
Termination Approximation: Continuous State
Decomposition for Hierarchical Reinforcement Learning

Sean Harris, Bernhard Hengst, Maurice Pagnucco
UNSW Australia, NSW 2055, Australia

Abstract
This paper presents a divide-and-conquer decomposition for
solving continuous state reinforcement learning problems.
The contribution lies in a method for stitching together con-
tinuous state subtasks in a near-seamless manner along wide
continuous boundaries. We introduce the concept of Termi-
nation Approximation where the set of subtask termination
states are covered by goal sets to generate a set of subtask op-
tion policies. The approach employs hierarchical reinforce-
ment learning methods and exploits any underlying repeti-
tion in continuous problems to allow reuse of the option poli-
cies both within a problem and across related problems. The
approach is illustrated using a series of challenging racecar
problems.

Introduction
Many real-world control problems are naturally represented
using continuous state variables. This problem class in-
cludes the control of dynamic systems such as vehicles,
robots, and plants, in a variety of engineering applications.
Examples include 2D robotic navigation tasks and bipedal
locomotion for a highly articulated robot. This class of prob-
lems can be solved using Reinforcement Learning (Barto
and Sutton 1998).

Many real systems are also characterised by repetition in
the dynamics of their sub-systems. From a reinforcement
learning viewpoint, this means the transition and reward
functions are similar in several different parts of the state-
action space. The similarity can arise from symmetry, repet-
itive motor motions, reoccurring environmental conditions,
or partial independence of system function. An inverted pen-
dulum, for example, has similar left-right behaviour with the
axis of symmetry of the pendulum system upright and at rest.
The dynamics of a cart also remain the same regardless of its
position on a table. A racetrack may be divided into several
straight or similarly curved sections of road, where even left
and right curved sections show symmetry.

It is known that Hierarchical Reinforcement Learning
(HRL) can exploit repetition in systems, and can signifi-
cantly reduce the computational complexity of finding good
solutions (Barto and Mahadevan 2003). To date, HRL meth-
ods have primarily been applied to systems that constrain

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the continuous variables to whole sub-systems or concate-
nate continuous spaces with very narrow “doorways” (Ma-
hajan 2014). As a result, there are a range of problems that
contain high levels of repetition, but are not currently suited
to HRL approaches because they contain wide boundaries
between repetitive subtasks. In addition to this, similarities
across related problems are rarely exploited for policy reuse,
resulting in policies being relearned rather than transferred
from prior learning.

The main contribution of this paper is the decomposition
and reconstitution of continuous state problems by partition-
ing the state space along wide continuous boundaries. This
improves and expands the application of HRL to continuous
control problems and provides a framework for transferring
subtask policies between related problems. First, a problem
is manually partitioned into subtasks to capture any repeti-
tion. Then the termination set between subtasks is approxi-
mated with local policies that form a set of abstract actions.
This allows the subtasks to be recombined with an abstract
MDP. We rely on relativised options (Ravindran and Barto
2003) and MAXQ value function decomposition (Dietterich
2000). We focus our research on episodic (terminating) tasks
with an undiscounted value function.

The core challenge of this paper is to stitch together
neighbouring continuous state spaces along their common
boundary, which may be arbitrarily wide. We introduce Ter-
mination Approximation to approximate all possible ways to
terminate a subtask. Termination Approximation defines a
set of abstract goals that cover continuous states reachable
after terminating the subtask. Each abstract goal defines a
separate Markov option that is learned using a pseudo re-
ward function to terminate the option. The number of goals
covering the termination area directly determines how seam-
lessly the value function tracks across the boundary.

We present results from a simulated racecar problem. The
task contains a high level of repetition, but is challenging to
decompose effectively using current HRL approaches due to
its wide continuous boundaries.

