
Domain-Independent Optimistic
Initialization for Reinforcement Learning

Marlos C. Machado, Sriram Srinivasan and Michael Bowling
Reinforcement Learning and Artificial Intelligence Laboratory,

Department of Computing Science, University of Alberta
{machado, ssriram, bowling}@ualberta.ca

Abstract

In Reinforcement Learning, it is common to use optimistic
initialization of value functions to encourage exploration.
However, such an approach generally depends on the domain,
viz., the scale of the rewards must be known, and, when using
function approximation, the feature representation must have
a constant norm. We present a simple approach that performs
optimistic initialization with less dependence on the domain.

Introduction
One of the challenges in Reinforcement Learning (RL) is the
trade-off between exploration and exploitation. The agent
must choose between taking an action known to give positive
reward or to explore other possibilities hoping to receive a
greater reward in the future. In this context, a common strat-
egy in unknown environments is to assume that unseen states
are more promising than those states already seen. One such
approach is optimistic initialization of values (Sutton and
Barto 1998, Section 2.7).

Several RL algorithms rely on estimates of expected
values of states or expected values of actions in a given
state (Sutton and Barto 1998). Optimistic initialization con-
sists in initializing such estimates with higher values than
are likely to be the true value. Also, when the state space
is very large, it is common to represent each state as a fea-
ture vector with dimensions much smaller than the number
of states. However, to be able to perform optimistic initial-
ization, we depend on prior domain knowledge such as the
expected scale of rewards and the structure of the feature
vector. This paper circumvents such limitations presenting
a different way to optimistically initialize value functions
without additional domain knowledge or assumptions.

In the next section we formalize the problem setting as
well as the RL framework. We then present our optimistic
initialization approach. Also, we present some experimental
analysis of our method using the Arcade Learning Environ-
ment (ALE) (Bellemare et al. 2013) as the testbed.

Problem Setting
Consider a Markov Decision Process, at time step t
the agent is in a state st 2 S and it needs to

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

take an action at 2 A. Once the action is taken,
the agent observes a new state st+1 and a reward
rt+1 ⇠ R(st, at, st+1) from a transition probability func-
tion P (st+1|st, at) ⌘ Pr(st+1|st, at). The agent’s goal is
to obtain a policy ⇡(a|s) that maximizes the expected dis-
counted return q⇡(st, at) ⌘ E

hP1
k=0 �

krt+k+1

���s0,⇡
i
,

where � 2 (0, 1] is the discount factor and q⇡(s, a) is the
action-value function for policy ⇡.

Sometimes it is not feasible to compute q⇡(s, a), we then
approximate such values with linear function approxima-
tion: q⇡(s, a) ⇡ ✓T�(s, a), where ✓ is a learned set of
weights and �(s, a) is the feature vector representing the
current state. Note that |�(s, a)| << |S|. However, as al-
ready mentioned, function approximation adds further dif-
ficulties for optimistic initialization, as one only indirectly
specifies the value of state-action pairs through the choice
of ✓.

Optimistic Initialization
An approach to circumvent the requirement of knowing the
reward scale is to normalize all rewards (rt) by the first non-
zero reward seen (r1st), i.e.: rt/|r1st|. Then we can optimisti-
cally initialize q⇡(s, a) as 1, representing the expectation
that a reward the size of the first reward will be achieved on
the next timestep (or that a state with such value, after dis-
counting, will be reached). Note that this is only a mild form
of optimism. A more optimistic view might be that you can
achieve reward on each step equal to that of the first observed
reward, in which case we should aim to initialize q⇡(s, a) to
1

1�� . For sparse reward domains, which is common in the
ALE, the mild form is often sufficient.

With function approximation, the approach above would
mean initializing the weights ✓ to ensure ✓T�(st, at) = 1,
e.g.: ✓i = 1/|�(st, at)|. However, this requires |�(st, at)|
to be constant among all states and actions. If the feature
vector is binary-valued then one approach for guaranteeing
� has a constant norm is to stack �(st, at) and ¬�(st, at),
where ¬�(st, at) denotes the logical complement ¬ being
applied to each coordinate of �(st, at). While this achieves
the goal, it has the cost of doubling the number of features.
Besides, it removes sparsity in the feature vector, which can
often be exploited for more efficient algorithms.

Our approach is to shift the value function so that a zero

29

Learning for General Competency in Video Games: Papers from the 2015 AAAI Workshop

function is in fact optimistic. We normalize by the first re-
ward as described above. In addition, we shift the rewards
downward by �� 1, so r̃t =

rt
|r1st| +(�� 1). Thus, we have:

q̃⇡(st, at) = E⇡

" 1X

k=0

�kr̃t+k+1

#

= E⇡

" 1X

k=0

�k rt+k+1

|r1st|

#

| {z }
q⇡(st,at)

|r1st|

+
1X

k=0

�k(� � 1)

| {z }
�1

Notice that since q̃⇡(st, at) = q⇡(st,at)
|r1st| � 1, initializing

✓ = 0 is the same as initializing q⇡(st, at) = r1st. This shift
alleviates us from knowing |�(s, a)|, since we do not have
the requirement ✓T�(s, a) = 1 anymore. Also, even though
q̃⇡(st, at) is defined in terms of r1st, we only need to know
r1st once a non-zero reward is observed.

