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Abstract 
Assuming computational technologies as a dominant factor 
in forming new scientific methods during the last century, 
we review the field of computational urban modeling based 
on the ways different approaches deal with evolving 
computational and informational capacities. We claim that 
during the last few years, due to advancements in ubiquitous 
computing the flow of unstructured data streams have 
changed the landscape of empirical modeling and 
simulation. However, there is a conceptual mismatch 
between the state of the art in urban modeling paradigms 
and the capacities offered by these urban data streams. We 
discuss some alternative mathematical methodologies that 
introduce an abstraction from the traditional urban modeling 
methodologies. 

Introduction   
Historically, the way we communicate and conceive of our 
environments is dictated through the way we encode the 
target phenomena. In a scientific language, these encoded 
views to reality are the models we use to represent 
different phenomena. The first underlying idea in this work 
is that in each period of human history models and 
modeling approaches have been influenced by more 
abstract bodies of thinking or technologies of thought 
(Foucault 2002). In the realm of cities and city modeling, 
which is the focus of this paper, one can refer to city 
models such as the City of Faith, the City as a Machine and 
the Organic City (Lynch 1984) or to refer to models based 
on the underlying urban elements such as Enclave, 
Armature and Heterotopia (Shane 2005) and specially, 
since the advent of computers from the second half of the 
last century, as the age of informational cities (Castells 
1989). Assuming the interrelations between technologies 
and the way we are looking at our cities, in this work we 
investigate the historical developments in computational 
technologies and urban modeling approaches in parallel. 
First we draw a historical map of computational capacities 
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starting from mid 1950s. Next, we discuss the historical 
developments of different urban modeling approaches 
alongside the evolution of computational capacities. 
Finally, we claim that from the last few years a 
fundamental shift in the role of computation in our cities 
has happened, which has opened up a new way of looking 
at the city related phenomena. This shift demands an 
inversion in the concept of city modeling from a theoretical 
point of view. As a result, alternative classes of 
mathematical concepts are required as the backbone of new 
modeling and simulation methodologies.  
In each section we quickly refer to main mathematical 
theories behind different well-known urban modeling 
approaches and in fact, this text aims to find an abstract 
understanding of computational modeling efforts and does 
not aim to be a comprehensive and detailed literature 
survey such as (Batty 2009 and Wilson 2012).  

Generations in Modeling Capacities 
In this section we present the main milestones in the 
history of computation by highlighting their offered 
capacities and functions. Each new capacity demands for a 
new way of looking at the concept of modeling. 

Analytical Power 
Descriptive Theories as the ground, Analysis, Static 
Models, Natural Models and Cultural Cosmos  

 Classically there are two general approaches for solving 
a mathematical model, known as analytical and numerical 
approaches. Although for lots of mathematical problems, 
there is no analytical solution, for a long time the manual 
calculation of numerical algorithms for large-scale 
problems was cumbersome and expensive. Therefore, 
historically the majority of modeling approaches had more 
tendencies toward finding general laws of nature in forms 
of descriptive theories, which could be generalized and 
applied analytically to other cases. We call the category of 
the models that are based on this analytical capacity as 
natural models.  
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Computing Power  
Algorithms as the Ground, Numerical Methods, 
Simulation, Dynamic Models, Rational models  

 Looking at computers as abstract machines (Hovestadt 
and Buhlmann 2013), given a logical algorithm (a code) to 
deal with a problem, a computer is able to execute this 
code in a way much faster than human can do that.  The 
invention of the computer in mid 20th century rapidly 
increased another way of encoding of the real world 
phenomena through systematic numerical procedures. We 
call, this category of models as rational models. In a 
rational model the role of the modeler is to build up a 
consistent system of logical algorithms that can be 
executed by a numerical computer simulation to imitate a 
certain real world phenomena such as urban traffic, land 
use dynamics, economic activities and so on.  

Historically, there have been different technologies of 
computation starting from main frames, and then to 
democratization of computing through personal computers 
and to microcomputers, which are still getting faster and 
more powerful in an exponential rate. However, regardless 
of the speed and power of computing machines, what we 
want to highlight here is the function of numerical 
computing compared to analytical power as two different 
capacities for scientific modeling.    