Related Work
HRL has been applied to many discrete problems and a
limited number of continuous state problems. This paper
extends HRL approaches to decompose increasingly chal-
lenging continuous state problems and allow policies to be

16

Knowledge, Skill, and Behavior Transfer in Autonomous Robots: Papers from the 2015 AAAI Workshop



shared amongst related problems.
Hierarchical reinforcement learning has been well stud-

ied on simple, discrete domains. Research into this area be-
gan with 3 primary approaches, options, MAXQ and HAMs
(Barto and Mahadevan 2003). The options framework (Sut-
ton, Precup, and Singh 1999) integrated temporally extended
actions (eg. macro actions) into the reinforcement learning
framework, improving the speed and robustness of RL sys-
tems. MAXQ (Dietterich 2000) showed that a problem could
be decomposed into simpler subtasks, solved individually
and recombined to solve the original problem. MAXQ also
utilised state abstraction, where irrelevant parts of the state
were excluded for particular problems, substantially reduc-
ing the learning requirements. State abstraction allows learn-
ing to occur in a more general context and thus is a particu-
larly important concept for transfer learning.

The options framework has been applied to continuous
state problems through skills chaining (Konidaris and Bar-
reto 2009). This allows temporally extended actions to be
utilised in a continuous state space, but is focused on au-
tonomous generation and does not integrate state abstrac-
tion. Even where there is underlying repetition in a prob-
lem, policies are relearned for each subtask. Policies are
also not shared between related tasks. Relativised options
(Ravindran and Barto 2003) introduced the concept of state
abstraction to the options framework, but is only compati-
ble with discrete, highly structured environments that pos-
sess “funnel-states”. Although some environments, such as
buildings with rooms and doorways, contain features that
create natural funnel-states, the general class of RL prob-
lems does not. Reliance on environmental features to create
funnel states and decompose a problem also reduces the abil-
ity to transfer learning to a related task where those same en-
vironmental features may not be present, or may be present
but in a different manner. This paper extends relativised op-
tions for continuous state spaces as part of a larger hierarchi-
cal approach, allowing the use of state abstraction with the
options framework on a series of related continuous state
problems.

MAXQ has also been extended to solve problems with
continuous subtasks through Fitted R-MAXQ (Jong 2010).
Whilst this work utilises state abstraction effectively to solve
problems with continuous subtasks, the continuous subtasks
themselves are not decomposed, thus limiting the applicabil-
ity of this approach to continuous state problems. This work
provides a framework to decompose and recombine contin-
uous subtasks, thus expanding the current state of the art.

This paper extends MAXQ in combination with rela-
tivised options to allow the decomposition of continuous
state problems into subtasks and apply state abstraction to
minimise the learning requirements across subtasks and re-
lated problems. The main contributing feature of the de-
composition is that subtasks can have arbitrary continuous
boundaries. This allows a problem to be decomposed around
repetition of subtasks, instead of environmental features, im-
proving the ability to transfer learning between related tasks.
We introduce the concept of Termination Approximation to
generate subtask option policies.

Background
The problems being examined in this paper can be mod-
elled as a Markov Decision Process (MDP) 〈S,A,Ψ, P,R〉
(Ravindran and Barto 2003) where S is a continuous set of
states, A is a discrete set of actions, Ψ ⊆ S × A is the set
of admissible state-action pairs, P : Ψ × S → [0, 1] is the
probabilistic transition where the probability of transitioning
from state s to state s′ under action a is P (s, a, s′),R : Ψ→
R: the reward function where the reward for performing ac-
tion a in state s isR(s, a). LetAs = {a|(s, a) ∈ Ψ} ⊆ A be
the set of actions admissible in state s. We assume that each
state has an action available in it, i.e. ∀s ∈ S,As 6= ∅

To solve an MDP we learn a policy π : Ψ→ [0, 1] which
is the probabilty of taking action a in s for all (s, a) ∈ Ψ.
The solution to an MDP is an optimal policy π∗, which
uniformly dominates all other policies for that MDP. The
action-value function Qπ : Ψ → R maps state-action pairs
(s, a) to their expected sum of future rewards for performing
action a in state s then following π thereafter.

An option is defined by the tuple O = {I, π, β}, where
the initiation set I ⊆ S is the set of states the option can be
invoked, π : Ψ → [0, 1] is the policy and the termination
set β :→ [0, 1] is the probability of the option terminating
in each state. In this paper we restrict our focus to Markov
options.

Relativised options and the MAXQ value function de-
composition are both utilised in this paper. Here we examine
the theory behind them.

