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Abstract

The Generalized Mutual Assignment Problem (GMAP) is
a maximization problem in distributed environments, where
multiple agents select goods under resource constraints.
Distributed Lagrangian Relaxation Protocols (DisLRP) are
peer-to-peer communication protocols for solving GMAP
instances. In DisLRPs, agents seek a good quality upper
bound on the optimal value by solving the Lagrangian dual
problem, which is a convex minimization problem. Existing
DisLRPs exploit a subgradient method to explore a better
upper bound by updating the Lagrange multipliers (prices)
of goods. While the computational complexity of the sub-
gradient method is very low, it cannot detect tha fact that
an upper bound converges to the minimum. Moreover, so-
lution oscillation sometimes occurs, which is critical for its
performance. In this paper, we present a new DisLRP with a
Bundle Method and refer to it as Bundle DisLRP (BDisLRP).
The bundle method, which is also called the stabilized cutting
planes method, has recently attracted much attention as a way
to solve Lagrangian dual problems in centralized environ-
ments. We show that this method can also work in distributed
environments. We experimentally compared BDisLRP with
Adaptive DisLRP (ADisLRP), which is a previous proto-
col that exploits the subgradient method, to demonstrate that
BDisLRP converged faster with better quality upper bounds
than ADisLRP.

Introduction
Distributed optimization problems are one critical category
for Multi-Agent Systems. In such problems, multiple agents
cooperatively try to solve a problem instance and find an op-
timal assignment or a good quality solution for an entire sys-
tem. There are many practical and theoretical approaches for
such problems, including multi-robot coordination (Zheng
and Koenig 2009), distributed facility location (Frank and
Römer 2007), and distributed constraint optimization prob-
lem (Modi et al. 2003).

Hirayama et al. proposed Generalized Mutual Assign-
ment Problem (GMAP) (Hirayama 2006) as a distributed
optimization formalism. GMAP is an extended problem of
the Generalized Assignment Problem (Savelsbergh 1997;
Posta, Ferland, and Michelon 2012), which is a classic NP-
hard problem in operations research field. The objective of
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GMAP is to find the globally optimal goods assignment
while satisfying resource constraints of individual agents.

The first protocol for solving GMAP instances in purely
distributed environment is DisLRPL (Hirayama 2006).
DisLRPL is a stochastic algorithm that can efficiently com-
pute a feasible solution with a lower bound on the optimal
value. However, the bound is generally not so tight and there
is no guarantee on its tightness. The second protocol is called
DisLRPα (Hirayama 2007), where we obtain a feasible so-
lution that is guaranteed to have a quality of α (meaning that
its objective value is not lower than α × OPT ). The third
one is Adaptive DisLRP (ADisLRP) (Hirayama, Matsui, and
Yokoo 2009), which can yield a relatively tight upper bound
on the optimal value to a GMAP instance.

On the other hand, a slightly different formalism of
GMAP is proposed in (Hanada and Hirayama 2011). In
this formalism, they relax the assignment constraint, which
states every good is assigned to exactly one agent, by allow-
ing goods to be assigned to at most one agent. They also pro-
vide two basic protocols for solving this version of GMAP.
Recently, for task assignment in robotics domains, Luo et.
al. proposed an auction-based protocol (Luo, Chakraborty,
and Sycara 2013) that is very similar in both formalism and
algorithm to the ones in (Hanada and Hirayama 2011).

Here is an outline of the agent behavior in DisLRPs. First,
the agents solve their individual 0-1 knapsack problems
and announce their assignments of goods to their respective
neighbors indicating which goods they tentatively selected.
Second, for all goods, they raise the price of their Lagrange
multiplier if it is chosen by two or more agents and reduce
their price if it is not chosen by any agent. Third, under the
new prices, the agents solve their individual new 0-1 knap-
sack problems again. They repeat this procedure until all of
the goods are chosen by exactly one agent, which means we
get a proper set partition for the entire set of goods.