Alongside the hardware advancements, computational 
technologies have been developing in the field of algorithm 
design or the so-called computer science. Depending on 
the encoding approach of the real world phenomena, there 
are different categories of computational modeling 
methods, which are more or less similar among different 
disciplines. We will discuss this issue in the next sections 
on analyzing the state of the art in urban modeling.  

Computational Networks 
Computation as the Ground, Microprocessors, Sensors, 
Mobile Phones, Internet, Emergence, Semantic Web and 
Rise of Structured Data  

 Alongside the developments of computing technologies, 
advancements in communication technologies gradually 
opened up another level, in which computing powers is 
given as the ground, while what is important is the 
communication between computing systems. Therefore, 
new phenomena such as network of sensors, mobile 
phones or computers and the Internet started to emerge in 
human societies. Gradually from this time, considering the 
amount of embedded systems in many real world 
applications, computers as “computing machines” became 
the ground to introduce a new function, emerging on top of 
computational networks.  As a by-product of these network 
of computing and communicating machines, gradually the 
amount of digital data started to increase as well. Almost 
around the same time starting from mid 1990s, technical 

terms such data mining as the methodology to explore 
digital data (mainly structured data) started to be a hot 
topic among the modelers.  

Data Streams  
Data as the Ground, Ubiquitous and Pervasive Computing, 
Social Media, Smart Phones, Web 2.0, Mobile Apps, 
Crowd Sensing, Data Deluge, Unstructured Data, 
Complex Models  

 Gradually, with rapid advancements both in the level of 
computing power and the networks of computing systems 
and the rapid growth in social media, during the last few 
years we have encountered to a new stage, in which on top 
of ubiquitous computing and communicating systems as 
the ground, a new level of abstract phenomenon started to 
emerge, just like a picture of a smiling face on top of 
thousands of RGB pixels in an image, where each pixel is 
metaphorically a computing and communicating system.  

During the last 10 years, we have begun to experience an 
exponential growth in the amount of information available, 
together with the mobile computing devices most people 
use on a daily basis. This is often called a data deluge. 
Next to the challenges these changes bring, we can also see 
how new areas for research and practice are emerging. To 
just mention a few, one can refer to Big Data, Data 
Science, Ubiquitous Computing (Greenfield 2006), 
Pervasive Sensing (Hansmann 2003), Reality Mining 
(Eagle and Pentland 2006), Citizen Science (Paulos et al. 
2008), Social Network Analysis and Location Based Social 
Network Analysis (Jing et al. 2012). 

It seems clear today that the classic paradigm of 
observation and data gathering has changed radically. Data 
is produced on an everyday basis, from nearly any activity 
we engage in, and accumulates from innumerous sources 
and formats such as text, image, GPS tracks, mobile phone 
traces, and many other social activities, into huge streams 
of information in digital code. These unstructured and 
continuous flows, which can be called Urban Data Stream, 
can be considered as a new urban ‘infrastructure’.  

This notion of data is opposed to its classical notion, 
which data is produced mainly as the result of designed 
experiments to support specific hypothetical models. These 
new data streams are the raw materials for further 
investigations and similar to computing power they are 
new capacities for modeling. As a result of this new 
plateau, we are challenged to learn the new ways to grasp 
this new richness.  

As we discuss in the next sections, urban data streams 
induce an inversion in the paradigm of computational 
modeling from an algorithmic and rational models to a new 
level that we call complex models. 
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In order to sum up, the following diagram shows the 
main waves of modeling capacities as we described in this 
section.  

Figure 1- Historical trends of different modeling capacities 

State of the Art in Computational Urban 
Modeling 

Understanding the complexity, Theory Driven Models, 
Curse of Dimensionality, Complicatedness, Rationality, 
Idealization and Explicit Representation 

 There are several comprehensive literature surveys that 
review the field of urban modeling in a chronological 
manner such as (Batty 2009) or divided to spatial, temporal 
and functional scales (Wilson 2012). However, as we 
mentioned before in this work we are not going toward this 
direction, but we are looking for a way to compare the 
underlying concepts of the state of the art in urban 
modeling to the main functional capacities we derived in 
the last section. As figure 1 shows different capacities of 
modeling and data provision are not contradictory and in a 
way they are all coexisting. This means that at the current 
time some models are based on the analytical concepts of 
natural models or there are modeling efforts that are 
celebrating the concept of distributed computing for 
example.  