Relativised Options
Options (Sutton, Precup, and Singh 1999) are extended to
form relativised options (Ravindran and Barto 2003) by
removing the absolute frame of reference. The option is
learned in a reduced MDP M ′ and mapped onto a variety
of subtasks in the original problem where the local environ-
ment is symmetric or repetitive. An MDP homomorphism
from M to M ′ is introduced to map states in M to equiva-
lent states in M ′

Definition: An MDP homomorphism h from an MDP
M = 〈S,A,Ψ, P,R〉 to an MDP M ′ = 〈S′, A′,Ψ′, P ′, R′〉
is a surjection from Ψ to Ψ′, defined by a tuple of surjec-
tions 〈f, {gs|s ∈ S}〉, with h((s, a)) = (f(s), gs(a)), where
f : S → S′ and gs : As → A′f(s) for s ∈ S such that
∀s, s′ ∈ S, a ∈ As :

P ′(f(s), gs(a), f(s′)) =
∑

s′′∈[s′]f

P (s, a, s′′) (1)

R′(f(s), gs(a)) = R(s, a). (2)

The surjection f maps states of M to states of M ′ whilst
each surjection gs recodes the actions admissible in state s of
M to actions admissible in state f(s) of M ′. Condition (1)
says that the homomorphism commutes with the system dy-
namics whilst condition (2) says that state-action pairs with
the same image under h have the same reward. A policy in
M ′ is said to induce a policy in M . This leads to the defini-
tion of relativised options, where we map our original MDP
M to an option MDP MO.

17



Definition: A relativised option of an MDP M =
〈S,A,Ψ, P,R〉 is the tuple O =< h,MO, I, β >, where
I ⊂ S is the initiation set, β : S′ → [0, 1] is the termination
function and h = 〈f, {gs|s ∈ S}〉 is a partial homomor-
phism from the MDP 〈S,A,Ψ, P,RO〉 to the option MDP
MO = 〈S′, A′,Ψ′, P ′, R′〉 with RO chosen based on the
subtask.

MAXQ
MAXQ (Dietterich 2000) provides a formal framework for
using a hierarchy of subtasks to decompose a problem. It
allows for state abstraction within subtasks as well as the
decomposition of the value function across subtasks. The
expected reward is decomposed by dividing the value func-
tion recursively until it reaches the primitive actions. It in-
troduces a completion function C(i, s, a), which is the ex-
pected discounted cumulative reward of completing subtask
i after completing the subtask a. Formally this is defined as:

Cπ(i, s, a) =
∑
s′,N

Pπi (s′, N |s, a)γNQπ(i, s′, π(s′)) (3)

In equation 3, N refers to the number of time steps taken
to complete an action and γ is the discounting factor used
to discount future rewards. This equation allows the action-
value function to then be expressed recursively:

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a) (4)
V π is the cost of the current abstract action, which in

MAXQ can be composed of various smaller subtasks. V π is
evaluated recursively until it reaches a primitive action. Ig-
noring the details of how V π is calculated, the action-value
function is the cost of the current abstract action plus the cost
to goal following policy π afterwards. This ability to decom-
pose the value function allows the expected cost to goal to
be calculated across a hierarchy, thus giving us close to the
same representational power as a flat learner, but with the
time and storage savings of a hierarchy.

Continuous State Decomposition
Motivating Example
We illustrate our decomposition of continuous state spaces
with a challenging racecar problem. The problem task is
to drive a racecar around one lap of a simulated race-
track. The state space is continuous and four dimensional,
S = {x, y, heading, velocity} and the action space has
9 discrete actions. The actions allow the agent to vary the
heading and velocity of the car simultaneously and inde-
pendently. Both variables can be increased a small amount,
remain the same, or decreased a small amount at each time
step. Movements are deterministic; at each time step the
agent moves velocity metres in the heading direction. One
example racetrack used for testing was approximately 63m
long and is shown in Figure 1.