The protocols explore better (smaller) upper bounds on
the optimal value by updating the Lagrange multipliers. This
is called a Lagrangian dual problem. To update the La-
grange multipliers, existing DisLRPs exploit a well known
and widely used subgradient method to solve Lagrangian
dual problems. The advantage of the subgradient method is
that the calculation speed for updating the Lagrange multi-
pliers is very fast. However, it cannot detect the fact that the
upper bound converges to the minimum. Moreover, solution
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oscillation sometimes occurs, which is critical for its perfor-
mance.

In this paper, we propose a new DisLRP called Bundle
DisLRP (BDisLRP) to address the above problems. A new
feature of BDisLRP is that it exploits a bundle method (Bon-
nans et al. 2006) to simultaneously update the Lagrange
multipliers with a synchronization protocol (Hirayama, Mat-
sui, and Yokoo 2009). The bundle method, which is also
called the stabilized cutting planes method, has recently at-
tracted much attention as a way to solve Lagrangian dual
problems in centralized environments. The bundle method’s
advantage is that it can provide the optimal value of the La-
grangian dual problem, but the subgradient method cannot.
Since this feature brings another termination condition for
BDisLRP, it decreases the number of iterations more than
existing DisLRPs.

The contribution of this paper is that it shows the bundle
method can work even in distributed environments and can
also outperform the subgradient method in DisLRP. Even
though the bundle method has been studied in centralized
contexts, it hasn’t been studied in distributed contexts, to the
best of our knowledge. Second, we briefly discuss a conver-
gence property of our protocol and the convergence proof
for our protocol is the same of the concentrated context.
Lastly, we analyze agent privacy for BDisLRP. We show that
BDisLRP has some advantage and disadvantage in agent pri-
vacy over existing protocols.

This paper first formally defines GMAP followed by its
properties. Then it presents the details of existing DisLRPs,
which exploit the subgradient method within the protocols.
Next, it provides the basic theory of the cutting planes
method and the bundle method in a general context and ex-
plains our new protocol. Next, it gives experimental results
on benchmark instances showing the protocol’s actual per-
formance and finally concludes this work.

Generalized Mutual Assignment Problem
The Generalized Mutual Assignment Problem (GMAP) is
based on the Generalized Assignment Problem (GAP),
which is a classic problem that has been studied for decades
in operations research field.

Formulation of GAP
GAP is formulated as following Integer Programming (IP)
problem:

GAP (decide xkj , ∀k ∈ A, ∀j ∈ J) :

max .
∑
k∈A

∑
j∈J

pkjxkj

s. t.
∑
k∈A

xkj = 1, ∀j ∈ J, (1)∑
j∈J

wkjxkj ≤ ck, ∀k ∈ A, (2)

xkj ∈ {0, 1}, ∀k ∈ A, ∀j ∈ J,

where A = {1, ...,m} is a set of agents, J = {1, ..., n}
is a set of goods, pkj ∈ R+ is the profit, and wkj ∈ R+

is the amount of resources required when agent k selects
good j. ck ∈ R is the capacity, i.e., the amount of available
resources, of agent k. xkj is a decision variable whose value
is set to 1 when agent k selects good j and 0 otherwise. The
goal of the problem is to maximize the summation of profits
under assignment constraints (1), which means each good is
assigned to exactly one agent and the knapsack constraints
(2), which means that no agent can use resources that exceed
her capacity.

Since it is a NP-hard problem, many exact algorithms
(Posta, Ferland, and Michelon 2012; Savelsbergh 1997) and
heuristic approaches (Diaz and Fernandez 2001; Yagiura,
Ibaraki, and Glover 2006) have been proposed.

Formulation of GMAP
GMAP is the extension of GAP. GMAP is formulated as the
following IP problem:

GMAP (decide xkj , ∀k ∈ A, ∀j ∈ Jk) :

max .
∑
k∈A

∑
j∈Jk

pkjxkj

s. t.
∑
k∈Aj

xkj = 1, ∀j ∈ J,

∑
j∈Jk

wkjxkj ≤ ck, ∀k ∈ A,

xkj ∈ {0, 1}, ∀k ∈ A, ∀j ∈ Jk,
where Aj is a set of agents who can select goods j and Jk
is a set of goods that can be assigned to agent k. Obviously,
a union of Aj for all goods j equals A, and a union of Jk
for all agents k equals J . Without loss of generality, we can
assume Aj 6= ∅ (i.e., |Aj | does not equal zero).

