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Abstract

In this paper, we explore a new approach to compu-
tational sustainability based on variational inequalities
(VIs). Our challenge is to compute the steady state be-
haviors of networks of sustainable supply chains with
possibly conflicting objectives. VIs provide a way to
model large networks with numerous conflicting goals.
Given the size of real-world networks, suitable algo-
rithms must be selected that can scale with the dimen-
sion of the problems. In this paper, we explore the effec-
tiveness of novel Runge-Kutta methods on finding equi-
librium solutions to two real-world sustainable supply
chain problems.

1 Introduction
Businesses and organizations are increasingly modifying
their supply chain models to increase sustainability in both
their products as well as the processes that act on them.
While progress in these areas is still ongoing, improving the
network of supply chains remains a challenging problem.

In this paper, we explore a novel approach to computa-
tional sustainability in AI, based on the framework of vari-
ational inequalities (VIs). Originally proposed by Hartman
and Stampacchia (Hartman and Stampacchia 1966) in the
context of solving partial differential equations in mechan-
ics, VIs gained popularity in the finite-dimensional setting
partly as a result of Dafermos (Dafermos 1980), who showed
that the traffic network equilibrium problem could be for-
mulated as a finite-dimensional VI. This advance inspired
much follow-on research, showing that a variety of equilib-
rium problems in economics, game theory, and manufactur-
ing could also be formulated as finite-dimensional VIs – the
books by Nagurney (Nagurney 1999; Nagurney and Zhang
1996) and Facchinei and Pang (Facchinei and J. 2003) pro-
vide a detailed introduction to the theory and applications.

We apply VIs to the problem of designing sustainable sup-
ply chain network models, where the challenging computa-
tional problem is to find equilibrium solutions that balance
numerous conflicting objectives, covering the cases when
problems may or may not have an equivalent convex opti-
mization objective. In the case where a convex optimization
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formulation does not exist, we are forced to abandon opti-
mization theory and adopt the more general framework of
VIs. In the case where such a formulation does exist, the
versatility of VIs and the associated algorithm is displayed.
In order to solve these vast systems, we will require fast,
scalable algorithms suitable to our problems. The primary
purpose of this paper is to explain how the theory of VIs
provides valuable computational tools for solving large sus-
tainable network systems as well as present a suitable algo-
rithm for solving such systems.

Section 2 describes two real-world supply chains involv-
ing a sustainable freightage network and a sustainable blood
bank network. Section 3 provides a brief overview of VIs
and describes standard algorithms for solving VIs as well as
a general Runge-Kutta algorithmic framework that we pro-
pose for large domains. In Section 4, we explain the Runge-
Kutta (RK) family of methods along with their associated
adaptive stepsize scheme. Section 5 compares RK on VI
formulations of an emissions conscious freight supply chain
network and a perishable goods supply chain. Experiments
in both these domains show significant benefits of the pro-
posed RK method.

2 Domain Backgrounds
First, we describe the two sustainable network domains that
we’ll use in our experiments.

2.1 Sustainable Freightage Network
The Commission for Environmental Cooperation released
a report in 2010 focusing on reducing the greenhouse
gas (GHG) emissions from freight transportation in North
America (ComissionforEnvironmentalCooperation 2010).
This report revealed that while “light-duty vehicle GHG
emissions are projected...to decline nearly 12%..., Freight
trucks, on the other hand, show a projected 20% increase
in emissions.” Among the commission’s key findings is the
need for the “greening” of supply-chain management. While
some changes to the supply chain like reduced fuel con-
sumption clearly reduce business costs, others may help to
mitigate “reputational risk”. It’s important that the next gen-
eration of supply-chain models incorporate these factors in
order to reflect the changing goals. The network diagram
associated with this problem is shown below in Figure 1,
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which is based on a formulation proposed in (Nagurney, Yu,
and Floden 2013).

