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Abstract

Answering point-to-point distance queries is important in
many applications, including games, robotics and vehicle
routing in operations research. Searching in a graph to an-
swer distance queries on demand can often be too slow. An
alternative strategy, taken in methods such as Transit and Hub
Labels, is to pre-compute information that can help compute
distances much faster. To be practical, such methods need to
generate much less preprocessed data than a naive all-pairs
distance table.
We present Heuristic-Aid Compressed Distance Databases
(HCDs), pre-computed data structures based on the observa-
tion that heuristic distance estimations can sometimes coin-
cide with true distances. Compared to a naive all-pairs dis-
tance table, we report compression factors of two to three
orders of magnitude in a wide range of maps, reducing the
memory usage to a reasonable size. Compared to compressed
path databases, our approach generally generates smaller
databases, and answers query distances faster.

Introduction
Answering point-to-point optimal distance queries on maps
is a fundamental building block in many optimization appli-
cations, including operations research, games, robotics, and
GPS itinerary planning. In vehicle routing, a fleet of vehi-
cles might need to perform a sequence of pick-up and deliv-
ery tasks. Optimizing a schedule for these vehicles usually
requires a distance matrix among all these related locations.
Similarly, in video games, collaborative non-player charac-
ters (NPCs) might need to partition and share a set of tasks,
taking into account pairwise distances between an NPC and
a target location.

Besides the memory usage, the answer time for distance
queries is also a major concern, especially when many dis-
tance queries need to be answered in real time.

Finding optimal paths with search-based methods, such
as the Dijkstra’s algorithm (Dijkstra 1959) and A* (Hart,
Nilsson, and Raphael 1968), is one way to answer point-
to-point distance queries. Despite numerous enhancements
introduced in recent years, a search often ends up visiting
many locations that are not on an optimal path. In effect,
search-based methods can encounter a speed degradation on
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many maps, depending on factors such as the size and the
topology of a map.

Approaches based on preprocessing and data caching can
dramatically improve the response time. Fast distance ora-
cles include Transit (Bast, Funke, and Matijevic 2006) and
Hub Labels (Cohen et al. 2003; Delling et al. 2014). Transit,
however, does not handle cases when the start and the desti-
nation nodes are relatively close to each other. Compressed
path databases, or CPDs (Botea 2011; Strasser, Harabor, and
Botea 2014), can answer move queries very fast. They can
be employed to answer distance queries by fetching a full
optimal path, step by step, and returning the cost of that path.
However, this makes the response time for a distance query
linear in the length of the path, with a corresponding perfor-
mance slowdown.

In this paper, we present Heuristic-Aided Compressed
Distance Databases (HCD), a novel approach that prepro-
cesses the distance information of a map and compresses
it to a concise database with the help of a heuristic func-
tion. The resulting database can be used to answer distance
queries. Unlike CPDs, that store moves, our databases store
distances. Figure 1 illustrates the difference. The main intu-
ition behind this work is the fact that sometimes a heuristic
estimation of the distance can be the true distance. HCD
takes use of the heuristic function to reduce the amount
of cached information and the answering time to distance
queries.

We use 4-connected fully-reachable grid maps and the
Manhattan heuristic for illustration and evaluation purposes
in this paper. HCD takes a map and a heuristic function as
input. For every reachable location s, it constructs a hierar-
chical anchor tree (HAT) rooted at s. The nodes of a HAT,
which are a (small) subset of the original map locations, such
that for any location t on the map, there exist an anchor point
p that d(s, t) = d(s, p)+h(p, t), where h(·, ·) is the heuristic
distance, and d(·, ·) is the true distance between two nodes.
Figure 2 (b) illustrates a sample HAT that contains two an-
chor points A1 (overlapped with s) and A2, and for a loca-
tion y, d(s, y) can be calculated by d(s,A2) + h(A2, y).

We evaluate HCD and show some preliminary results
on 4-connected grid maps taken from Sturtevant’s repos-
itory (Sturtevant 2012). Compared to a naive, uncom-
pressed distance database, the compression factors achieved
by HCDs reach two to three orders of magnitude in a wide
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range of game maps. HCD often requires less memory than
CPDs (Botea 2011) and answers distance queries faster.