This problem is challenging because the state space is
continuous, not a grid world, and there are no natural door-
ways or funnel states to provide simple decomposition. De-
spite these challenges, the problem shows potential for de-

composition, policy reuse and state abstraction. The race-
track is composed of only straight and turn regions, the dy-
namics of which remain the same no matter where on the
racetrack they lie. Different racetracks also contain the same
fundamental building blocks of straight and turn regions.
This means that if we were able to learn policies to navi-
gate straight and turn regions of track, there is potential to
decompose the task and reduce the overall learning require-
ments.

The rest of this section decomposes the racecar example
incrementally to introduce our approach to continuous state
decomposition. We begin by examining a decomposition of
the problem and how to solve each subtask using options, in-
troducing Termination Approximation. We then highlight the
ability to state abstract each subtask to vastly reduce learning
time and finally form an abstract MDP to solve the overall
problem.

Decomposition

We utilise a region-based decomposition of a given MDP as
defined in (Hauskrecht et al. 1998).

Definition: A region-based decomposition Π of an MDP
M = 〈S,A, T,R〉 is a partitioning Π = {S1, ...Sn} of the
state space S. The elements Si of Π are called regions of M.

Associated with each region, we introduce a termination
set of states.

Definition: The termination set of states TSSi = {t ∈
S − Si : T (s, a, t) > 0 for some a, s ∈ Si} contains all
states not in Si that are reachable with probability greater
than zero after executing a primitive action from s ∈ S.

Definition: The combination of the region states Si and
the termination set TSSi

is represented by Xi = Si ∪TSSi
.

This allows us to define a region option to navigate from
a region to its termination set.

Definition: A region option contains three components, a
policy π : Ψ→ [0, 1], a termination condition

β(s) =

{
1 : s ∈ TSSi

0 : s /∈ TSSi

and an initiation set I ⊆ Si.

Note that Ψ = Xi × A, meaning that the option is defined
across both the region Si and its termination set TSSi

. The
termination function is always false inside the region, but
always true inside the termination set.

Since the termination set is comprised of states outside
of Si, and the region-based decomposition partitions the en-
tire state space into regions, it follows that the termination
set TSSi for a region Si is comprised of states from other
regions. This “overlap” means that if we follow a region op-
tion, it will take us from inside the region, into that region’s
termination set, which is inside another region. From this
region we can follow a new region option, and thus chain
together region options to complete the overall task. This
chaining approach is similar to that used in Skills Chaining
(Konidaris and Barreto 2009). An example decomposition
of the racecar problem is shown in Figure 1. The racetrack
is decomposed into a series of straight and turn regions, sep-
arated by the red lines.

18



Figure 1: An example racetrack decomposed into regions.
The agent starts at the small purple dot and at the top and
must drive a full lap and enter the yellow goal region to finish

Termination Approximation
One problem with this decomposition is that many prob-
lems, including the racacar problem, contain a wide continu-
ous boundary between regions. Although only learning one
region option per region will give a solution to the overall
problem, the solution may be suboptimal. The primary re-
striction on optimality is that the wide boundary results in
a lack of control over how the agent transitions between re-
gions. We introduce Termination Approximation as a method
for solving this problem. It involves learning multiple region
options per region and utilising an abstract MDP to learn
which region option is best for each region. Before we ex-
amine this in more detail, let us first introduce the abstract
MDP in more detail.

As part of the region based decomposition, Hauskrecht et
al propose forming an abstract MDP to hierarchically solve
problems (Hauskrecht et al. 1998). Each region becomes an
abstract state, whilst the option policies learnt for each re-
gion become the abstract actions. Hauskrecht utilised one re-
gion option per termination state, which for a discrete prob-
lem with funnel-states was often a very low number, and
thus were able to efficiently generate enough low level poli-
cies to solve the problem.

Utilising this hierarchical approach on continuous state
problems without funnel-states provides extra challenges,
primarily because attempting to learn one option policy for
every state in the termination set would be more expensive
than solving the original MDP. Instead we approximate this
set of policies and only find a near-optimal solution.

Our method for approximating this set of policies is to
uniformly partition the termination set into a series of goal
sets and learn one option policy per goal set. We make the
assumption that options terminating in similar subsets of the
termination set are very similar and thus can be approxi-
mated by a single policy. The coarseness of the partition-
ing therefore directly influences how well this set of policies
approximates the real set of policies. We also suggest that
although a hand coded partitioning of the termination set for

a specific problem could produce a more efficient solution,
a uniform partitioning is adequate for most applications.

