
Learning When to Switch between
Skills in a High Dimensional Domain

Timothy A. Mann and Daniel J. Mankowitz and Shie Mannor
Electrical Engineering

The Technion
Technion City, Haifa, Israel

Introduction
Complex problems are often easier to model with skills1

than primitive (single time-step) actions (Stone, Sutton, and
Kuhlmann 2005). In addition, skills have been shown to
speed up the convergence rates of planning algorithms both
experimentally (Sutton, Precup, and Singh 1999; Silver and
Ciosek 2012) and theoretically (Mann and Mannor 2014).
Skills are generally designed by a domain expert, but de-
signing a ‘good’ set of skills can be challenging in high-
dimensional, complex domains. In some cases, the skills
may contain useful prior knowledge but cannot solve the
task, resulting in a sub-optimal solution or no solution at all.
Given a ‘poor’ set of skills, we would like to dynamically
improve them.

Sutton, Precup, and Singh 1999 suggest Interrupting Op-
tions (IO) whereby the agent switches skills whenever there
exists another skill with higher value than continuing the
current skill. Mankowitz, Mann, and Mannor 2014 prove
that the IO process converges on the set of skills with op-
timal switching rules (under mild assumptions). While the
potential of IO is promising, previous experiments only
showed the advantage of IO in tasks with few states.

We experiment with Space Invaders (SI, Figure 1) via
the Arcade Learning Environment (ALE) using the 1024-bit
RAM image as the state (Bellemare et al. 2013). The prim-
itive actions are combinations of move left, move right, do
nothing, and shoot. Our hypothesis is that IOs can improve
performance compared to learning with a fixed set of skills
despite the fact that SI has a large state-space. To test our
hypothesis, we constructed a naive set of skills for the do-
main where each skill repeats one of the primitive actions
over-and-over until a termination condition occurs. How-
ever, designing a rule that determines the optimal time to
switch between skills is challenging, so we gave each skill
a constant probability of switching at each timestep. We call
the set of skills with this naive termination rule the initial
skills set, and our experiments compared learning with the
initial skill set to learning with a skill set whose switching
rules are dynamically adapted by the IO rule.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Here skills are a special case of options (Sutton, Precup, and
Singh 1999).

Left Right
Stop

Shoot

Figure 1: Space Invaders (SI)

Our experiment does not compare the performance of al-
gorithms reported in previous literature (e.g. SARSA (Belle-
mare et al. 2013)), since those algorithms operated directly
on the space of primitive actions. The initial skill set was
chosen to test our hypothesis, which is about the effective-
ness of IO in a problem with a large state-space. We do not
claim that the skills used in our experiment are better than
primitive actions. Instead our experiment focuses on demon-
strating that the IO rule can improve an initial skill set by
learning when to switch between skills. We leave the prob-
lem of deriving a good initial set of skills to future work (see
Discussion & Conclusion).

The main contribution of this paper is showing that IOs
can improve the initial skill set in a high-dimensional, com-
plex domain by learning when to switch between skills. Fur-
thermore, we discuss some of the pitfalls we ran into while
trying to get IO to work.

Background
A skill σ = 〈π, β〉 is a temporally extended control structure
where π is the intra-skill control policy that determines the
actions to take while executing the skill and β(s) is the prob-
ability that the skill will terminate in state s ∈ S. LetQ(s, σ)
be the action-value function and V (s) = maxσ Q(s, σ) de-
note the greedy value function. For a state s ∈ S and a skill
σ, the IO rule states that when executing σ, if we encounter
a state s where

Q(s, σ) < V (s)−∆ , (1)

32

Learning for General Competency in Video Games: Papers from the 2015 AAAI Workshop



then terminate the skill and choose a new skill σ′ =
arg max

j
Q(s, j),∀j ∈ Σ where Σ is the set of skills and

∆ ≥ 0 is a small gap that prevents switching when the dif-
ference in value is negligible. ∆ = 5 in our experiments,
which is the number of points received for shooting a green
space invader2. The implication is that IO only switches be-
tween skills when there is a significant advantage for doing
so.

8-bit Chunk

hash-table

1024-bit RAM state
...

8-bit Chunk

hash-table

8-bit Chunk

hash-table
...

w1 + w2 + + w128... = Q(s,a)

Figure 2: State hashing scheme used to approximate the
action-value (Q-) function.

Experiment and Results
We compared RL with and without IOs in the Space Invaders
domain via ALE (Bellemare et al. 2013), using the 1024-bit
RAM dump at each timestep as the state-space.
Algorithms: Many RL algorithms can easily be adapted to
operate over skills rather than primitive actions. All algo-
rithms in our experiment were adapted to operate over skills.

We initially tried the SARSA algorithm with and with-
out IOs. However, IOs performed poorly because they ef-
fectively stunted exploration. Once a non-zero reward was
discovered for terminating a skill early, the IO rule would
always terminate – never exploring what would happen if
the skill was allowed to execute longer.