Our work is relevant from an optimization point of view
for several reasons. First, as mentioned at the beginning,
distance queries are important in a number of optimization
problems. Secondly, minimizing the size of a HCD involves
a few optimization problems, such as: minimizing the num-
ber of rectangles used in a Manhattan Neighbor decomposi-
tion; and minimizing the size of all HATs defined for an in-
put graph. In this work we implemented greedy approaches
to both problems. Improving these further is an interesting
direction.

(a) Uncompressed first-move map (b) Compressed distance map

Figure 1: Toy example with a first-move map and a distance
map, for a single source location S.

(a) Manhattan neighborhood (b) Anchor tree with two nodes,
of location S, in grey. A1 (overlapped with S) and A2.

Figure 2: Example illustrating HCD preprocessing.

Related Work
Compressed path databases (CPDs) (Botea 2011) are ora-
cles that return first-move queries. In other words, given
any (s, t) pair of nodes, a CPD provides an optimal move
from s towards t. While this is substantially different from
our work, a common feature is that the idea of compactly
representing Manhattan Neighbors, which will be discussed
later, using a rectangle decomposition, is inspired from the
way CPDs decompose a map (Botea 2011).

In Hub Labels (HL) (Cohen et al. 2003; Abraham et al.
2011; Delling et al. 2014), each node has a list of nodes
called forward hub nodes, and a list of nodes called back-
ward hub nodes. Exact distances to forward hub nodes, and
from backward hub nodes are recorded as well. Given any
two nodes s and t, the forward hub list of s and the back-
ward hub list of t must contain a common node that belongs
to a shortest path from s to t. This ensures that d(s, t) can be

retrieved by parsing the forward hub list of s and the back-
ward hub list of t. HLs answer distance queries, but they
can easily be adapted to both distance queries and first-move
queries (Abraham et al. 2012).

Transit (Bast, Funke, and Matijevic 2006) is a distance
oracle that can handle queries with the two nodes located
reasonably far from each other. The original Transit method
has been shown to be effective on road maps. Antsfeld
et al. (2012) have observed that Transit’s performance de-
creases on grid maps, and have presented improvements to
the algorithm. Transit, however, does not handle cases when
the start and the destination nodes are relatively close to each
other.

Identifying regions where a simple hill-climbing, based
on a given heuristic function, is sufficient for navigation
within that region, has successfully been applied in the
pathfinding literature (Bulitko, Björnsson, and Lawrence
2010; Lawrence and Bulitko 2013). A key difference is that
we employ a similar idea to compactly store a database of
exact distances, whereas previous work (Bulitko, Björnsson,
and Lawrence 2010; Lawrence and Bulitko 2013) has imple-
mented it within methods that compute full (and not neces-
sarily optimal) paths.

Our hierarchical anchor trees have similarities to subgoal
graphs (Uras, Koenig, and Hernández 2013) and jump point
structures (Harabor and Grastien 2011). These have been
used to compute full paths with search, providing a search
space much smaller than an original grid map. Subgoal
graphs contain a subset of nodes, such as nodes located at
the corners of obstacles on a grid map. A subgoal graph
is precomputed, and new start and destination pairs are dy-
namically inserted with each new pathfinding query. Jump
points are a subset of the nodes of the grid map, aiming at
eliminating symmetries that can artificially blow the search
space. Intuitively, they are points where an optimal trajec-
tory, not pruned as a result symmetry elimination, might
include a turn. A jump-point graph can be built either
on the fly, or include some preprocessing. Uras, Koenig,
and Hernández (2013) discuss briefly how to adapt subgoal
graphs to retrieve distances to cooperate with online search.

As the name suggests, memory-based heuristics provide
(admissible) estimations of distances, not necessarily exact
values, such as Landmarks based heuristics (Goldberg and
Harrelson 2005; Cazenave 2006; Björnsson and Halldórsson
2006; Sturtevant et al. 2009) and pattern databases (Cul-
berson and Schaeffer 1998). While HCD can compute the
optimal distances for all pairs of locations without perform-
ing any state-space search, memory-based heuristics must be
combined with runtime heuristic search to compute optimal
paths.

