
Algorithm Configuration Applied to Heuristics for
Three-Dimensional Knapsack Problems in Air Cargo

Marius Merschformann
Decision Support & Operations Research Lab

University of Paderborn
Warburger Str. 100, D-33098 Paderborn

Abstract

The problem of efficiently packing items into containers
is of great importance in the air cargo industry. Hence,
the algorithms used to solve the corresponding problem
should also be efficient, including their configurations.
We present an algorithm configuration scenario using a
state-of-the-art algorithm from this area.

Introduction
Efficiently packing items into a set of containers is a ba-
sic process in many different applications. Especially in air
cargo logistics, storage volume is expensive and the han-
dling times at cargo hubs are short. Thus, there is demand for
a decision support system capable of generating efficient so-
called “build-up plans” that can be quantified and immedi-
ately executed, instead of planning the load allocation man-
ually. As a special extension, more complex forms are han-
dled through an approximation using “Tetris”-shapes (see
Figure 1 and (Fasano 2013)). The resulting problem is called
three-dimensional Tetris Multiple Heterogeneous Knapsack
Problem according to (Wäscher, Haußner, and Schumann
2007). The algorithms of this paper aim to generate such
plans to solve such problems in a reasonable amount of time.

The problem can be decomposed into three decisions.
First, items must be allocated to available containers. Every
item may be assigned to at most one suitable container. Sec-
ondly, the positions of items within containers must be de-
termined. Finally, the orientation of the item is chosen from
24 distinctive 90◦ rotations for “Tetris”-shapes. These de-
cisions are bounded by certain basic requirements like the
non-overlapping of items and containers and more applica-
tion specific ones like forbidden orientations and incompat-
ibilities when handling dangerous goods. The objective of
this problem is to utilize the available space as effectively as
possible, similar to the classic knapsack problem.

We present an algorithm configuration scenario using
SMAC (Hutter, Hoos, and Leyton-Brown 2011) to configure
the parameters of a GRASP-like Greedy Adaptive Search
Procedure (GASP) that solves the packing problem at hand.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Solution approach
In order to solve the previously described problem, re-
searchers have created several heuristic construction algo-
rithms based on GASP (Perboli, Crainic, and Tadei 2011).
In this approach solutions are iteratively generated in paral-
lel threads by inserting the items in an order corresponding
to a score per item. This score is updated in each iteration.
Three different techniques are used, in which two of them
are also capable of handling “Tetris”-items. Since the han-
dling of such items alters the behavior of the algorithm sig-
nificantly, those techniques are split into two separate algo-
rithms for tuning. The first technique is called Extreme Point
Insertion (EPI) and uses so-called Extreme Points (EP) (see
(Crainic, Perboli, and Tadei 2008)) at which new items are
positioned. The list of available EPs is updated every time a
new item is inserted. EPI-t refers to the “Tetris” variant of
this approach. The second technique is called Push Insertion
(PI), which uses fixed insertion points to initially allocate
the items and subsequently pushes them towards the con-
tainer’s origin. PI-t refers to the “Tetris” variant of this ap-
proach. The last technique is called Space Defragmentation
(SD) (see (Zhu et al. 2012)) and is an extension of the first
approach. In addition to using EPs for insertion the tech-
nique focuses on increasing the density of the packing by
pushing items away from newly allocated ones and subse-
quently all of them towards the containers origin. Thus, the
items change their position constantly which makes an effi-
cient integration of “Tetris” items difficult.

Algorithm configuration approach
The heuristic approaches described have a number of config-
urable parameters. We use the SMAC algorithm proposed by
(Hutter, Hoos, and Leyton-Brown 2011). We perform con-
figuration for the EPI, EPI-t, SD, PI and PI-t methods. While
the basic algorithms are tuned on 100 instances only con-
taining cuboid items, the “Tetris”-variants are tuned on 100
instances which also contain “Tetris”-shaped items. Both of
the sets are split into a training set of 60 instances and a test
set of 40 instances.

We tune each of the five algorithms for five days. Each
single execution is limited with a five minute cutoff. The ob-
jective is set to solution quality, instead of time, because the
time available for the solution process does not vary in the
application field. The objective function value of the solution

16

Algorithm Configuration: Papers from the 2015 AAAI Workshop

Figure 1: “Tetris”-approximation.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

T
u
n
e
d

Untuned

Tuned / Untuned EPI comparison (training set)

Figure 2: Results for EPI (training set)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

T
u
n
e
d

Untuned

Tuned / Untuned EPI comparison (test set)

Figure 3: Results for EPI (test set)

is given by the utilized volume of the containers. The objec-
tives are combined by the mean metric of SMAC. Also, due
to the parallelization of the algorithms, determinism can not
be guaranteed. We describe the parameters of the algorithms
along with their domains as follows. Parameters not used by
a specific algorithm are ignored for the corresponding run.
• ItemOrder: The initial order of the items when inserting.

