string-
based genetic algorithm (Holland 1975) to breed sets of artifi-
cial neural networks. The process is basically the same as the
one used for decision trees. However, the difference is that
artificial neural networks can learn to play stochastic strate-
gies while decision trees always play deterministic strategies.
Our networks consist of one input layer with 4 nodes (one for
each of the two previous actions of both players), a hidden
layer with 5 nodes, and an output layer with 1 node. The node
in the output layer specifies the probability of choosing action
1 (and, since we play 2 × 2 games, of action 2). All nodes
use a sigmoidal threshold function and are fully connected to
the nodes in the next layer.

5.3 Expert Algorithms
The following expert algorithms were used: UCB1 (Auer,
Cesa-Bianchi, and Fischer 2002), EEE (de Farias and
Megiddo 2004), S (Karandikar et al. 1998), Hedge (Freund
and Schapire 1995), and Exp3 (Auer et al. 1995).

For EEE, we used the parameter settings specified in (de
Farias and Megiddo 2003). S was implemented as specified
in Appendix A in (Crandall 2014), using the same parameter
settings. For Hedge, we used the modified version provided
in Section 3 in (Auer et al. 1995). Both Hedge and Exp3 used
η = 0.1, and Exp3 used γ = 0.1.

As discussed in Section 4.4, Hedge and Exp3 are based on
total rather than average payoffs, hence we adapted E-HBA

5

as specified in Section 4.4. That is, the variable Gi in Hedge
and Exp3 (cf. Auer et al. 1995) was used in place of U∗.
(Note that, in Hedge, Gi is the total payoff of each expert’s
recommendations, not just of those which we followed.) In
addition, we applied a “booster” exponent b to U∗ (i.e. (U∗)b)
to magnify the differences between experts. We used b = 3.

5.4 Experimental Procedure
We performed identical experiments for every expert/type
generation method described in Section 5.2. Each of the 78
games was played 10 times using different random seeds,
where each play lasted 5,000 rounds (this was unknown to
the players to avoid “end-game” effects).

In each play, we randomly generated 5 unique experts
for player 1 (controlled by E-HBA) and 5 unique types for
player 2, and provided them to E-HBA as the sets Φ1 and
Θ∗2, respectively. E-HBA used uniform prior beliefs and a
planning horizon of h = 5, which constituted a good trade-off
between computation time and accuracy in our experiments.

Every play was repeated in two modes: one in which player
2 was controlled by a randomly generated type, and one in
which it was controlled by a fictitious player (Brown 1951).
We used a fictitious player because it explicitly tries to learn
the behaviour of E-HBA. While the generated types are adap-
tive as well, they do not create models of E-HBA’s behaviour.

Finally, to isolate the effects of knowing the true type of
player 2, we performed each experiment once for the case in
which the true type of player 2 was included in Θ∗2 and once
for the case in which it was not (|Θ∗2| = 5 in both cases).

5.5 Results
Figures 1 and 2 show a selection of results from a variety of
scenarios (all results are given in the appendix document).
Since most of the tested expert algorithms assume payoffs in
the interval [0, 1], we normalised the payoffs from {1, 2, 3, 4}
to
{

0, 1
3 ,

2
3 , 1
}

. The solid and dashed lines show the average
payoffs of HBA (using the same parameters and types as
E-HBA) and the best expert in each play, respectively. In the
following, all ’significance’ statements are based on paired
two-sided t-tests with a significance level of 5%.

Figure 1 shows results for the case in which the true type of
player 2 was included in Θ∗2. As the plots show, E-HBA was
able to significantly improve the performance of the expert
algorithms. This was observed in all constellations of games,
experts/types, and opponents. UCB1 and EEE benefited the
most from E-HBA, with improvements of up to 10% and 15%,
respectively. The improvements of the other algorithms were
less substantial but still significant. Note that HBA performed
the best in all experiments because it computes best-response
actions at each point in time, whereas the expert algorithms
(with and without E-HBA) must choose from a set of pre-
defined expert policies that may not be optimal.

Another interesting observation is that E-HBA often meant
the difference between performing worse and better than the
best expert (e.g. Figures 1a and 1b). This is precisely a result
of the fact that the tested expert algorithms rely heavily on
the past performance of experts (as discussed in Section 1),
while E-HBA also considers the future performance of ex-
perts at any given point. This allowed the modified expert

algorithms to switch effectively between experts, which on
average resulted in higher payoffs than persistently following
any single expert.

It is important to note that the performance enhancements
of E-HBA came at an increased computational cost. For in-
stance, using a planning depth of h = 5 and the CDT types,
the modified expert algorithms required roughly 10 times
more time than the original algorithms. (However, we note
that our implementation was not optimised for speed.) There-
fore, whether or not the performance improvements are worth
the additional costs is an important aspect that should be taken
into account. Nonetheless, as discussed previously, the com-
putational costs can often be reduced drastically by using
efficient Monte-Carlo Tree Search methods.

Figure 2 shows results for the case in which the true type
of player 2 was not included in Θ∗2. Here, we observe that
the modified algorithms performed similarly to the original
algorithms, and substantially better than HBA (which often
ended up playing randomly). This was due to the confidence
Ct, which decreased quickly and remained low in many cases.
Interestingly, there are cases in which the expert algorithms
still benefited from E-HBA, especially with CDT and CNN
in no-conflict games. In these cases, the set Θ∗2 included a
type that was similar to the true type (in the sense that they
assigned similar probabilities to actions) so that E-HBA and
HBA were still able to make useful predictions.

