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Abstract

Land use and land cover classification (LUCC) maps
from remote sensor data are of great interest since they
allow to track issues like deforestation/reforestation,
water sources reduction or urban growth. The line of
work in this project is to model land cover and land use
as random textures in order to take advantage of high
resolution satellite imagery.

Introduction

Land use and land cover classification (LUCC) maps from
remote sensor data are of great interest since they allow to
track issues like deforestation/reforestation, water sources
reduction, urban growth, or to calculate indicators like a
country’s carbon footprint. As new remote sensors become
available, we need to adapt our methods to their features to
take advantage of their strengths and to compensate their
weaknesses. It would be beneficial having automatic sys-
tems that are easy to adapt to data with new characteris-
tics. Common challenges to LUCC projects are that land
cover and land use are intrinsically dynamic. Also, gener-
ating ground truth data for a territory the size of Mexico
is too expensive. Even from pure visual examination of the
images, it would require thousands of person-hours, which
means that it is very unlikely to have the complete coverage
of the country. It is then necessary to have a system robust
enough to process accurately unseen areas.

Defining methods that are not sensor specific is challeng-
ing because sensors vary on their spectral, spatial and time
resolutions. For example, Landsat-7 ETM+ (Enhanced The-
matic Mapper) has a resolution of 30 meters per pixel, a
frequency of revisit of 16 days, and a spectral resolution of
seven bands. In this project, we are using RapidEye because
the requirements ask for higher resolution maps. This sensor
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has higher spatial resolution (5 meters, 5,000 x 5,000 pix-
els), but lower spectral resolution (5 bands: blue, green, red,
red edge and near infrared); and for Mexico, also a much
lower temporal resolution of usable images (about two im-
ages per year per tile, for rainy and dry seasons). The conse-
quence is that current methods used for Landsat data are not
applicable to RapidEye images, at least not easily.

Perhaps the most popular approach for automatic LUCC
is classification based on time series per pixel, in combina-
tion with indexes like the Normalized Difference Vegetation
Index (NDVI) (Hansen et al. 2013). The problem with this
type of method is that it does not really take advantage of
high resolution images. We believe that pixel based spec-
tral information is not enough to characterize land use and
land cover classes. For this reason, our goal is to design a
methodology that models classes as areas of correlated pix-
els. In this sense, we define our problem as one of texture
classification.

Challenges

Modeling classes in LUCC is difficult because they are an
oversimplification of the world. Classification schemes have
few rigid classes, but the real world is much more complex,
having fuzzy transitions from one class to another. Also,
classes may be defined according to project requirements
without considering if the classes are actually identifiable
from satellite images. Even when having an adequate set of
classes, there could be noisy labels, because of human error,
and labeling methodology. Even worse, classes are subject to
phenomenological changes (i.e. seasons), or to other types of
changes that are inherent to the class itself (i.e. agricultural
cycles). That implies they do not express stable visual pat-
terns. For instance, there is a difference in the color palette
of forests from autumn to summer. Another example is agri-
culture; one day an agricultural parcel may be covered by
some type of vegetation and the next is bare land. In addi-
tion, Mexico is one of the 17 mega-diverse countries in the
world. It is a predominantly mountainous country, and the
complexity of mountain landscapes provides a diversity of
environments, soils and climates; making consistent classi-
fications very difficult, even for images of the same area at
different times.

Finally, there is a more fundamental problem from the
perspective of machine learning systems. We need to build



an appropriate input space for the LUCC task. With this, we
are not referring to the feature learning/extraction/selection
problem. We refer to a previous step; what are our data
points? Are they pixels, square patches, or segments?

Data

The objective of this work is to build a system that generates
thematic maps from RapidEye images. Mexico is divided in
around 4000 RapidEye tiles. At the moment, we have im-
ages from 2011 to 2014. This adds up to approximately 9TB
of data, but the CONABIO will continue receiving images
probably until 2020.

Labeled data was generated by INEGI (National Institute
of Statistics and Geography). The dataset consists of 238 la-
beled images, each 200 x 200. These tiles are just pieces
of complete RapidEye images. These images were labeled
manually. First, the images were segmented using Berke-
ley Image Segmentation algorithm (Berkeley Environmen-
tal Technology International LLC 2014). Then, the analysts
received the segmented images and labeled every object for
which they felt confident of the class.

The classification was made according to a hierarchical
scheme with three levels, developed by INEGI. The first
level consists of 7 classes: Forest, Grassland, Wetland, Agri-
cultural Land, Water, Human Settlements, and Others. ‘Oth-
ers’ is particular because it contains many subclasses like
clouds, roads, no vegetation, among others. The other clas-
sification levels contain 14 classes and 31 classes, respec-
tively. Our current attempts are with the coarser level of
seven classes.