[0, . . . , 23] ⊂ Z, (EPI, EPI-t, PI, PI-t, SD)
• BestFit: A boolean parameter defining whether to use a

merit-function or not. If the value is false, every item is
inserted at the first valid insertion point, otherwise the best
available one is used as indicated by the merit-function.
{true, false}, (EPI, EPI-t)

• MeritType: A conditional parameter identifying the spe-
cific merit-function to use, if BestFit is activated.
[0, . . . , 6] ⊂ Z, (EPI, EPI-t)

• InflateAndReplaceInsertion: Defines whether to use or
skip the inflate-and-replace strategy of the SD technique.
{true, false}, (SD)

• NormalizationOrder: The order by which the container is
normalized, i.e. items are pushed to the corresponding di-
rections consequentially until no further push is possible.
{xyz,zyx,zxy,yzx,xzy,yxz}, (PI, PI-t, SD)

• ScoreBasedOrder: Deactivates the score-based sorting of
items and substitutes it with a complete random approach.
{true, false}, (EPI, EPI-t, PI, PI-t, SD)

• iRD: The maximal distance without an improvement on
the objective value before the score is reinitialized.
[50, . . . , 2500] ⊂ Z, (EPI, EPI-t, PI, PI-t, SD)
• rS : A “salt”-value applied randomly for every item,

hence, increasing this value increases a certain random
influence on the method.
[0, . . . , 0.9] ⊂ R, (EPI, EPI-t, PI, PI-t, SD)
• mI : The initial score modification.
[0.01, . . . , 1] ⊂ R (EPI, EPI-t, PI, PI-t, SD)
• mmax: The maximum score modification
[1, . . . , 5] ⊂ R, (EPI, EPI-t, PI, PI-t, SD)

• sP : The number of minimal swaps
[1, . . . , 4] ⊂ Z, (EPI, EPI-t, PI, PI-t, SD)

• smax: The number of maximal swaps
[4, . . . , 8] ⊂ Z, (EPI, EPI-t, PI, PI-t, SD)

Computational results
Overall, the configuring of the parameters did not obtain sig-
nificantly improved configurations. As depicted by the fol-

lowing graphs for the EPI algorithm, the tuning has a slight
positive (but also negative impact) depending on the partic-
ular instances. This can be seen by comparing the result of
the default parameters depicted on the x-axis with the tuned
configuration depicted on the y-axis. The respective axes
identify the obtained evaluation values (relative volume uti-
lization) by the two configurations. For both the training set
(Figure 2) and the test set (Figure 3) only a very slight pos-
itive trend is seen. The results for the other algorithms are
very similar. Thus, the trend is too small to verify a positive
effect of the configuration. This might be due to the very het-
erogeneous instances requiring different algorithm settings.
Hence, in future it may be useful to integrate instance fea-
tures to find better configurations depending on those. The
result would be an automatic algorithm configuration routine
before solving the respective instance exploiting the results
of the tuning.

Conclusion
We presented an algorithm configuration scenario for three
dimensional knapsack problems in the air-cargo industry.
Although the results of the configuration were not signif-
icantly better than the default configuration, there is hope
that other strategies for configuring these algorithms could
provide better performance.

References
Crainic, T. G.; Perboli, G.; and Tadei, R. 2008. Extreme
point-based heuristics for three-dimensional bin packing.
INFORMS Journal on Computing 20(3):368–384.
Fasano, G. 2013. A global optimization point of view to
handle non-standard object packing problems. Journal of
Global Optimization 55(2):279–299.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential model-based optimization for general algorithm
configuration. In Proceedings of LION-5, 507–523.
Perboli, G.; Crainic, T. G.; and Tadei, R. 2011. An ef-
ficient metaheuristic for multi-dimensional multi-container
packing. In Automation Science and Engineering (CASE),
2011 IEEE Conference on, 563–568.
Wäscher, G.; Haußner, H.; and Schumann, H. 2007. An im-
proved typology of cutting and packing problems. European
Journal of Operational Research 183(3):1109–1130.
Zhu, W.; Zhang, Z.; Oon, W.-C.; and Lim, A. 2012. Space
defragmentation for packing problems. European Journal of
Operational Research 222(3):452–463.

17

