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Abstract

We consider the problem of indoor human trajectory identifi-
cation using odometry data from smartphone sensors. Given
a segmented trajectory, a simplified map of the environment,
and a set of error thresholds, we implement a map-matching
algorithm in a urban setting and analyze the accuracy of the
resulting path. We also discuss aggregation of user step data
into a segmented trajectory. Besides providing an interesting
application of learning human motion in a constrained en-
vironment, we examine how the uncertainty of the snapped
trajectory varies with path length. We demonstrate that as
new segments are added to a path, the number of possibili-
ties for earlier segments decreases monotonically. Applica-
tions of this work in an urban setting are discussed, as well
as future plans to develop a formal theory of odometry-based
map-matching.

Introduction
In this paper we examine the identification of walking trajec-
tories of people equipped with mobile phone-based odome-
try sensors. Specifically, we build on prior work in (Wang,
Veloso, and Seshan 2013; 2014) and implement a “snap-
ping” algorithm to reconstruct human paths traversed in a
real indoor environment, given an existing map of that en-
vironment. This algorithm searches for all plausible paths
within specified error bounds using the map and a segmented
trajectory derived from accelerometer and gyroscope mea-
surements.

There are three major modalities for indoor human path
identification; wifi, odometry, and vision-based. Vision-
based systems rely on fixed infrastructure (cameras),
odometry-based systems rely on mobile sensors, and wifi-
based systems require both fixed wifi access points in con-
junction with a wifi-enabled mobile device. Odometry of-
fers several advantages over vision-based systems. First, it
is easy to anonymize since images of people are not stored.
Second, there is no confusion between individuals since data
is tied to a person’s phone. Third, there is no requirement
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for the installation of fixed hardware (this is also an advan-
tage over wifi based approaches), making scaling more cost-
efficient. We emphasize that the odometry-based approach
does not use GPS, and in fact uses no data apart from smart-
phone sensor measurements and an underlying “topological
map” of the space.

Our technique of map matching is borrowed from the nav-
igation algorithms for GPS(Quddus, Ochieng, and Noland
2007). It was first used to handle indoor path identification
tasks with a wheeled robot (Wang, Veloso, and Seshan 2013;
2014), and proved robust in several real settings. For
the path identification task for humans, existing works are
mainly based on probability distributions (Rai et al. 2012;
Ferris, Fox, and Lawrence 2007). We also mention the re-
lated work in (Woodman and Harle 2008) which uses a foot-
mounted inertial measurement unit, polygonal building map,
and particle filter, to accurately detect a human trajectory in
a 3-dimensional indoor environment.

In this paper, the “snapping” technique of (Wang, Veloso,
and Seshan 2013) is applied to humans for the first time, and
the only sensors used are the accelerometer and gyroscope
in a commonly available smart phone, the Samsung Galaxy
S4. The process of deriving a walker’s trajectory from raw
data is as follows:

1. Collect raw data and identify steps (i.e. step length and
heading).

2. Combine steps into a segmented trajectory.

3. “Snap” the segmented trajectory to a given map using
specified error thresholds.

In a companion paper (Zha et al. 2015) we focus on the de-
tails of part 1. In this work however, we assume that step
lengths and headings (with error) are given and discuss parts
2 and 3 above.

Given the complexity of real situations, we focus on one
indoor setting, the highly structured environment of New
York University’s Center for Urban Science and Progress
(CUSP). “Highly structured” here refers to a regime of many
narrow, straight corridors and restricted spaces, as opposed
to wide open, possibly curved spaces. The snapping algo-
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rithm is implemented for a complicated trajectory and fairly
restrictive error thresholds, and demonstrates accurate per-
formance. We introduce metrics to compare how uncertainty
in a trajectory changes with number of path segments, com-
pute these metrics in our example, and verify that they con-
form to intuition.

The results of this project and further work has a multi-
tude of potential applications in an urban setting. City agen-
cies can understand how indoor public spaces are used and
learn aggregate patterns of pedestrian movement (for exam-
ple, to link walking patterns to health outcomes). Retail-
ers can use trajectory knowledge to optimize store layout
and cultural institutions can learn which exhibits are most
viewed. We note that currently a user’s path is determined
by data collected from his or her personal smart phone. A
thorough discussion of effective large-scale data collection
strategies and solutions to anonymity and privacy concerns
is outside the scope of this paper, although certainly a pre-
requisite to implementation. We conclude with a discus-
sion of further research directions regarding human trajec-
tory identification in indoor spaces.