To remedy this problem, we used Q-learning (Watkins
1989) with learning rate α = 0.2, discount factor γ = 1,
and UCB-like exploration bonuses (Auer, Cesa-Bianchi, and
Fischer 2002). The exploration bonuses cause the agent to
explore terminating skills at different durations. To deal with
the massive state-space, we introduced a hashing scheme
(Figure 2). The same scheme was repeated for each skill to
approximate the action-value function. The scheme broke
down the 1024-bit RAM dump into 8-bit chunks. Each
chunk was then hashed to an integer and a weight was asso-
ciated with the the hashed integer. If the hashed value did not
have any weight in the table, a default value 0 (plus a large
bonus) was returned. To obtain an estimate for an action-
value function, the weights associated with each chunk
were averaged. This approach is similar to Q-learning with
CMAC function approximation (Sutton and Barto 1998). We
refer to our particular implementation as HashQ. Our exper-
iment considers two conditions: (1) HashQ without IOs (just
HashQ) and (2) HashQ with IOs (HashQIO). Note that for

2While ∆ > 0 invalidates the convergence result for IO, it adds
robustness to in practice.

HashQIO, we switched on IOs at episode 20 to allow the
algorithm a chance to derive a reasonable action-value func-
tion.
Initial Skills: For each primitive action ai ∈ A, we created
a skill σi = 〈πi, βi〉 where πi(s) = ai and the termina-
tion rule was βi(s) = 0.01 for all s ∈ S. So the initial
skills executed the same primitive action over-and-over and
terminated after about 100 timesteps. We needed the initial
skill set to terminate randomly so that the agent could learn
about the value of various termination states. Without this,
the agent would never be able to apply the IO rule.
Results: Figure 3a compares the median cumulative rewards
of a policy that selects from the initial set of skills via a
uniform random distribution (Rand), HashQ, and HashQIO.
Both HashQ and HashQIO outperform Rand. Furthermore
HashQIO outperforms HashQ, suggesting that IOs improve
on the termination rules of the initial skill set. Figure 3b
compares the median duration of options during training
episodes of HashQ and HashQIO, showing how HashQIO
opportunistically terminates skills early to switch to better
skills.

Discussion & Conclusion
The main problem that we encountered was accurately ap-
proximating the action-value function. When the action-
value function is estimated poorly, the agent may switch to
a skill that actually leads to a lower value than the current
skill. Our results may be improved by combining IO with
the more sophisticated DQN architecture (Mnih et al. 2013).

The second problem that we encountered was exploring
the state-space. Random exploration only visited a small part
of the state-space. We experimented with many exploration
schemes before settling on one inspired by UCB. One sig-
nificant advantage of UCB-like exploration is that it also en-
couraged intra-skill exploration by giving a large bonus to
states that had not been visited before. This caused the IO
rule to trigger whenever a new state was encountered dur-
ing a skill’s execution. This intra-skill exploration enables
HashQIO to quickly find more optimal switching rules.

The last problem we encountered was designing the initial
skills. We chose extremely naive skills for simplicity, but
our results would likely improve significantly with a better
initial skill set. For example, initial skills could be derived
via the promising HyperNeat algorithm (Hausknecht et al.
2014).

This is the first result showing the advantage of IO in
a high-dimensional domain. IO learns the optimal time to
switch between skills and therefore improves the solution.
This suggests that IOs may be valuable for scaling RL to
high-dimensional and complex domains. In the future, we
would like to look at how IOs perform in a range of high-
dimensional games.

Acknowledgments
The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) /
ERC Grant Agreement n.306638.

33



0 50 100 150 200

Episode #

0

10000

20000

30000

40000

50000

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

HashQ
HashQIO
Rand

0 50 100 150 200
0

20

40

60

80

100

120

(a) (b)

Figure 3: (a) Median cumulative reward (shaded region: between 1st and 3rd quartiles) over 20 independent trials in Space
Invaders for random, HashQ, and HashQIO. HashQIO learns when to switch skills, which leads to higher cumulative
reward. (b) Median duration of options per episode for HashQ (solid red line) and HashQIO (dashed blue line).

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235–256.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 47:253–279.
Hausknecht, M.; Lehman, J.; Miikkulainen, R.; and Stone,
P. 2014. A neuroevolution approach to general atari game
playing. IEEE Transactions on Computational Intelligence
and AI in Games.
Mankowitz, D. J.; Mann, T. A.; and Mannor, S. 2014. Time
regularized interrupting options. Internation Conference on
Machine Learning.
Mann, T. A., and Mannor, S. 2014. Scaling up approximate
value iteration with options: Better policies with fewer iter-
ations. In Proceedings of the 31 st International Conference
on Machine Learning.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. In NIPS Deep
Learning Workshop 2013.
Silver, D., and Ciosek, K. 2012. Compositional Planning
Using Optimal Option Models. In Proceedings of the 29th
International Conference on Machine Learning.
Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Rein-
forcement learning for robocup soccer keepaway. Adaptive
Behavior 13(3):165–188.
Sutton, R., and Barto, A. 1998. Reinforcement Learning: An
Introduction. MIT Press.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Be-
tween MDPs and semi-MDPs: A framework for temporal

abstraction in reinforcement learning. Artificial Intelligence
112(1):181–211.
Watkins, C. 1989. Learning from Delayed Rewards. Ph.D.
Dissertation, University of Cambridge.

34