Learning region option policies and ensuring they ter-
minate in the desired goal set is achieved using pseudo-
rewards. If the region option terminates outside its partic-
ular goal set, the agent receives an extra (pseudo) reward to
discourage such termination in the future. This allows each
option policy to be shaped such that it learns to terminate in
the correct goal set. The value function is polluted by such
pseudo-rewards though, making it unusable for learning a
MAXQ completion value (Dietterich 2000). This is solvable
by learning a second value function that isn’t polluted to rep-
resent the expected reward without contamination.

Relativising Regions and Options

The next aspect to consider is that the dynamics of some
regions may be repeated in the problem. In the racecar prob-
lem we can see that the straight regions have the same dy-
namics no matter where in the racetrack they lie. The same
also applies to the turn regions. Thus there is a significant
potential for additional state abstraction by sharing policies
between regions.

State abstraction has already been applied to options
through relativised options. Relativised options are learnt
in a relative state without an absolute frame of reference.
They are reused through homomorphisms mapping the orig-
inal MDP to the option MDP. We mimic this approach to
define relativised region options.

Definition: A relativised region option of an MDP M =
〈S,A,Ψ, P,R〉 is the tuple O =< h,MO, I, β >, where

I ⊂ S is the initiation set, β(s) =

{
1 : s ∈ TSSi

0 : s /∈ TSSi

is

the termination function and h = 〈f, {gs|s ∈ S}〉 is a par-
tial homomorphism from the MDP 〈S,A,Ψ, P,RO〉 to the
option MDP MO = 〈X ′, A′,Ψ′, P ′, R′〉 with RO chosen
based on the subtask. Note that Ψ′ = X ′ ×A′ since the rel-
ativised region options is defined over the relativised region
and its termination set.

Thus the option MDP MO is a partial homomorphic im-
age of an MDP with the same states, actions and dynamics
as M but with its own reward function specialised for the
subtask. The policy π : Ψ′ → [0, 1] is obtained by solving
MO treating it as an episodic task. This is the same defini-
tion as a relativised option except that the MDP and termina-
tion function are defined across X ′, the union of the region
states S′ and the termination set TSS′ instead of over just
S′. This follows from our previous approach of learning a
region option that terminates in the termination set, just in a
relativised format.

Applying this to the racecar problem, we now only need
to learn two sets of relativised region options to be able to
complete the track, one set for a straight region and one set
for a turn region. Each relativised region option can then
be reused through the homomorphisms to allow the agent
to solve a repeated instance of a region without having to
relearn any region options.

19



Abstract MDP
The solution to the abstract MDP is found by learning a
MAXQ completion function. The formula for this is shown
in Equation (5). It represents the expected cost to goal af-
ter completing the current abstract action (relativised region
option). It is slightly modified from Equation (3) as we do
not use the N or γ terms due to the episodic nature of the
problems we are solving. In fact, we cannot use discounting
in our approach currently or state abstraction is not possible
(Dietterich 2000). This means that continuing problems are
not yet solvable by this method. Note that the formula for
Q is unchanged from (4). The algorithm for learning the top
level MDP is shown in Algorithm 1

Cπ(i, s, a) =
∑
s′

Pπi (s′|s, a)Qπ(i, s′, π(s′)) (5)

Algorithm 1 Learning a policy for the abstract MDP
1: while learning == true do
2: agent← startingstate
3: while atGoal() == false do
4: s = currentAbstractState
5: choose an action a according to the current explo-

ration policy π(s)
6: let πa be the option policy corresponding to action

a.
7: “take action” - follow πa until termination
8: observe result abstract state s′
9: observe starting option state so

10: Ct+1(s)← (1− α) · Ct(s) + α(Vt(so) + Ct(s
′))

11: end while
12: end while

Transfer Learning
This decomposition approach allows a problem to be de-
composed into small, fundamental regions that are readily
repeated within a problem. This contrasts against previous
decomposition methods which focus around natural or envi-
ronment funnel-states within a problem. Since the decompo-
sition is no longer focused on the environment, but the prob-
lem dynamics, transferring policies between related prob-
lems becomes more achievable. Any problem with the same
or similar dynamics can benefit from the learning in another
problem.