The modeling approaches to be distinguished in a first 
class are based on analytical arguments. These approaches 
tend to regard the cities as a kind of “cultural cosmos” 
where they seek to identify statistical proportions, and the 
principle rules, which govern those proportions.  May be 
the first model of this category is the agricultural land use 
model of Von Thunen in 1826 (Von Thunen 1966), which 
is based on an analytical model of the relationships 
between markets, production, and distance. Further we can 
refer to Christaller's Central Place Theory (1933), 
modeling the economic relations between cities and their 
hinterlands using geometric concepts. As one of the most 
famous approaches in this category one can refer to Urban 
Scaling (Batty 2005, 2008), in which the idea is to find 
proportions like the relation between city size and its 
energy consumption (Bettencourt, et al. 2007), or to 
finding universal laws of urban mobility patterns (Noulas, 
et. al 2012 and Simini, et. al 2012). Also, one can refer to 
Space Syntax method (Hillier 1984), which provides a set 

of network analytics based on the structure of the given 
street network and some universal assumptions about how 
people move in the streets. Due to availability of urban 
data in recent years, this category of urban modeling that 
sometimes called, City Science, is getting more attentions, 
but as they are based on analytical capacities (even though 
using computers and data), they result into static and 
aggregate models.  

The modeling approaches that can be distinguished in a 
second class started to boom after the advent of computing 
power in the mid-1950s, and especially also since the 
introduction of so-called main frame simulations. 
Approaches, which mimic the behavior of another system, 
and try to optimize within the analogy they take as a preset, 
is for example Urban Metabolism (Wolman1965), which 
was based on an analogy of a city to a biological system. 
This analogy of a city as a biological organism became 
very popular with the advents of Cybernetics. But there are 
also examples, which import their analogies from other 
fields, like the approach of Urban Dynamics (Forester 
1969), which established an analogy to models used in 
socio-economic systems, and from hydraulic systems in 
economy. It was introduced in the late 60ies and is known 
today as System Dynamics modeling approach. As another 
example, which became popular in the 60ies we can 
mention the idea of Social Physics, based on 
generalizations transferred from the realm of classical 
physics to social systems (Harris1964). For example, Rand 
Corporation was developing models to map the land-use 
dynamics, which were based on Newton’s theory of 
gravity; it proposed a system of equations to describe the 
different forces among urban actors (Lowry 1964). As 
another approach, one could refer to fractal based 
simulation models (Batty 2005), which apply recursive 
principles from fractal geometry and conceptions of self-
similarity. As other similar theories, one can refer to 
applications of Chaos theory, Catastrophe theory and the 
Bifurcation under the umbrella of complexity theory (Batty 
2005). 

So far, these approaches mainly transfer overall 
generalizations from mathematical models and equation 
systems that are proved or well established in other fields 
like physics or economy.  

From 1980s, at the same time that the concept of 
computational networks was booming and the relatively 
easier access to digital data in urban environments, there 
was a shift in the paradigms of urban modeling from 
centralized models, to distributed models. 

This category of distributed urban modeling has caused 
a partially significant paradigm change in terms of 
methodology, from equation based models that are to 
represent the logics of overall system to distributed 
frameworks. Here, what is being modeled is the behavior 
of the components of such systems as individuals behaving 
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differently over time (like humans as agents or cells in the 
land use models). Two main branches of micro-simulation 
approaches are those of cellular automata (Tobler, 1979), 
and multi-agent systems (Waddell and Ulfarsson 2004). 
Note that these agent-based approaches are mainly less 
developed in terms of agent based learning, which is a 
topic in the field of machine learning. 