Distributed Lagrangian Relaxation Protocol
Distributed Lagrangian Relaxation Protocols (DisLRPs)
(Hirayama 2006; 2007; Hirayama, Matsui, and Yokoo 2009)
are heuristic methods for solving GMAP instances by us-
ing only local communication among agents. One feature of
DisLRPs is that they can provide an upper bound on the op-
timal value with no centralized control agent.

To solve GMAP instances in distributed contexts, we have
to divide the problem while keeping its structure. Dantzig-
Wolfe decomposition provides such problem decomposition.
Lagrangian relaxation problem is obtained by dualizing the
assignment constraints (1) of GMAP as follows:

LGMP (decide xkj , ∀k ∈ A, ∀j ∈ Jk) :

L(µ)=max .
∑
k∈A

∑
j∈Jk

pkjxkj+
∑
j∈J

µj

1−
∑
k∈Aj

xkj


s. t.

∑
j∈Jk

wkjxkj ≤ ck, ∀k ∈ A,

xkj ∈ {0, 1}, ∀k ∈ A, ∀j ∈ Jk,
where µj ∈ R is called a Lagrange multiplier for goods j
and vectorµ = (µ1, . . . , µn) is called a Lagrange multiplier
vector.
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Since the objective is additive over the agents and the con-
straints are separable over the agents, this maximization can
be achieved by each agent k solving the following subprob-
lem:

LGMPk(πk(µ)) (decide xkj , ∀j ∈ Jk) :

Lk(πk(µ)) = max .
∑
j∈Jk

(pkj − µj)xkj +
∑
j∈Jk

µj
|Aj |

s. t.
∑
j∈Jk

wkjxkj ≤ ck,

xkj ∈ {0, 1}, ∀j ∈ Jk.
where πk(µ) is a projection of µ over the jobs in Jk. Each
agent k is responsible for LGMPk(µ).

To solve GMAP, without gathering all of the information
in one place, a distributed solution is possible by exploit-
ing the following properties of the relation between the de-
composed subproblems and the global problem (Hirayama
2006):
Proposition 1. For any value of µ, the total sum of the op-
timal values of LGMPk(πk(µ))|k ∈ A provides an upper
bound on the optimal value of GMAP .
Proposition 2. For some value of µ, if all of the optimal
solutions to LGMPk(πk(µ))|k ∈ A satisfy the assignment
constraints (1) of GMAP , then these optimal solutions con-
stitute an optimal solution to GMAP .

The upper bound should be as close as possible to the op-
timal value: the smaller the upper bound, the better. Thus we
have another problem called the Lagrangian dual problem:

L(µ∗) = min
µ
. L(µ) = min

µ
.
∑
k∈A

Lk(πk(µ)),

where µ∗ is its optimal solution. By the duality theory, the
Lagrangian dual problem has the following property:
Proposition 3. An objective function of the Lagrangian dual
problem is always convex.

Procedure
The following is the basic DisLRP procedure:
(Step 1) All agents set counter t to 1 and initialize all ele-

ments of their Lagrange multiplier vector πk(µ(t)) to 0.

(Step 2) Under a current value of µ(t), each agent k solves
her knapsack problem to compute L′k(µ

(t)). Then the
agents send these results to their respective neighbors,
who are a group of agents who share interests in the same
good. Formally, the neighbors of agent k are a union of
agents (except for k) with decision variables that appear
in the assignment constraint on good j inRk. Namely, the
neighbors of agent k is denoted by

⋃
j∈Jk Aj \ k.

(Step 3) If all assignment constraints of the original prob-
lem are satisfied, the agents can quit the procedure to pro-
vide an optimal solution.

(Step 4) Each agent k updates the Lagrange multiplier vec-
tor from µ(t) to µ(t+1) and t to t + 1 and returns to Step
2.

After initializing their counter and price vectors, the
agents repeat Steps 2 through 4 until all agents learn that
they have reached an optimal solution of GMAP . Counter
t represents the number of times the agents perform Steps 2
through 4. We view this one series of executions over Steps
2 through 4 as a unit and call it a round indicated by counter
t.