HCD
In this paper, we only consider fully reachable maps. For
maps that contains more than one disconnected components,
they can be easily treated as several different maps.

Before we introduce the detailed algorithms, we formally
define the following notions.

Definition 1. Locations a and b are Manhattan Neighbors
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(MN) iff d(a, b) = h(a, b). MNa is used to denote the
largest set in which each location b is a Manhattan Neighbor
of a.

Definition 2. For a 4-connected grid map and a source lo-
cation S, a Hierarchical Anchor Tree (HAT), denoted as
HATS , is a tree rooted at S. The nodes of HAT are called
anchor points which are locations on the map. S is called
the root anchor point. An edge between a parent anchor
point p and a child anchor point c has a cost that equals to
h(p, c). Let pc(p, q) be the total cost of edges in the path
from p to q in HATS . HATS must satisfy the following
conditions:

1. S is in HATS;

2. For any anchor point a, d(S, a) = pc(S, a);

3. For any location p in the map, there exists at least one
anchor point a such that a is in MNp and d(S, p) =
d(S, a) + h(a, p).

See Figure 2 again as an example of MNS and HATS .
HATS consists of two anchors A1(= S) and A2 and has
only one edge (i.e., A1→ A2).

There may be more than one HATS , and we will describe
our algorithm to construct it later. The following theorem
indicates how to calculate the optimal distance from any lo-
cation p to S with HATS and MNp.

Theorem 1. For any accessible location p, d(S, p) can be
calculated by

min
a∈HATS∩MNp

pc(S, a) + h(a, p)

Proof of Theorem 1. For any a ∈ HATS∩MN p, pc(S, a)+
h(a, p) ≥ d(S, a). According to Definition 2 there exist
at least one a so that pc(S, a) + h(a, p) = d(S, a), so the
minimum value in Theorem 1 must equal to d(S, a).

HATS ∩ MNx and HATS ∩ MNy are respectively
{A1, A2} and {A2} in Figure 2(b). d(S, x) and d(S, y) are
therefore calculated as follows:

d(S, x) = min(pc(A1, A1) + h(A1, x),

pc(A1, A2) + h(A1, x))

= min(5, 8 + 3) = 5,

d(S, y) = pc(A1, A2) + h(A2, y)

= 8 + 3 = 11.

Calculating d(S, p) needs to compute I = HATS∩MNp

by checking if each anchor point in HATS is in MNp as
well as pc(S, a) by traversing a path from S to a in HATS .
This computational overhead is much smaller than CPD
checking all the locations along the optimal path, because
HATS and I contain a very small number of anchor points
in practice.

Computing and Compressing MN
Algorithm 1 outlines the procedure of computing and com-
pressing MNn for each reachable location n. After the al-
gorithm calculates the optimal distance for all reachable lo-
cations from n by using Dijkstra’s algorithm, it calculates
MNn by comparing d(p, n) with h(p, n) for each reach-
able location p. The algorithm then compresses MNn either
by using either rectangle regions or previously compressed
MNm for other location m.

Below is the definition of Manhattan Neighbor Map (MN-
Map) that our algorithm uses to compress MN.

Definition 3. For a 4-connected grid map and a source lo-
cation S, a Manhattan Neighbor Map for S, denoted as
MNMapS , is a set of a rectangles, so that all the locations
in MNS are covered and none of the other reachable loca-
tions outside MNS is covered.

Figure 3(a) illustrates the basic idea of compressing based
on rectangle regions that can cover a MN colored by grey:
the MN is divided into a number of different rectangles for
each of which only the left-top and the right-bottom loca-
tions are stored. In Figure 3(a), 3 rectangles marked by a, b
and c are needed to construct a MNMap. Obstacle locations
can be included in rectangle regions.