Finally, we note that, in some cases, Hedge and Exp3 per-
formed significantly worse when combined with E-HBA. We
found that this was mostly due to the problems described
Section 4.4. Thus, while E-HBA works well in combination
with expert algorithms that use average payoffs, it may not
be optimal for expert algorithms that use total payoffs

6 Conclusion
Past research has studied two methods to utilise pre-defined
policy sets in repeated interactions: as experts, to dictate our
own actions, and as types, to characterise the behaviour of
other agents. The contribution in this work is to bring these
complementary views together, with the goal of combining
their strengths and alleviating their weaknesses.

We have done so in the form of a meta-algorithm, E-HBA,
which can be applied to any expert algorithm that considers
the average (or total) payoff an expert yielded in the past.
E-HBA mixes these observed payoffs with a predicted future
payoff for each expert, using the type-based approach. Our
experiments show that, if the true (or a similar) type of the
opponent is known, then E-HBA can significantly improve
the performance of expert algorithms, while in all other cases
it performs similarly to the original expert algorithm.

At the core of E-HBA is the confidence, Ct, which is used
to regulate the mixing. We provide an intuitive definition of
confidence which is simple to compute and works well in
practice. However, we believe that other useful definitions
of confidence exist, and in this sense we view E-HBA as a
family of meta-algorithms. An important step in establishing
this idea will be to develop a theory around this notion of
confidence, similar to the theories on regret in expert algo-
rithms and the theories on prior and posterior beliefs in the
type-based approach.

6

Figure 1: True type of player 2 included in Θ∗2. X–Y–Z format means that experts and types were generated by X, player 2
was controlled by Y, and results are shown for Z games. RT denotes random type and FP denotes fictitious player.

Figure 2: True type of player 2 not included in Θ∗2. X–Y–Z format means that experts and types were generated by X, player 2
was controlled by Y, and results are shown for Z games. RT denotes random type and FP denotes fictitious player.

References

Albrecht, S., and Ramamoorthy, S. 2013. A game-theoretic
model and best-response learning method for ad hoc coordi-
nation in multiagent systems (extended abstract). In Proceed-
ings of the 12th International Conference on Autonomous
Agents and Multiagent Systems, 1155–1156.

Albrecht, S., and Ramamoorthy, S. 2014. On convergence
and optimality of best-response learning with policy types in

multiagent systems. In Proceedings of the 30th Conference
on Uncertainty in Artificial Intelligence, 12–21.
Albrecht, S.; Crandall, J.; and Ramamoorthy, S. 2015.
E-HBA: Using action policies for expert advice and agent
typification – Appendix.
http://rad.inf.ed.ac.uk/data/publications/2015/mipc15app.pdf.
Arora, R.; Dekel, O.; and Tewari, A. 2012. Online bandit
learning against an adaptive adversary: From regret to policy
regret. In Proceedings of the 29th International Conference

7

on Machine Learning, 1503–1510.
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. 1995.
Gambling in a rigged casino: The adversarial multi-armed
bandit problem. In Proceedings of the 36th Symposium on
the Foundations of Computer Science, 322–331.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learning
47(2-3):235–256.
Barrett, S.; Stone, P.; and Kraus, S. 2011. Empirical evalua-
tion of ad hoc teamwork in the pursuit domain. In Proceed-
ings of the 10th International Conference on Autonomous
Agents and Multiagent Systems, volume 2, 567–574.
Brown, G. 1951. Iterative solution of games by fictitious play.
Activity analysis of production and allocation 13(1):374–376.
Carmel, D., and Markovitch, S. 1999. Exploration strategies
for model-based learning in multi-agent systems: Exploration
strategies. Autonomous Agents and Multi-Agent Systems
2(2):141–172.
Crandall, J. 2014. Towards minimizing disappointment in
repeated games. Journal of Artificial Intelligence Research
49:111–142.
de Farias, D., and Megiddo, N. 2003. How to combine expert
(or novice) advice when actions impact the environment. In
Advances in Neural Information Processing Systems 16, 815–
822.
de Farias, D., and Megiddo, N. 2004. Exploration-
exploitation tradeoffs for experts algorithms in reactive en-
vironments. In Advances in Neural Information Processing
Systems 17, 409–416.
Foster, D., and Vohra, R. 1999. Regret in the on-line decision
problem. Games and Economic Behavior 29(1):7–35.
Freund, Y., and Schapire, R. 1995. A desicion-theoretic gen-
eralization of on-line learning and an application to boosting.
In Computational Learning Theory, 23–37. Springer.
Gmytrasiewicz, P., and Doshi, P. 2005. A framework for se-
quential planning in multiagent settings. Journal of Artificial
Intelligence Research 24(1):49–79.
Holland, J. 1975. Adaptation in natural and artificial systems:
An introductory analysis with applications to biology, control,
and artificial intelligence. The MIT Press.
Karandikar, R.; Mookherjee, D.; Ray, D.; and Vega-Redondo,
F. 1998. Evolving aspirations and cooperation. Journal of
Economic Theory 80(2):292–331.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Machine Learning: ECML 2006, volume
4212 of Lecture Notes in Computer Science, pages 282–293.
Springer.
Koza, J. 1992. Genetic programming: On the programming
of computers by means of natural selection. The MIT Press.
Littlestone, N., and Warmuth, M. 1994. The weighted major-
ity algorithm. Information and Computation 108(2):212–261.
Rapoport, A., and Guyer, M. 1966. A taxonomy of 2 × 2
games. General Systems: Yearbook of the Society for General
Systems Research 11:203–214.

8