Note that the entire system’s global information is some-
times required, for example, computing L(µ(t)). In this
work, we use a spanning tree protocol to collect this global
information. Due to space limitations, see (Hirayama, Mat-
sui, and Yokoo 2009) for details.

Subgradient Method
At Step 4 in the procedure, the existing DisLRPs exploit a
well known and widely used subgradient method to solve
Lagrangian dual problems.

The relaxed constraints correspond to the subgradient in
the Lagrangian relaxation problem. Thus we can compute
subgradient gj for each good j in Aj as follows:

gj = 1−
∑
k∈Aj

xkj .

Since the subgradient is decided when µ is input, we define
vector g(µ) = (g1, . . . , gn).

The existing DisLRPs use the following formula to update
each element µj of µ in the subgradient method:

µ
(t+1)
j ← µ

(t)
j − l

(t) · g(t)j ,

where l is a non-negative number called a step length. The
first protocol, DisLRPL (Hirayama 2006) used a static num-
ber as the step length. In ADisLRP, Yokoo et al. (Hirayama,
Matsui, and Yokoo 2009) introduced an adaptive price up-
dating procedure for step lengths. The procedure adaptively
decides the step length using the global information of the
upper and (estimated) lower bounds. To update µ, the pro-
tocol uses the following step length:

l(t) =
π(min{ub} −max{lb})

‖g(µ(t))‖2
, (3)

where ‖ · ‖ is the Euclidean norm, min{ub} is the lowest
known upper bound, max{lb} is the largest known lower
bound, π is a positive scalar parameter whose initial value
is 2 that is halved when the least upper bound has not been
updated during a specified interval of rounds.

The advantage of the subgradient method is that its up-
dates Lagrange multiplier vectors very quickly. However,
the subgradient method that uses the (3) as a step length
has no convergence proof1; it cannot detect that the upper
bound converges to the minimum. Moreover, solution oscil-
lation sometimes occurs, which is one critical issue for the
subgradient method.

1Even though some convergence proofs depend on algorithms
for step lengths, their calculation speed is generally very slow.

49



Figure 1: Example of cutting planes method at round 2

Bundle DisLRP
In this section, we propose Bundle DisLRP (BDisLRP).
First, we describe a theory of the cutting planes and bun-
dle methods that will be used in the new protocol. Then we
describe the algorithm and some of its features.

Cutting Planes Method
The cutting planes method is also well known as the sub-
gradient method in operations research field. It constructs
cutting planes for functions to narrow the possible range of
optimal values.

In the subgradient method, the calculation result in round
t is destroyed when the procedure goes to the next round:
t + 1. In the cutting planes method, agents record all the
information of Lagrange multiplier vector µ(t), optimal
value of Lagrangian relaxation problem L(µ(t)), and sub-
gradient g(µ(t)). We call this {〈µ(t), L(µ(t)), g(µ(t))〉|t ∈
{1, . . . , T}} a bundle for all t ∈ {1, . . . , T}.

Here is the outline of the cutting planes method. First,
based on the definition of subgradient, the following in-
equality is satisfied for all µ:

L(µ) ≥ L(µ(t)) + g(µ(t))T(µ− µ(t)), ∀µ ∈ Rn. (4)

We define the right hand side of inequality (4) as f (t)(µ).
Since f (t)(µ) is a tangent hyperplane of the objective func-
tion of Lagrangian dual problem L(µ), we can prune the in-
feasible region of L(µ) by generating f (t)(µ) in each round
t. To update µ, we solve the cutting planes method by the
following LP problem:

CP (decide µ, r) :

min . r

s. t. f (t)(µ) ≤ r, ∀t ∈ {1, . . . , T}.

Let r∗1 be the optimal value of CP . If r∗1 = L(µ(t)) in round
t, µ(t) is the optimal solution of the Lagrange dual problem.
Figure 1 shows an example on one dimension at round 2.