(a) Manhattan Neighbors To Rectangles (b) Reuse Rectangles

Figure 3: Example of compressing MN

Algorithm 1 build a compressed MN database
1: for each reachable location n do
2: D(n)← Dijkstra(n)
3: T (n)← ComputeMN (D(n))
4: L(n)← CompressMN (T (n))

Our algorithm currently uses the following greedy strat-
egy to generate rectangles to cover MNS :

1. Select the source location S and set the current expanding
rectangle r to include S.

2. Keep expanding r in the direction of the longest1 edge
of the enclosed rectangle until r cannot be expanded any
more. Note, obstacle locations are allowed in r, but lo-
cations already covered by previous rectangles are not al-
lowed in r.
1Although any tie-breaking rule can be applied here, our current

implementation breaks ties in order of the top, right, bottom and
left directions.
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3. Select a new location t ∈ MNS that is uncovered by
any rectangle and closest to source location S, replace
r with t, and then go to step 2, until all locations are in
MNMapS .
MNa and MNb are often identical even if a 6= b. For ex-

ample, in Figure 3(b), all locations marked by “s” have the
same MN illustrated by grey tiles. In compressing MN, our
algorithm checks if there is an identical MN already com-
pressed as a MNMap. If this is the case, the algorithm reuses
that MNMap to further reduce the memory usage.

Algorithm 2 build a compressed HAT database
Input Manhattan Neighbor Database MNdb

1: for each reachable location n do
2: T (n)← Dijkstra(n)
3: L(n)← ComputeHAT (T (n),MNdb)

Computing and Compressing HAT
Algorithm 2 outlines the basic procedure of computing
HATs. Since computing HATs needs to determine whether
two locations are MN or not, it needs a precomputed MN
database as input. In order to compute HATS , the follow-
ing algorithm is performed:

1. Put all reachable locations into a list L, in ascending order
of d(S, ·) calculated by Dijkstra’s algorithm.

2. Set S to the root anchor of HATS . Set the current work-
ing anchor point a = S;

3. Remove all locations in MNa from L;
4. Dequeue a top element p from L. If L is empty, terminate;
5. Find a location q among the direct four neighbors of p that

satisfies the following conditions:
• q is not in L;
• d(S, p) = d(S, q) + 1;
• An anchor point a′ in current HATS such that q is in
MNa′ and d(S, q) = d(S, a′) + h(a′, q).

Update the current working anchor point a = q, and insert
q into HATS with an edge of a′ → q. Go back to step 3.

Theorem 2. The algorithm defined above generates a
HATS that satisfies Definition 2.

Proof Sketch of Theorem 2. We give a proof sketch of an
important property that there exits at least one qualified lo-
cation q given such a location p in step 5 above. Assume a
location p′ is the direct predecessor of p in one optimal path
from S to p, so d(S, p) = d(S, p′) + 1. Because p is the
closest location to S in L, p′ is not in L. Because p′ is not in
L, there must exist a location a′ in current HATS such that
p′ is in MNa′ and d(S, p′) = d(S, a′) + h(a′, p′). p′ is a
qualified q.

Figure 4 illustrates an example of computing a HAT. After
S = A1 (the source location) is added to HATS , all loca-
tions with light grey are removed from L. Later, the dark

Figure 4: Compute HAT.

grey location with d(A1, p) = 9 is selected as p in step 4,
followed by A2 and A1 being selected as a qualified q and
a′, respectively.

Similar to MN, many different source locations can reuse
HATs generated previously, thus enabling to decrease the
memory usage. More specifically, before the algorithm com-
putes HATS , it checks if there is any HATT such that a tree
constructed from HATT by replacing only T by S is con-
sistent with the definition of HATS . In this case, instead
of generating HATS , HCD remembers that HATT can be
reused for S. HATS is dynamically generated during a dis-
tance query starting from S.

Experiments
We evaluate empirically two versions of our approach,
HCD-noreuse and HCD-reuse. HCD-noreuse builds a sep-
arate HAT for every location s, as well as a separate MN-
Map. In contrast, HCD-reuse identifies cases where the
same HAT, except for its root, can be re-used across multiple
starting locations. It also reuses MNMaps across locations.
We use compressed path databases as the baseline, which
is implemented in the Copa program (Botea 2012) and can
be downloaded from the website of the GPPC 20122. The
comparison also includes a naive way of storing all-pairs
distances without any compression.

Experiments are performed on a set of game maps from
three games: Dragon Age: Origins, Baldurs Gate II and
Warcraft III. The maps are downloaded from Sturtevant’s
repository (Sturtevant 2012).