In episodic tasks this shift encourages agents to ter-
minate episodes as fast as possible to avoid negative re-
wards. To avoid this we provide a termination reward
rend = �T�k+1 � 1, where k is the number of steps in
the episode and T is the maximum number of steps. This
is equivalent to receiving a reward of � � 1 for additional
T � k + 1 steps, and it forces the agent to look for a better
alternative.

Experimental Analysis
We evaluated our approach in two different domains, with
different reward scales and different number of active fea-
tures. These domains were obtained from the ALE (Belle-
mare et al. 2013), a framework with dozens of Atari 2600
games where the agent has access, at each time step, to the
game screen or the RAM data, besides an additional reward
signal. Recently the ALE was used to extensively evalu-
ate several different model-free linear learning algorithms,
and optimistic initialization had been mentioned as an open
problem in this environment (Defazio and Graepel 2014),
due to some of the challenges already mentioned here.

We compare the learning curves of regular
Sarsa(�) (Rummery and Niranjan 1994) and Sarsa(�)
with its Q-values optimistically initialized. We used Basic

features with the same Sarsa(�) parameters reported by
Bellemare et al.. The Basic features divide the screen in to
14 ⇥ 16 tiles and check, for each tile, if each of the 128
possible colours are active, totalling 28,672 features.

The results are presented in Figures 1-4. We report results
using two different learning rates ↵, a low value (↵ = 0.01)
and a high value (↵ = 0.50), each point corresponds to the
average after 30 runs and they are reported in a sliding win-
dow of size 10, i.e. each point corresponds to the average
score of the last 10 episodes.

The game FREEWAY consists in controlling a chicken that
needs to cross a street, avoiding cars, to score a point (+1 re-
ward). The episode lasts for 8192 steps and the agent’s goal
is to cross the street as many times as possible. This game
poses an interesting exploration challenge for random explo-
ration because it requires the agent to cross the street acting

Figure 1: FREEWAY; ↵ = 0.01

Figure 2: FREEWAY; ↵ = 0.50

Figure 3: PRIVATE EYE; ↵ = 0.01

randomly (|A| = 18) for dozens of time steps. This means
frequently selecting the action “go up” while avoiding cars.
Looking at the results in Figure 1 and 2 we can see that, as
expected, optimistic initialization does help since it favours
exploration (i.e. states not seen, which are those closer to the
other side of the street), speeding up the process of learning
that a positive reward is available in the game. We see this
improvement over Sarsa(�) for both learning rates.

30

Figure 4: PRIVATE EYE; ↵ = 0.50

The game PRIVATE EYE is a very different domain. In
this game the agent is supposed to move right for several
screens (much more than when crossing the street in the
game FREEWAY) and it should avoid enemies to avoid nega-
tive rewards. Along the path the agent can collect intermedi-
ate rewards (+100) but its ultimate goal is to get to the end
and reach the goal, obtaining a much larger reward (+5000).
We can see (Figures 3 and 4) that the optimistic initialization
is much more reckless in the sense that it takes much more
time to realize a specific state is not good (one of the main
drawbacks of this approach), while Sarsa(�) is more conser-
vative. Interestingly, we observe that exploration may have a
huge benefit in this game as a larger learning rate guides the
agent to see rewards in a scale that was not seen by Sarsa(�).

Thus, besides our formal analysis, we have shown that our
approach behaves as one would expect optimistically initial-
ized algorithms to behave. It increased agents’ exploration
with the trade off that sometimes the agent “exploited” a
negative reward hoping to obtain a higher return. This was
done without using any domain-specific information.

Conclusion
RL algorithms can be implemented without needing rigor-
ous domain knowledge, but as far as we know, until this
work, it was unfeasible to perform optimistic initialization
in the same transparent way. Besides not requiring adapta-
tions for specific domains, our approach does not hinder al-
gorithms efficiency.

Acknowledgements
The authors would like to thak Erik Talvitie for his helpful
input throughout this research. This research was supported
by Alberta Innovates Technology Futures and the Alberta
Innovates Centre for Machine Learning and computing re-
sources provided by Compute Canada through Westgrid.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial Intelli-

gence Research 47:253–279.

Defazio, A., and Graepel, T. 2014. A comparison of learn-
ing algorithms on the arcade learning environment. CoRR

abs/1410.8620.
Rummery, G. A., and Niranjan, M. 1994. On-
line Q-learning using connectionist systems. CUED/F-
INFENG/TR 166, Cambridge Univ. Engineering Dept.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-

ing: An Introduction. MIT Press.

31