We can obtain the Lagrangian dual problem’s optimal
value by iteratively solving the LP problem; however, the
cutting planes method has some drawbacks. First, in the first
few iterations, the procedure needs an artificial constraint to
bound the permitted region. If the permitted region is un-
bounded, we cannot obtain the optimal value of CP . It is
difficult to add such an artificial constraint while keeping

Figure 2: Example of bundle method at round 1

the model. Second, the procedure needs all the bundle in-
formation until we get the optimal value. This means that
the number of constraints grows by the number of iterations.
This is a memory consumption problem. Last, L(µ) is ba-
sically unstable and has slow convergence. Even though the
cutting planes method has some good properties, it is im-
practical for solving Lagrangian dual problems.

Bundle Method (Stabilized Cutting Planes Method)
The bundle method is a proximal point method based on the
cutting planes scheme. We can intuitively understand it by
adding a stabilized (quadratic) term to CP’s objective func-
tion.

In the bundle method, each agent solves the following
quadratic programming (QP) problem to update µ:

BM (decide µ, r) :

min . r +
1

2h
‖µ− µcp‖2

s. t. f (t)(µ) ≤ r, ∀t ∈ {1, . . . , T},
where µcp ∈ Rn is a given vector called a center point and
h ∈ R+ is a control parameter. Let r∗2 be the optimal value
of BM. Figure 2 shows an example on one dimension at
round 1.

Note that BM’s solution is unique but not CP’s, since the
feasible region is a non-empty closed convex set and BM’s
objective function is strictly convex.

The bundle method can avoid the drawbacks of the cut-
ting planes method. First, since the quadratic term always
bounds the problem, even in the first round of iterations, we
don’t have to add an artificial constraint. Second, the bundle
method doesn’t need to hold all of the bundle information
until we get the optimal value. Due to the space limitations,
see a previous work for further discussion and details (Bon-
nans et al. 2006). Most important, it is basically stable and
has fast convergence.

BDisLRP procedure
We incorporate the bundle method into BDisLRP, whose ba-
sic procedure is the following:
(Step 1) All agents set counter t to 1 and initialize all the el-

ements of their Lagrange multiplier vectors µ(t) and µcp
as 0. All agents also initialize parameters h, κ, and δ to
certain values, where κ ∈ (0, 1) controls the center point
and δ is a stopping tolerance.
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(Step 2) Under a current value of µ(t), each agent k solves
her knapsack problem to compute Lk(πk(µ(t))). Then
the agents send these results to their respective neighbors.

(Step 3) If all assignment constraints of the original prob-
lem are satisfied, the agents can quit the procedure to pro-
vide an optimal solution.

(Step 4) If all agents hold bundles from rounds 1 to t′(≤ t),
go to Step 4.1; otherwise go to Step 5.

(Step 4.1) All agents solve BM to compute r∗2 and µ(t+1).

(Step 4.2) Let δ′ be L(µcp)−r∗2 . If δ′ ≤ δ holds, the agents
can quit the procedure to provide the optimal value of the
Lagrangian dual problem.

(Step 4.3) If L(µcp) − L(µ(t′)) ≥ κδ′ holds, the agents
update the center point as follows: µcp ← µ(t′).

(Step 4.4) Each agent updates t to t+1 and returns to Step
2.

(Step 5) Each agent k updates µ(t) to µ(t+1) by the sub-
gradient method. Each agent also updates t to t + 1 and
returns to Step 2.

In Step 4.1, all agents solve exactly the same problem of
BM. Based on proposition 1, the solution of BM must be
unique to provide the upper bound on the optimal value. As
we mentioned before, since BM’s solution is unique, agents
can use any exact solver/method to solve it.

Step 4.3 is a key point of the bundle method. Iterations
where µcp is updated are called serious steps (SS), and iter-
ations where µcp is not updated are called null steps (NS).
The SS test enhances the bundle method by sufficiently up-
dating µ. Note that, in the distributed context, the agents
simultaneously have to do the SS test by synchronizing the
round that updates the center point. This updating process
resembles the updating process of the step length in the sub-
gradient method in ADisLRP. Therefore we introduce a syn-
chronization protocol over a previously used spanning tree
(Hirayama, Matsui, and Yokoo 2009). With this protocol, the
agents simultaneously update the center point.

In the first few rounds, since the agents hold no bundles
due to the communication delay, they cannot update µ by
the bundle method. Step 5 is required so that the agents can
update µ(t).