Table 1 compares the size of databases generated with
CPDs, HCD-noreuse and HCD-reuse. HCD-reuse generally
generates the smallest database, except for the den401d map.
In den401d, previously generated HATs can not be reused,
while HATs are frequently reused in other maps. The rea-
son of this behavior on map den401d is still unclear, which
would be explored later.

In our implementation for 4-connected grid maps, the
naive uncompressed distance databases (UDDs), store ev-
ery distance as a 32-bit integer. The last three columns in
Table 1 show the compressing factor, computed as the size
of the UDD divided by the size of the corresponding com-
pressed database. HCD-reuse achieve compressing factors
from 79 to 4,280. Generally, HCD-reuse tends to have larger
compressing factors for larger maps, but the map topologies
might also change the compressing factor significantly. For

2http://movingai.com/GPPC/
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Size of Database in MB Improving Factor over UDD
Map # of states UDD CPD HCD-noreuse HCD-reuse CPD HCD-noreuse HCD-reuse

Baldurs Gate II
AR0018SR 2860 33.0 0.37 1.95 0.37 88 17 88
AR0012SR 6175 148.8 0.81 4.30 0.81 184 35 183
AR0412SR 7626 227.8 1.00 2.70 0.31 228 84 735
AR0603SR 13764 725.4 1.60 11.75 0.68 453 62 1064

Dragon Age: Origins
den403d 2036 16.1 0.26 0.35 0.20 63 46 79
isound1 2976 34.6 0.36 0.19 0.04 95 182 961
den401d 11456 504.4 1.30 7.95 5.43 388 63 93
arena2 24311 2256.0 5.30 14.90 0.67 426 151 3352

Warcraft III
deadwaterdrop 76028 22258.0 29.00 62.50 5.2 768 356 4280

Table 1: Size comparison for CPD, HCD-noreuse and HCD-reuse, and uncompressed distance databases (UDD).

Figure 5: Compare the time usage of CPD and HCD-reuse in returning the optimal distance between two locations. The extra
horizontal line represents y=1. There are 100 instances for every distance.

example, den403d and isound1 are close in the number of
states, but they have quite different compression factors with
HCD-reuse. Figure 6 shows the two maps. As the map
isound1 is topologically much simpler than the den403d
map, it generates smaller HATs and also allows to reuse
HATs more frequently.

Figure 5 compares the CPD and HCD-reuse in terms of
the response time to distance queries. As the response times
of HCD-noreuse and HCD-reuse are very similar, we only
plot HCD-reuse time data. Every point represents a distance
query. The x-axis represents the exact distance, and the
y-axis represents the ratio between the CPD response time
and the HCD-reuse response time, which is computed as
the CPD response time divided by the HCD-reuse response
time. There is one horizontal line with y equals to 1 in each
figure. All points above this line indicate that HCD-reuse is
faster. The ratios in Figure 5 roughly increase linearly with
the distance.

Using the AR0603SR map, Figure 7 illustrates why this
tendency occurs. The CPD response time is linear over the
distance. CPDs need to retrieve all moves step by step in one
optimal path, and report the distance at the end. In contrast
to CPDs, the HCD-reuse response times remain relatively

stable as the distance grows. It is because, for HCD-reuse,
we only need to calculate the equation in Theorem 1.

(a) den403d (b) isound1

Figure 6: The den403d and isound1 maps.

Conclusion and Future Work
In this preliminary work, we introduce HCDs, which make
use of the Manhattan distance heuristic to compress size of
the optimal distance database for 4-connected grid maps.
Compared to compressed path databases, preliminary re-
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Figure 7: Time usage of CPD and HCD-reuse over query distance on the same 3500 pairs of locations (100 pairs for each
distance) on the AR0603SR map.

sults show that our approach generally generates smaller
databases, which also reply distance queries faster.

Future work includes a more detailed empirical analysis,
including benchmark methods such as Hub Labels, and ex-
tending HCD to 8-connected grid maps. We plan to further
reduce the size of HCDs, taking advantage of work in the
area of covering polygons with rectangles (Franzblau and
Kleitman 1984). Reducing the size of the union of HATs is
another promising future direction.
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