Data
The snapping algorithm takes three inputs: a traversed path
in the form of a collection of segments, a topological map
of the ambient space, and a set of error thresholds. The al-
gorithm compares the traversed path to the topological map
and determines which paths are within the error thresholds.
We discuss the creation of traversed path segments from user
step data in the next section.

We denote a traversed path by Γn =
∑n
k=1(Sk, θk), a

formal sum of segment-angle pairs. Here Sk is the kth seg-
ment and θk is the angle between Sk and Sk−1, with θ1 = 0.
Given Γn, let Γj , with j ≤ n denote the jth partial path. We
assume that each segment and angle measurement contains
some unknown error from the true values, and for conve-
nience we frequently identify a segment S with its length.

The next input to the snapping algorithm is a topologi-
cal map, i.e. a simplified representation of an environment
such as a floor of an office building, or platform of a sub-
way station. A topological map is a collection of segments
specified by their endpoints, representing hallways and their
intersections, such that segments only intersect at endpoints.
This also encodes lengths of hallways and angles between
hallways. Note that a long hallway with several intersec-
tions will comprise multiple segments of varying lengths in
the topological map that correspond to all possible sections
of the hallway. Given a text file of the (x, y) coordinates
of all walls in an environment, we use a simple point-and-
click program to select intersections and construct all pos-
sible edges between intersections that do not pass through a
wall.

Finally, we set two allowable error thresholds, a length
threshold (dm1, dm2) and angular threshold da. The length
threshold consists of both an allowable percentage error dm1

and absolute error dm2. For example, a trajectory segment S
is within the length threshold of a topological map segment
T , if either |S−T |T < dm1 or |S − T | < dm2. We specify

both dm1 and dm2 to account for large percentage errors in
short segments, and large absolute errors in long segments.
The angular threshold is a constant measured in radians and
comparison between angles is performed similarly. Note
that a complete trajectory identification implementation that
converts raw data into segments and then snaps segments to
a topological map may have additional parameters that af-
fect the accuracy of the input trajectory. These parameters
are discussed in the next section and in (Zha et al. 2015).

Methods
Segment Identification
As introduced above, the traversed path Γn describes the
raw human trajectory in the form of segment-angle pairs. To
obtain Γn, we first extract the steps of the walker from the
accelerometer and gyroscope signals of a mobile phone, in
the form of length-heading pairs. The steps where a turn oc-
curs are identified and steps between turns are integrated into
longer segments, representing straight walks in each hall-
way.

The task of step identification based on sensor signals
from a mobile phone is challenging. Unlike wearable sen-
sors, the user activity, device type and position the phone is
carried on the body may lead to complex variations in input
data. In our other work, we compared peak counting and
template matching methods for step identification(Zha et al.
2015), but in this paper we assume that we have step infor-
mation for the whole walk with some error. Although sim-
ply connecting all steps yields a trajectory, in order to use
the snapping algorithm efficiently we aggregate steps into
segments.

We regard a series of consecutive steps with small total
change in heading as a straight walk and a series with larger
change of heading as a turn. Explicitly, consider a sequence
of steps {xi}mi=1 with respective headings {ψi}mi=1, let τ > 0
denote the turning threshold, and w, an odd integer greater
than 3, the window length parameter. For each i, consider
the window Wi of w consecutive steps centered at step i (re-
stricting the window size for i near 1 and m as necessary),
and let dψi be the largest difference between all headings in
Wi. Given a consecutive sequence dψi, . . . , dψi+k, k ≥ 0,
each of which is greater than τ , we say a turn occurred at
index median({i, . . . , i + k}). After the turns are identi-
fied, the segments are calculated as the summed length of
the steps between two turns and the angles of the segments
are calculated as difference in headings between consecutive
turns.