However, the modeling of the agents also requires the 
framework of a specific model or rule set, and this limits 
the capacities of these approaches – even if they are very 
sophisticated in many regards – in the same way as large-
scale models are limited. Further, there are fundamental 
limits to these approaches in general. To just mention a 
few, one can refer to the curse of dimensionality problem 
(Bellman 1961), which means in principle these 
approaches of algorithmic modeling reaches to a limit in 
dealing with the complex phenomena such as cities, in 
which by adding one more realistic aspect of the target 
phenomena into the model, the demand for the 
computation and the data to tune these models increase 
exponentially. Hence they import simplifying assumptions 
in their presets, without being able to consider them 
comparatively and critically. As a result, the efforts of such 
modeling always became either very complicated or very 
simple and not sufficiently distinct for describing the 
complexity of urban environments with adequate benefit. 
For example, in one of the famous critiques to this class of 
urban models, one can refer to the paper Requiem for 
Large-scale Models (Lee 1973) which enumerates the 
particular limits of large scale urban models as the “Seven 
Sins of Large-Scale Models”: 1) Hyper 
Comprehensiveness (attempt to explain too much with too 
many constraints and relationships), 2) Grossness (reliance 
on aggregate input), 3) Mechanicalness, 4) Expensiveness 
(high price of data and parameter estimates), 5) Hungriness 
(tremendous data requirements), 6) Tuningness (Tuning of 
the model until outputs conform to reasonable 
expectations), 7) Complicatedness (inability of the 
modelers to adequately understand their own creatures).  

Transition: An Inversion in the Concept of 
Urban Modeling  

Encapsulation of Complexity, Models in Coexistence with 
Data Streams, Data Literacy, Probabilistic Programing 

The main hypothesis of this paper is that from the 
second half of the last century computational technologies 
are the dominant factors of the scientific modeling. 
However, as we discussed in the last section, the majority 
of traditional urban modeling approaches only utilize the 
numerical computing and simulation capacities (either 
centralized or decentralized) that started from mid 1950s. 
In these traditional modeling and simulation approaches 

prior knowledge in the form of idealized theories of the 
target phenomena is the primary element of the models, 
while data is to either validate the output of these 
frameworks or to tune the parameters of a given structural 
model. As a result, their use of new emergent capacities 
such as ever growing data streams is fundamentally 
marginal. The hypothesis is that in order to grasp the 
richness of the ever-growing urban data streams, an 
inversion in the concept of modeling is required. To better 
explain this conceptual inversion, the following example 
might be helpful. The left picture in figure 2 is the result 
achieved by Space Syntax method (Hillier 2009) applied 
into the street network of London. It is based on the 
rational assumption that the attractiveness, or the 
importance of certain street segments or city segments, can 
be regarded as a function of the physical connectivity in 
the urban networks. Therefore, computer power is needed 
to just compute these structural indicators of a given 
network. Further, the empirical data can be used to validate 
the results of these structural assumptions about patterns of 
movement. On the other hand, in figure 2 (right), only by 
visualization of available GPS tracks of taxicabs in Beijing 
(Jing et al. 2010), we already know the important segments 
of an urban network. This new capability of harnessing 
data streams is relatively new, and we think as a new 
emergent capacity it can be used as a starting point for 
development of a new modeling approach, beyond the 
current rational modeling approaches.  

Figure 2- The Inversion in the concept of modeling: Visualizing 
the important urban segments based on logical assumptions 
(Hillier 1984) in left and in right, using GPS trajectory of 

taxicabs as an available urban data stream (Jing et al. 2010) 