Methodology

As we mentioned before, our approach is to classify textures.
Our hypothesis is that each class can be characterized from
the probability density distribution of the spectral bands. The
methodology is divided in feature extraction and classifica-
tion. Currently, we are mostly working on the feature extrac-
tion phase.

For feature extraction, we segment the image to create ho-
mogeneous groups of pixels, which we expect will belong
to the same class. To create these segments (or superpixels),
we test Simple Linear Iterative Clustering (SLIC) (Achanta
et al. 2012), and Berkeley Image Segmentation. SLIC algo-
rithm implementation is faster than Berkeley’s, and the re-
sults were very similar for our purposes, even though Berke-
ley Image Segmentation supports multi-spectral images.
Since RapidEye images consist of 5 bands, and the SLIC
implementation is designed for grey-level and RGB images
only, we applied Principal Component Analysis (PCA) to re-
duce dimensionality and keep most of the information in the
first three components. For each segment, the system com-
putes the density histogram of every band b and the feature
vector of the segment is the vector of bins densities. So our
feature space lays on X € R®**, where k is the number of
bins. The limits of the histogram are computed by a previous
stage where the low percentile, q;3, and the high percentile,
qnb, are found. These two are calculated per band.
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The classification phase is straight forward. The classi-
fier is trained to infer the class from the density histograms
encoded in the feature vector. We have tested both, Random
Forests, and Support Vector Machines, with Random Forests
consistently performing a little better.

Preliminary Results

Our 238 images dataset was divided in training and test-
ing datasets, using a 70/30 ratio, performing 5-fold cross-
validation. We are evaluating the method on the first level of
the classification hierarchy. The classes are Forest, Grass-
land, Wetland, Agricultural Land, Water, Human Settle-
ments, and Others. We report results using a Random Forests
method to classify. On our tests, Forests and Human Set-
tlements are getting acceptable precision and recall rates.
Grassland classification is performing poorly. In particular,
most of the Grassland pixels are predicted as Forest. Our
dataset does not have enough Water and Wetland points; so
we are not concerned by those results. The confusion matrix
is presented in Table 1. The horizontal axis is the predicted
label; and the vertical, the true label.

F G w AL Wa HS (0]
F 991,525 68,817 628 79,345 648 37,468 2,204
G 107,768 67,642 40 61,029 2 21,524 1,524
W 4 724 0 55 0 1,218 60
AL 79,080 75,114 58 412,100 104 14,467 1,164
Wa 907 833 0 445 48 189 189
HS 5,776 18,357 29 11,427 248 234,726 22,640
(0] 5,402 8,860 121 7,459 40 30,022 32,939

Table 1: Confusion matrix for the Random Forests classi-

fier. F=Forest, G=Grassland, W=Wetland, AL=Agricultural Land,
Wa=Water, HS=Human Settlements, O=Others.

As one can see, we obtain the best performances for For-
est, Agricultural Land and Human Settlements classes with
precisions of 83.3%, 72.1%, 69.1%; and recalls of 84.0%,
70.8%, 80.0%, respectively.

Work in progress

At the moment, our main focus is on feature extraction. We
are evaluating the possibilities of our current model and pos-
sible extensions to it. If we think of how a person could de-
cide on which class to assign to an area, we can notice that
one uses more than just color; shapes and symmetries in the
texture patterns are also references to select a class. We be-
lieve that modeling those visual queues can help to improve
the encoding of the class properties. For instance, a his-
togram of gradients and their orientations inside a segment
can describe other features of the texture, which may be ben-
eficial to distinguish between those objects that are similar
chromatically but have different spatial patterns, like agri-
culture and grassland. Another line of work is feature learn-
ing, using techniques like Denoising Autoencoders (Vincent
et al. 2008) and Triangle K-means (Coates, Ng, and Lee
2011), which have been successful in many computer vi-
sion tasks, but, to the authors knowledge, they have not been
applied in LUCC projects.

Given that our ground truth data covers a very small frac-
tion of the Mexican territory, we need to find other sources



of labeled data, like road maps, forest inventory maps, labels
from Landsat data. Each of these sources may have particu-
lar challenges. Scaling, for instance, is an important one that
will be present in most of these potential ground truth new
datasets.

Conclusions

Although this work has been focused on RapidEye images,
we are looking for a methodology that is not tied to the
specifics of this sensor. We are still researching for ways to
model in-class pixel dependencies. Finally, this work will be
the basis for a land cover and land use change classification
system.
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