Regarding the choice of parameters, w should be larger
when the space is more open. For example, in a shopping
mall with wide intersections, people may take more steps to
finish a turn than in office environments. However, with a
large w the window sometimes can contain more than one
turn, resulting in mis-identification of turns. On the other
hand, the turning threshold τ should be small enough to rec-
ognize turns, but much larger than the error in individual
step headings, so avoid over-counting turns.

Note that the task of separating turns and straight walks
can be ambiguous due to the difficulty in defining a turn.
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Figure 1: The original path displays the actual path traversed at CUSP, whereas the topological map represents the intersections
and hallways used by the snapping algorithm. The segments plot shows the segmented input trajectory to the snapping algorithm
(note that error in both length and angle is apparent). The result of the snapping algorithm is displayed in the lower right, and
conforms closely to the original path, although direction of motion is not indicated.
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Algorithm 1 Snap(currPoint,Segs,path)
if Segs is empty then
outputpath();
exit();

end if
AdjSegs = getAdjSegments(currPoint);
MatchedSegs = underThresh(Segs[0], AdjSegs);
for ∀ segment ∈ MatchedSegs do
newpath = [path, segment];
newPoint = otherEnd(segment, currPoint);
Snap(newPoint, Segs[1 :], path);

end for

In a straight hallway people may not walk straight, and in a
shallow-angled intersection , people may walk as if in one
straight hallway. This kind of ambiguity can lead to error
in segment identification, but a flexible topological map can
account for this. In general, we would rather consider two
real segments as one rather than break one actual segment
into two. For example, in Figure 1, the segment identifica-
tion algorithm ignored two small turns. The modification
of the topological map is to actually allow some intersec-
tions that pass through walls to be connected by artificial
“hallways”. To build this topological map, one can first con-
nect all adjacent intersections without passing through walls,
and then artificially connect non-adjacent (but close) inter-
sections which don’t require a big turn to reach one from the
other.

Trajectory Snapping

The snapping algorithm finds all sequences of segments in
the topological map that match with trajectory segments
within the given error thresholds. In order to search all pos-
sibilities, the algorithm used a depth first graph search al-
gorithm. The algorithm can be described as the recursive
function Snap.

In function getAdjSegments() the input is an intersec-
tion in the topological map and the returned value is the set
of segments in the topological map with the specified inter-
section as an endpoint. In the function underThresh() the
first input is a segment, the second input is a set of segments,
and the returned value is the subset of the second input con-
sisting of those segments within the error thresholds of the
first input. Finally, the function otherEnd() takes two in-
puts, a segment and an endpoint of that segment. The re-
turned value is the other endpoint of the segment.

When the algorithm terminates there may be several po-
tential trajectories produced as output. We pick the one with
smallest summed error as our final result. If there is no out-
put, one can lower the thresholds (dm1, dm2), da and rerun
until a trajectory is successfully snapped. Note that there is
an inverse relationship between the size of the error thresh-
olds and the likelihood of successful snapping, and a direct
relationship between the size of the error thresholds and the
size of the algorithm’s search space.

Results
We implement the snapping algorithm in NYU’s Center for
Urban Science and Progress, which occupies the 19th floor
of 1 MetroTech Center in downtown Brooklyn, NY. This
setting is the floor of an indoor office building, with nar-
row corridors, offices, and cubicles. Most hallways are
between 5 and 50 meters long, and most angles between
corridors are right angles. Figure 1 shows both the un-
derlying map of CUSP, along with the actual 14-segment
long path traversed, as well as the topological map used for
snapping. Note that in (Wang, Veloso, and Seshan 2013;
2014), the implementation was in the Gates Building at
Carnegie Mellon University, which has a significantly less
symmetric floor plan than CUSP.

Data was collected from an android application installed
on the second author’s handheld Samsung Galaxy S4 smart-
phone and converted into a segmented motion trajectory that
also appears in Figure 1. Note that the segmented motion
trajectory is comprised of 12 segments rather than the 14 ac-
tually traversed, and there is visible error in both segment
angle and length. We used dm1 = 0.25, dm2 = 5, and
da = 0.8, roughly π

4 radians, as error thresholds. We took
the window length parameter w = 5 and the turning thresh-
old τ = 0.4 radians. We also assumed a length of 0.8 meters
for every two user steps when converting the raw input data
into a segmented trajectory.