The underlying concept behind the traditional simulation 
models is to construct a logical set up to understand the 
complexity through its underlying mechanism. Then, by 
simulation one can imitate the behavior of the target 
phenomena. However, as we mentioned, this approach has 
fundamental limits. On the other hand, where we start by 
data streams is in an inverted situation. In fact, the data-
driven illustration of GPS tracks of taxies in Beijing 
(assuming data is enough) encapsulates the complexity of 
traffic networks and is able to answer the questions of type 
“What” about this traffic network with a high degree of 
accuracy, without knowing “Why” these patterns are 
happening. Availability of data streams has promoted these 
generic emerging applications in many other similar cases. 
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For example, Google traffic live service is an aggregation 
of GPS data being emitted by people who are commuting 
along the streets and other sensory data. In the same 
manner, Google traffic live does not start with the 
assumptions whether people who are commuting take the 
shortest path or not, but it is simply a good render of what 
happens in the reality. As another interesting case, one can 
refer to Livehood project (Cranshaw, et al. 2012) that 
presents a methodology for identification and studying 
dynamics of land-use patterns in cities using data from 
social media and clustering methods from machine 
learning. Regardless of the amount of available public data, 
the methodology behind this project is in an opposite 
direction to classical land use models, where sets of rules 
of mobility and urban forms are presumed as the 
underlying mechanisms of defining a neighborhood. In a 
similar direction, one can refer to similar projects such as 
the applications of Endomondo mobile App data, in which 
collections of frequent running and walking patterns of 
people collected via this mobile app, can be used in urban 
design projects such as identifying emergent walk ways 
and to design better infrastructures for pedestrian 
movements.    

However, one of the true concerns regarding these kinds 
of applications is that they might just end up to info-
graphics or simple data analytics with no further 
functionalities. However, similar to the turn from 
analytical models to computational models, and the way 
we mastered computational algorithms we believe new 
paradigms of modeling is needed to be able to grasp the 
richness of these urban data streams.  We call this set of 
future skills as data literacy.  

Alternative Mathematical Modeling Concepts 
Relationality, Observation Dependent Representation, 
Markov, Bayes, Self Organizing Map, Structural Learning  

 There are detailed discussions around the ideas of 
representation and idealization in the philosophy of 
scientific modeling (Weisberg 2007) as well as on the 
limits of set theoretical representation of models in terms 
of abstract universals and opportunities of using concrete 
universals from category theory to abstract from the 
current state of the art in scientific modeling (Ellerman 
1988, Buhlmann 2013 and Moosavi 2014), which goes out 
of the scope of this work.  

In a technical level, figure 3 shows two general 
approaches of representation, which lie at the hart of 
modeling approaches. Each circle in these diagrams stands 
for an object. These objects are symbolical, which means 
that they can stand for anything – be it people, cars, 
companies, buildings, streets, neighborhoods, cities, 
webpages in the internet, protein networks, networks of 
words in corpus of texts, or people and their activities in a 

social network. In the traditional (rational) modeling the 
first step is to define an ideal representation of the target 
phenomena, which as it is shown in figure 3 (left), this 
leads to a set of selected features of the real objects (for 
example, structure of the street network in Space Syntax 
method). Therefore, concrete instances of the object are 
assumed to be independent to each other and they are all 
compared indirectly by an abstract class definition, which 
acts as an external reference. On the other hand, in the 
right diagram there is no explicit and external reference 
system and as it is shown the identity of a single object is 
fully dependent on its relations to the other objects. 

Figure 3 – (Left): Feature based representation of objects 
(rational model) and (right): Observation dependent 

representation of objects (Relational model) 

 In other words, if we take each object as a dimension (A 
feature), we can represent each object by the other objects, 
which are all in the same concrete level with no explicit 
need for ideal representation of the objects in an abstract 
level. In this way of representation and modeling, that we 
call relational modeling, the features of the target 
phenomena are data and observation dependent, while the 
principle idea is that if we increase the amount of 
observations, these data dependent features will emerge to 
a set of invariant characteristics of the real phenomena.  

As we mentioned before, new technologies and concepts 
such as ubiquitous and pervasive computing have opened 
up a new landscape for empirical observations and 
nowadays, in many application areas the conditions for 
relational models hold as we have an emergent network of 
connected instances that can be used for relational 
representation of the object of inquiry. From mathematical 
point of view this mode of representation fits very well 
with the concepts of probabilistic graphical models such as 
Markov networks and Bayesian networks that perform 
extremely well in coexistence with huge amount of data. 