Let us examine the racecar problem again. To learn to
drive the track in Figure 1, we learn a set of policies for a
straight region and a set of policies for a turn region, then
solve an abstract MDP. Now if we come across a new race-
track that looks nothing like our current track, we can take
the same approach and decompose it into straight and turn
regions. We can then use the set of policies learned for the
previous racetrack’s straight and turn regions again on this
racetrack, and only have to learn the abstract MDP. The ab-
stract MDP takes significantly less time to solve than a regu-
lar flat learner would and thus we are able to save significant
amounts of time by sharing learning across related problems.

Results
Implementation Details
Our approach to learning in the continuous state space at the
low level of the racecar problem utilises QLearning with uni-
form sampling of the state space and linear interpolation to
approximate the value function between samples. We sam-
ple every 0.05m across the x and y dimensions, every 10o

across the direction dimension and every 0.1ms−1 across
the velocity dimension. The reward function is a cost of 1
per action taken. Each straight region is 1m × 1m in x and
y and includes all possible values for the other dimensions.
Each turn region fits in a 2m× 2m box in x and y and turns
90o. It also includes all possible values for the velocity and
direction dimensions. The range of the velocity permitted
is 0−0.4m/s. The action space allows the racecar to change
its heading by 10o, 0o or −10o and the velocity by 0.1m/s,
0m/s or −0.1m/s.

We approximate the termination area with 5 goals in each
dimension across y, direction and 4 across the velocity.

The method for learning the low level policies is not sig-
nificant to the final result. We use QLearning due to its wide
applicability to a variety of domains and linear interpolation
since it is simple to scale efficiently to a large number of
dimensions, but the policy could instead be learnt by other
RL approaches, by demonstration, or even provided by the
programmer.

Transfer Learning
To consider the power of this approach for transfer learning,
we assume that the low level policies are already learned
and only the abstract MDP needs to be solved. We chose
to partition the termination set into 100 goal sets, partition-
ing it into 5 blocks across y, 5 blocks across direction and 4
blocks across velocity. It is possible to use other partitions
with more or less goal sets than this. We chose 100 because
it was close to the maximum number of policies we could
store in memory on our test PC. The policies were learned
once in isolation and reused for each of the experiments.
Learning the low level policies took approximately 86 ∗ 103

seconds in total.
We learned a variety of racetracks of different shapes

and sizes and compare the results against a baseline learner.
The baseline was the same setup that was used to learn the
low level policies, using bilinear interpolation and Qlearn-
ing. For each different racetrack the HRL agent converges
to a hierarchically optimal policy, which is suboptimal com-
pared to the baseline. This is expected, since the hierarchical
structure places artificial restrictions on the policy that can
be learned. The HRL agent also learns to solve each race-
track significantly faster than the baseline learner, ranging
between 15× and 30× faster. This is due to the fact that the
abstract MDP is smaller and simpler than the original prob-
lem and thus the learning converges substantially faster.

Table 1 shows the baseline results while Table 2 shows
the HRL results. We measured the number of timesteps the
agent takes to complete the task to calculate a regret mea-
sure to compare the policies with. We also used CPU time to

20



measure how fast learning converged after a fixed number of
episodes (9.5×106 for the baseline, 0.1×106 for the HRL).

Table 1: Timing and path lengths for the baseline learner on
a series of racetracks

Racetrack Steps CPU Time (s)
baseline m1 20 0.60× 103

baseline m2 75 3.35× 103

baseline m3 100 5.91× 103

baseline m4 211 24.22× 103

Table 2: Timing, path lengths and comparisons for the HRL
learner on a series of racetracks

Track Steps CPU Time (s) Regret Speed Up
hrl m1 23 0.06× 103 13% 10×
hrl m2 94 0.35× 103 20% 10×
hrl m3 122 0.49× 103 18% 12×
hrl m4 261 0.80× 103 19% 19×

Another point to notice is that the time savings increase as
the size of the racetracks increases, showing how the abstract
MDP is less vulnerable to the curse of dimensionality than
the baseline learner.