We have plotted the result of the snapping algorithm in the
lower right panel of Figure 1, which conforms quite closely
to the actual traversed path, although direction of motion
is not indicated. Although the segmented input trajectory
combined two pairs of short segments, yielding 12 segments
rather than the actual 14, the snapping algorithm correctly
snapped all twelve segments to their best match. In this im-
plementation there were two output paths that were admis-
sible within the given error thresholds, but given multiple
admissible paths, we rank them by total percentage error
(the sum of percent angular and percent length errors over
all trajectory segments) and choose the lowest-error path to
plot.

Next, we examine how uncertainty in the snapped path
varies with the addition of new segments. In particular, we
look at both how the total number of possible snapped paths
varies, as well as how the number of possible matches for a
given segment varies.

First, we introduce some notation to facilitate a discussion
of uncertainty in the snapped trajectory as the number of
segments in a path increases. Fix a topological mapM , a set
of error thresholds E, and an input trajectory of n segments,
Γn =

∑n
k=1(Sk, θk) as above. We define

- ρj(Sk) = the number of matches for segment Sk, consid-
ered as a segment in Γj , where j ≥ k, when Γj is snapped
to M with thresholds E.

- ρ(Γj) = the number of trajectories for Γj that snap to M
with thresholds E.
We expect ρj(Sk) to decrease monotonically as j in-

creases, for a fixed k. That is, adding additional constraints
to Γj can only decrease the number of possible matches
for Sk. Intuitively, segments early in a trajectory become
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Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

Segment 1 2 2 1 1 1 1 1 1 1 1 1
Segment 2 2 2 1 1 1 1 1 1 1 1 1
Segment 3 - 2 1 1 1 1 1 1 1 1 1
Segment 4 - - 1 1 1 1 1 1 1 1 1
Segment 5 - - - 2 2 1 1 1 1 1 1
Segment 6 - - - - 3 1 1 1 1 1 1
Segment 7 - - - - - 2 1 1 1 1 1
Segment 8 - - - - - - 1 1 1 1 1
Segment 9 - - - - - - - 2 2 2 2
Segment 10 - - - - - - - - 2 2 2
Segment 11 - - - - - - - - - 3 2
Segment 12 - - - - - - - - - - 1
Full path 2 2 1 2 3 2 1 2 2 3 2

Figure 2: The (i, j) entry in the table above shows the number of possibilities for Segment i in the partial path Γj , where
1 ≤ i ≤ 12 and 2 ≤ j ≤ 12. The jth entry in the last row in the table gives the total number of possible matches for Γj ,
i.e. the maximum of all entries in the jth column of the table. Note that each of the first twelve rows decreases monotonically
as j increases, illustrating that earlier segments are “locked in” as new segments are added to the path. The three plots give
an illustration of this for Γ3 and Γ4. Specifically, the two left plots demonstrate the two possible matches for Γ3, and the two
possibilities for Segments 1, 2, and 3 in Γ3. The right plot demonstrates that the addition of Segment 4 gives a unique result for
Γ4, and hence there is now only one possible match for Segments 1, 2, and 3 in Γ4.

“locked in” as newer segments are added, although the over-
all path may retain ambiguity. We observe this behavior
also by looking at the number of matches for segment Sk,
k = 1, . . . , 12 in the context of the path traversed at CUSP.
This is displayed in the table in Figure 2, where the number
of matches for any given segment Sk only stays the same or
decreases as the number of segments in the path it belongs
to increases. Explicitly, S3, for example, has two possible

matches in Γ2 and Γ3, then has only one possible match in
Γ4, . . . ,Γ12, as illustrated in the plots in Figure 2.

On the other hand, ρ(Γj) may fluctuate non-
monotonically as j increases from 1 to n. For example,
ρ(Γj) < ρ(Γj+1) may occur if Sj+1 matches several seg-
ments in the topological map within given error thresholds.
On the other hand, ρ(Γj) > ρ(Γj+1) if the addition of
Sj+1 eliminates possible matching trajectories for Γj . We
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observe this behavior in the 12-segment path traversed at
CUSP, in the last row of the table in Figure 2. The total
number of matches varies between 1 and 3, and increases
and decreases as more segments are added.