Early tries toward this direction can be referred to works 
of Markov (1906) in modeling natural language through 
sequences of written text. He claimed that only by having 
enough observed sequence of symbols (e.g. words), one 
can create a probabilistic network of relationality from 
each concrete instance (i.e. each symbol) to all the other 
instances and then, this relational network can be used as 
an implicit representation of that language. While in a 
traditional approach each instance is referred to an ideal 
model of its corresponding language including semantic 
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and syntax, in a probabilistic model of the language, 
instances are implicitly represented by their relations to the 
other instances. As a result, if two words have the same 
function in that language, they will have similar relations 
with the other words. However, as later Shannon in 1948 
mentioned (Shannon 1948), even after almost 40 years, the 
proposed relational modeling framework of Markov was 
not feasible as it demands for quiet large amount of 
observations and relatively a large computational power to 
process the data. 

Nevertheless, the rapid growth of computational power 
and availability of huge amount of distributed data streams 
during the last decade changed the situation dramatically. 
The first real application of Markov networks in a large-
scale problem led to the initiation of Google search engine 
(Brin and Page 1998) from 2000. Further, recently new 
applications of neural probabilistic models of the language 
are becoming popular, while the classical approaches in 
natural language processing are in catch up (Benjio et. al 
2006 and Halevy et. al 2009). 

With the same methodology, it is also possible to model 
similar problems in urban domain. For example, a Markov 
chain, constructed upon available GPS tracks of cars, can 
be used for modeling the dynamics of traffic in an urban 
street network (Moosavi and Hovestadt 2013), while 
referring to state of the art in traffic simulation methods, 
such as agent based models, there are lots of difficulties in 
tuning the behavior of artificial agents to the observed data 
set. 

Following the same argumentation for the issue of 
representation in complex systems, there is another 
powerful data-driven modeling method, called Self 
Organizing Map (SOM) (Kohonnen 1982).  

The main interesting property of SOM is its unique 
disposition for structural learning. Figure 4 shows the 
main difference of SOM to a classical way of relation 
(function) modeling. In simple terms, here the primary goal 
is to find the relation between two dimensions, based on a 
set of observations. In a classical way of (rational) 
modeling, one needs to fit a curve (a fixed structure) to a 
data set, while minimizing the deviations (error) from the 
selected curve. In other words, the curve represents the 
logic that integrates the observed data into a continuous 
relation. SOM on the other hand assumes that the logics 
(the argument which integrates cases) can be extracted 
from within the observed data – and it conserves all the 
logics (arguments) according to which it clusters the cases. 
What is optimized, in such modeling, is not how the data 
fits to logic, but the logic, which can integrate, as much as 
possible from the data.  

In this sense, analogically, we might say the classical 
approach can be considered as a democratic set up, in 
which there is a global structure, tuned locally by the effect 
of individual instances. On the other hand, SOM provides a 

social environment, in which each individual instance is 
not reduced, but is kept active in its own individuality, 
while individuals can be unified into local clusters, if 
necessary. 

Figure 4- (left) Democratic Computing, (right) Social Computing 
of Self Organizing Maps (right) 

This simple idea of structural learning results in a 
powerful generic capacity for nonlinear function 
approximation in coexistence with data streams (Barreto 
and Souza 2006). Further, it can be used as a powerful 
nonlinear pattern mining method.  

Here again, the final model of the real phenomena is an 
abstraction of any potential specific model and it does not 
import any axiomatic or semantic specificity. Further, if 
the real environment is dynamic and evolving, and if we 
can assume the availability of dynamic data streams, then 
SOM is evolving along with the environment. In other 
words, relational models are models in coexistence with 
data streams. 

These few methods are parts of a larger category of 
modeling approaches that together could shape new 
languages and new ways of encoding the real world 
phenomena including cities that we refer as data literacy. 

Conclusions  
Assuming that computational technologies have been the 
dominant factor of the last century in shaping the area of 
scientific urban modeling, we identified the main historical 
modeling capacities offered to urban modelers from 
computer science. Recently, as a result of ever growing 
ubiquitous computing systems, embedded in many daily 
life activities, we are observing a new emergent 
phenomenon, in which for the first time in the history 
streams of unstructured data can be seen as the new raw 
material of the information society. Although these data 
streams have inverted the process of modeling from a 
theory based models to data driven models, we claim that 
in order to be able to grasp the richness of this new 
capacity, we need a new kind of literacy, a technical know-
how for dealing with data streams.  
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