Convergence Property
In this section, we discuss a convergence property for our
proposed protocol. There is a convergence proof for a con-
centrated version of the bundle method (Bonnans et al.
2006), however, there is no convergence proof for a dis-
tributed one.

The only difference between the concentrated bundle
method and our distributed one is the existence of commu-
nication delay. Agents in our protocol collect information
to compute the global information such as the upper bound
following the spanning tree protocol. The protocol allows
agents to communicate with only their neighbors and they
transfer information which is needed to compute the global
information, therefore the communication delay occur.

We assume that there is no communication failure during
execution of the procedure, thus agents can collect all bun-
dles even supposing that there is the communication delay.
Thus the convergence proof for our distributed protocol must
be the same proof for the concentrated one.

Privacy Analysis
Agent privacy is a key motivation in distributed algorithms
(Greenstadt, Pearce, and Tambe 2006). However, it is quite
difficult to quantitatively evaluate agent privacy. Therefore
we only compare BDisLRP with existing protocols what in-
formation are shared by only neighbors or all agents.

Table 1 shows the comparisons between protocols. All
agents indicates that this information is shared by all agents.
Neighbors indicates that only neighbors know the actual in-
formation. If agent 2 is a neighbor of agent 1 and agent 3
is not a neighbor of agent 1 e.g. a certain good is shared by
agent 1 and 2, agent 1 knows information of agent 2 and
agent 2 knows information of agent 1 as well. Hard to esti-
mate indicates that it is hard to calculate or estimate actual
information. In order to get global information, agents must
diffuse their local information. For example, when agents
receive the number related to the upper bound, agents add
their own Lk(πk(µ)) to the received number and forward to
another agents. Therefore, agents are hard to know the ac-
tual number of neighbors’ information except kickoff point
of messages. - indicates that this information is not shared
among the agents.

The optimal value of agents’ knapsack problem
Lk(πk(µ)) is necessary to compute the upper bound
L(µ). Only in BDisLRP, Lk(πk(µ)) is shared by all agents
due to the bundle. It is one of the drawbacks of agent privacy
for BDisLRP.

The subgradient gj = 1 −
∑
k∈A xkj can be computed

by the solution of agents’ knapsack problem. Thus the sub-
gradient is primal information. In DisLRPL, DisLRPα and
ADisLRP, the subgradient is shared by only neighbors. In
BDisLRP, however, it is shared by all agents due to the bun-
dle. As it is not good to share primal information in dis-
tributed algorithms, this is another drawback for BDisLRP.
‖g(µ(t))‖2 is needed to calculate the step length in the

adaptive subgradient method. DisLRPL and DisLRPα don’t
need it because the step length is a static number. ADisLRP
requires ‖g(µ(t))‖2 to compute the step length. In BDisLRP,
all agents shares the subgradients and ‖g(µ(t))‖2 can be
computed by the subgradients. As a result, agents can com-
pute it.

Lagrange multipliers µ(t)
j are dual information. It is ba-

sically difficult to estimate the primal information by using
dual information. µ(t)

j is shared by all agents in BDisLRP,
we consider that it is not a serious drawback for BDisLRP.

ADisLRP must reveal the GMAP profit pkj of selected
goods to perform the on-line estimation of lower bounds. pkj
is primal information as well as the subgradient. DisLRPL,
DisLRPα and BDisLRP have no on-line estimation of lower
bounds, therefore agents need not to know pkj . This is the
advantage of BDisLRP over ADisLRP.

We are summarized as follows:
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Table 1: Privacy Properties of DisLRPs
DisLRPL DisLRPα ADisLRP BDisLRP

Optimal value of agents’ knapsack problem Lk(πk(µ)) - - Hard to estimate All agents
Subgradient gj = 1−

∑
k∈A xkj Neighbors Neighbors Neighbors All agents

‖g(µ(t))‖2 - - Hard to estimate All agents
Lagrange multipliers µ(t)

j Neighbors Neighbors Neighbors All agents
GMAP profit pkj of selected goods - - Neighbors -

• DisLRPL and DisLRPα are the best protocols in agent
privacy.

• BDisLRP reveals more information than the others except
for GMAP profit pkj of selected goods.

Experiment
We experimentally compared the BDisLRP and ADisLRP
performances.