Discussion and Conclusion
The above results provide a first application of smartphone-
based human trajectory identification using the o-snap al-
gorithm of (Wang, Veloso, and Seshan 2014) in an indoor
setting. We emphasize that this method does not use any
fixed infrastructure or GPS, but rather just data obtained
from the sensors inside a commonly available phone. How-
ever, there are numerous further engineering challenges to
be overcome, and this work may provide the foundation for
myriad applications of trajectory identification in an urban
setting.

A first challenge is the extension of the snapping approach
to open spaces, rather than the narrow corridors found in of-
fice buildings. It is not clear how to best construct a topo-
logical map for an open space, such as an indoor lobby or
mall plaza. If one attempts to create artificial hallways in a
topological map of an open space, i.e. to represent the pos-
sible routes people take as a sequence of short straight lines,
the algorithm search space may grow tremendously. Fur-
thermore, the shorter such artificial hallways are, the more
prone the output trajectory may be to accumulated drift er-
ror. In addition, it is not clear that humans in a wide open
space walk in straight lines; perhaps they walk along curved
paths. More generally, it is not clear how to construct a
topological map that takes into account curved walls. Open
spaces – particularly in crowded urban settings – may also
be full of people, forcing a trajectory to change direction or
pause frequently. Adapting the snapping technique to take
pausing and mid-segment changes in direction into account
is another direction of research.

Some other ways to extend our trajectory identification
method include identification of starting location by the user
and allowing the user to travel between building floors (and
hence incorporating several topological maps into the same
snapping algorithm). We anticipate that large-scale experi-
ments incorporating many different users and devices would
be necessary before any real-world implementation of the
snapping algorithm is feasible. As noted in the introduc-
tion, there are important privacy issues to be considered,
for even if a user’s identifying information is completely
erased from his or her trajectory, it may still be possible
to de-anonymize users by correlating trajectories with ex-
ternal data sets. Additionally, processes involving automatic
data collection from a user’s smartphone will have to be de-
veloped to encourage large-scale adoption of our technique.
Derived statistics from a large corpus of trajectory data will
also be a useful output for both researchers and city agen-
cies, to understand where city residents walk and how move-
ment patterns change over time or in response to particular
events.

Some proposed urban applications of this work and its
extensions include:

• Event detection in subway stations, malls, or arenas.

Given an anonymized, aggregated output of real-time
pedestrian trajectories, city or security agencies may de-
termine anomalous walking patterns (e.g. pedestrians
avoiding an unsafe obstacle).

• Optimal resource allocation. Understanding highly traf-
ficked pedestrian areas could inform the number and lo-
cation of garbage cans, water fountains, and provide a
more efficient alternative than assuming uniform spatial
resource consumption.

• Learning exhibit preferences of museum patrons. In-
stalling a trajectory data collection application on guided-
tour iPads would allow curators at cultural institutions to
understand which exhibits are preferred by which visitors,
and could therefore help improve the user’s experience.

In addition to the aforementioned engineering-focused
extensions to this project, we also plan to construct a gen-
eral theoretical framework to analyze snapping algorithm
performance for a given topological map M . To motivate
this idea, suppose M is highly symmetric (for instance, the
boundary of a square), then the snapping algorithm will be
unable to distinguish between many different paths in the
absence of a fixed starting location. Even if a starting loca-
tion is given, one may have an M that is still unable to dis-
tinguish between different paths if the allowed error thresh-
olds for displacement and heading are sufficiently, but not
unreasonably, large. However, intuition suggests that for a
sufficiently irregular map M , the longer a path is, the fewer
potential snapped paths will be produced by the algorithm.
We anticipate that such a theory may begin by creating for
each M , an associated function

fM : Rk × PM −→ Z≥0, (θ,Γ) 7−→ l

where θ is a vector of error thresholds, PM is the set of all
possible paths on M , and l is the number of paths within the
error thresholds that snap to the given path Γ on M . For θ
in some range (depending on M ), fM may be a decreasing
function of the length of Γ. A potential application of this
theory would be to give a quantitative measure of how accu-
rately we may expect the snapping algorithm to perform in
a real-world situation.
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