Figure 2 shows a comparison between the baseline policy
and HRL policy for the example racetrack (m4).

Future Work
Our continuing work includes a more thorough evaluation
of the effect of varying the coarseness of the termination set
partitioning as well as improvements to the efficiency and
range of problems that can be solved with our approach.

Coarseness Evaluation: A thorough evaluation of the
coarseness of the termination set partitioning in comparison
with the hierarchically optimal policy length will provide a
good guide as to what coarseness is appropriate for differ-
ent problems. Using 100 policies had a large initial learning
overhead, whereas a smaller number of policies may give a
large time speed up with only minor path length degradation.

Efficient Learning: The commonalities between each of
the relativised options learnt for a region could be exploited.
The airports hierarchy (Moore and Baird 1999) is a multi-
goal based hierarchical data structure that minimises both
the learning time and storage requirements for similar poli-
cies. It exploits the relationship between nearby goal states
to guide the agent towards a similar goal from far away
and only uses the final goal’s policy when it is much closer.
There is a very small reduction in optimality, but a large re-
duction in computational complexity. Incorporating the air-
ports hierarchy into this work would allow a reduction in
learning time per abstract goal learnt for each region.

Discounted Reward: At present solving problems with
discounted reward is not possible since we do not know how
many time steps a low level policy will take to complete and
thus how much to discount(Dietterich 2000). It is possible
to learn an additional discount function at the low level to

Figure 2: The baseline (orange) policy compared to the HRL
(blue) policy.

solve this problem (Hengst 2007). The addition of this dis-
count function would allow this approach to also be applied
to continuing problems such as the pole and cart problem
which are currently not solvable using this approach.

Conclusion
In this paper we have presented a novel method for decom-
posing continuous state spaces across wide boundaries. Our
method allows continuous state problems to be decomposed
based on repetition in the problem, not around environmen-
tal features, allowing for maximal reuse no only within a
problem, but between related problems. We used termina-
tion approximation to address the challenge of stitching to-
gether wide boundary areas between regions and relativised
options to allow maximal policy reuse. We demonstrated our
approach on a challenging racecar problem that was previ-
ously not able to be effectively solved using HRL, highlight-
ing how repetition can be utilised despite wide boundaries
between regions.

References
Barto, A., and Mahadevan, S. 2003. Recent advances in hi-
erarchical reinforcement learning. Discrete Event Dynamic
Systems 13:341–379.

21



Barto, A., and Sutton, R. 1998. Reinforcement learning: An
introduction.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research 13(1):227–303.
Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T.;
and Boutilier, C. 1998. Hierarchical Solution of Markov
Decision Processes using Macro-actions. In Proceedings of
the Fourteenth conference on Uncertainty in artificial intel-
ligence.
Hengst, B. 2007. Safe state abstraction and reusable con-
tinuing subtasks in hierarchical reinforcement learning. AI
2007: Advances in Artificial Intelligence 58–67.
Jong, N. K. 2010. Structured Exploration for Reinforcement
Learning. Ph.D. Dissertation.
Konidaris, G., and Barreto, A. S. 2009. Skill Discovery
in Continuous Reinforcement Learning Domains using Skill
Chaining. In Bengio, Y.; Schuurmans, D.; Lafferty, J. D.;
Williams, C. K. I.; and Culotta, A., eds., Advances in Neural
Information Processing Systems 22. Curran Associates, Inc.
1015–1023.
Mahajan, S. 2014. Hierarchical Reinforcement Learning in
Complex Learning Problems: A Survey. International Jour-
nal of Computer Science and Engine Science and Engineer-
ing 2(5):72–78.
Moore, A., and Baird, L. 1999. Multi-value-functions: Ef-
ficient automatic action hierarchies for multiple goal MDPs.
1316–1323.
Ravindran, B., and Barto, A. 2003. Relativized options:
Choosing the right transformation. In ICML, 608–615.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence 112(1-
2):181–211.

22