We used GAP benchmark instances in category e from the
OR-Library2 to evaluate the performances. Since all the in-
stances are a minimization problem, we translated each of
them into an equivalent maximization problem by multiply-
ing the costs by −1.

These experiments were conducted on an Intel i7-
870@2.93 GHz with 4 Cores, 8 threads, and 8-GB mem-
ory. The main codes of BDisLRP and ADisLRP were writ-
ten in Java and compiled with JDK 1.6.0-33 on Windows 7
Professional (64 bits). We used a commercial solver, ILOG
CPLEX 12.5, as a local knapsack solver and a QP solver in
each agent.

In all the experiments, we used identical parameter set-
tings for BDisLRP: h = 8, κ = 0.9, and δ = 10−6.

The termination conditions of BDisLRP are different
from ADisLRP. Since BDisLRP can provide the optimal
value of the Lagrangian dual problem, we measured it when
the procedure quits. ADisLRP cannot provide it, thus we
used another termination condition. As with the centralized
Lagrangian relaxation approach, π(t) takes 2 as its initial
value and is halved when the least upper bound has not
been updated during some specified interval of rounds. By
doing this, π(t) is gradually reduced as the rounds proceed
and eventually becomes almost close to zero. In our experi-
ments with ADisLRP, we set this interval to 100 rounds. We
measured the least upper bound when π(t) became smaller
than 10−6. Additionally, we set a 30-minute-time limit as
the common termination condition of both BDisLRP and
ADisLRP to speed up the experiments. We measured the
least upper bound when the protocol is terminated by the
time limitation.

Comparison with ADisLRP
First, we compared BDisLRP and the previous protocol,
ADisLRP. We used the breadth-first search tree (BFS) as
a spanning tree for both protocols. Table 2 shows our ex-
periment results. Opt means the optimal value of the in-

2http://people.brunel.ac.uk/ mastjjb/jeb/info.html

stances provided by Posta et al. (Posta, Ferland, and Miche-
lon 2012). Time shows the execution time of our simulator
in seconds. > 1800 in the Time column means that the exe-
cution time takes more than 30 minutes (1800 seconds). UB
is the least upper bound after stopping the procedure. The
optimal value of the Lagrangian dual problem doesn’t need
to necessarily correspond to the optimal value of the original
problem. An optimality gap usually exists between them.

In almost all the cases, BDisLRP got better upper bounds
than ADisLRP in the shorter rounds. For such small in-
stances as e5100 (assigning 100 goods to five agents)
and e5200 (assigning 200 goods to five agents), both
BDisLRP and ADisLRP got the same upper bound. How-
ever, BDisLRP’s round and execution times are much faster
than ADisLRP. Since BDisLRP proves the optimality of the
Lagrangian dual problem’s solution, it can quit the proce-
dure when the optimal value is found while ADisLRP wastes
many rounds and time due to extra rounds. For large in-
stances, such as e60900 (assigning 900 goods to 60 agents)
and e801600 (assigning 1600 goods to 80 agents), BDisLRP
failed to obtain the optimal value of the Lagrangian dual
problem. Yet BDisLRP got a better least upper bound than
ADisLRP in shorter rounds. As we mentioned before, since
ADisLRP’s updating cost is very low, the number of its iter-
ations is higher than for BDisLRP. This might be caused by
solution oscillation, or perhaps π is ineffective for obtain-
ing a good quality upper bound. This implies that BDisLRP
can update µ more sufficiently with faster convergence than
ADisLRP.

Impact of Communication Delay
In DisLRP, we have to consider communication delay, which
is an additional round to learn each agent’s global informa-
tion. Since the agents only send their local information to
their neighbors in the protocol, it takes a few rounds to prop-
agate their information. This means that no agent can obtain
the global information in the same round. The communica-
tion delay depends on the topology of a spanning tree. For
example, in the same complete graph of five agents, the com-
munication delay is three rounds for the breadth-first search
tree and five rounds for the depth-first search tree.

Our second experiment evaluated the communication de-
lay’s impact on the BDisLRP performance. We used in-
stances that converged to the optimal value of the La-
grangian dual problem in experiment 1. We ran our simu-
lator with no time limit. In this experiment, we compared
BDisLRP with both BFS and the depth-first search tree
(DFS) on the benchmark instances. Table 3 shows our ex-
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Table 2: BDisLRP vs. ADisLRP on benchmark instances in category e
Instance Opt Round Time UB

BDisLRP ADisLRP BDisLRP ADisLRP BDisLRP ADisLRP
e5100 −12681 1180 4133 216 858 −12673 −12673
e5200 −24930 1021 3884 186 597 −24927 −24927

e10100 −11577 1037 3787 411 1094 −11568 −11568
e10200 −23307 1660 4246 268 1303 −23303 −23303
e10400 −45746 1258 4355 251 1387 −45746 −45745
e15900 −102421 1510 2929 853 >1800 −102419 −102419
e20100 −8436 1417 3043 533 >1800 −8432 −8431
e20200 −22379 1747 3524 >1800 >1800 −22377 −22376
e20400 −44877 2674 2947 >1800 >1800 −44873 −44875

e201600 −180645 2236 1655 >1800 >1800 −180630 −179883
e30900 −100427 1576 1613 >1800 >1800 −100418 −100333
e40400 −44561 799 1699 >1800 >1800 −44537 −41538

e401600 −178293 856 1007 >1800 >1800 −178248 −172704
e60900 −100149 355 1011 >1800 >1800 −99621 −5340

e801600 −176820 148 2641 >1800 >1800 −138987 −9454

Table 3: Impact of communication delay in BDisLRP
Instance Opt STree Round UB
e5100 −12681 BFS 1180 −12673

DFS 1770 −12673
e5200 −24930 BFS 1021 −24927

DFS 1702 −24927
e10100 −11577 BFS 1037 −11568

DFS 3444 −11568
e10200 −23307 BFS 1660 −23303

DFS 4400 −23303
e10400 −45746 BFS 1258 −45746

DFS 4194 −45746
e15900 −102421 BFS 1510 −102419

DFS 7567 −102419
e20100 −8436 BFS 1417 −8432

DFS 9449 −8432

periment results. The BFS converges faster than DFS for
all the instances. In addition, the more agents there are, the
more time that is required in DFS. The number of agents im-
pacts the communication delay in DFS. The SS test, which
is an updating process of the center point, is crucial for the
performance of the bundle method and requires global in-
formation. Thus communication delay affects the BDisLRP
performance.

Conclusion
In this paper, we proposed a new Distributed Lagrangian
Relaxation Protocol (DisLRP) called Bundle DisLRP
(BDisLRP) and incorporated into DisLRP the bundle
method, which has been studied to solve Lagrangian dual
problems. Since the bundle method has a convergence proof,
we can obtain the optimal value of the Lagrangian dual prob-
lem even in distributed contexts. We experimentally evalu-
ated the BDisLRP and Adaptive DisLRP (ADisLRP) per-

formances. BDisLRP converged faster with a better upper
bound than ADisLRP, especially for large-scale instances.
We also measured the impact of communication delay,
which is caused by the topology of a spanning tree. Breath
First Search (BFS) seems to have no relation with the num-
ber of agents for the performance, while Depth First Search
(DFS)’s performance is greatly worsened with more agents.

In our experiments, we set static parameters for BDisLRP
and proposed dynamic parameter controls. Future work will
continue our experimental evaluations in various dynamic
parameters. We also presented a basic version of the bun-
dle method. Many enhanced bundle methods have been pro-
posed, such as the spectral bundle method. We want to im-
plement more powerful bundle methods to obtain tighter up-
per bounds, decrease the number of iterations, and speed up
the calculation time.

We also need to improve the DFS performance. (Hi-
rayama, Matsui, and Yokoo 2009) reported no impact of
communication delay on ADisLRP. The hybrid technique,
which combines the bundle and subgradient methods, may
be a good solution for DFS’s topology.

DisLRPs are heuristic methods for GMAP instances.
There is no exact algorithm to solve GMAP instances in dis-
tributed environments. The upper bound is very useful infor-
mation to explore the optimal value, and BDisLRP can ob-
tain a tight upper bound. Another future work is to develop
an exact algorithm with BDisLRP.
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