Figure 1: A ”green” economic model of the supply chain
proposed in (Nagurney, Yu, and Floden 2013). Firms are
modeled as playing a Cournot-Nash game, competing on the
basis of product flow and frequency of operation. Demand
markets consisting of individuals or groups of users choose
between the various products offered by the firms.

In this network model, I firms manufacture products
which are then either transported directly to retailers (de-
mand markets) or to storage facilities for later distribution.
The products in this economy are substitutable and distin-
guishable only by brand (eg. Oil). In addition, we assume
knowledge of the demand functions stating the prices mar-
kets are willing to pay for quantities of each product. In Fig-
ure 1, the nodes from top tier to bottom tier represent the
firms (i), manufacturing plants (M i

m), storage warehouses
(Di

d,1&Di
d,2), and demand markets (Rr). Each link in the

network represents a process acting on the product between
the origin and destination nodes. From top tier to bottom tier,
the links represent manufacturing, transportation, storage,
and distribution. Note that each Di

d,1 and Di
d,2 pair actually

represents the same distribution center. This is because stor-
age is a process that starts and ends in the same warehouse,
hence the duplication of the nodes.

Each firm must decide how to optimally deliver its prod-
uct to consumers given the allowable paths from its firm to
the multiple demand markets. They do this by controlling
their product flows (eg. barrels of oil per day) and frequen-
cies of operation (eg. shipments per day) along paths in the
network subject to capacity constraints (eg. barrels per ship-
ment). For example, firm 1 may decide on two paths to op-
timize its supply chain: each day, two 150-barrel shipments
are produced at well 1 and transported using mode 4 (barge)
directly to retail market 1 and six 20-barrel shipments are
produced at well 1 as well but are then transported using
mode 3 (truck) to warehouse 2 for storage until they are fi-
nally distributed to retail market 11.

The firms in the network continuously adjust their prod-
uct flows and operation frequencies, optimizing their utili-
ties, until any unilateral adjustment attempted by one firm is

inherently detrimental to that firm’s utility function. Ratio-
nally competing on the basis of product output is known as
Cournot competition and the stalemate described is known
as a Nash equilibrium hence this state is known as a
Cournot-Nash equilibrium.

Given each firm’s utility function and capacity con-
straints, we aim to find the corresponding steady-state prod-
uct flows and frequencies of operation.

2.2 Sustainable Blood Banking
Our second example of a sustainable supply chain involves
the distribution and supply of blood. According to the Amer-
ican Red Cross, more than 41 thousand blood donations are
needed everyday (AmericanRedCross 2014). Extrapolating
that number to 365 days implies that there is a need of ap-
proximately 15 million blood donations per year. While 15.7
million blood donations are collected each year in the U.S.,
blood is a perishable product and its collection does not
always coincide with its demand, which makes the blood
banking system crucial. The blood banking system’s effect
on sustainability is twofold: one is support for the health
of the population by meeting patient demand for blood and
the other is the reduction in the amount of medical waste
(Nagurney and Masoumi 2012). While the former is a more
direct effect, the latter is less obvious. Poor management
of medical waste can lead to the contamination of water,
soil, and the atmosphere, however, even correct management
can be harmful. The ideal method of incineration is one of
the top polluters of dioxins and mercury in the US (Giusti
2009). It is important that non-profit organizations such as
the American Red Cross be capable of meeting the stochas-
tic demand of patients as closely as possible in order to both
support the population and reduce this unnecessary waste.
We use the blood supply network shown below in Figure 2,
which is based on the formulation proposed in (Nagurney
and Masoumi 2012).

In this network model, the organization collects blood at
a subset of potential collection sites. Similarly to the freigh-
tage model, nodes represent facilities which operate on the
blood in some manner and links represent those processes
of operation. In this case, the top node, the organization (fa-
cility), collects blood (process) at the collection sites (facil-
ities) in the second tier of the network. Following this fa-
cility/process paradigm, the blood is then delivered to blood
centers (third tier) to be tested, processed (fourth tier), and
temporarily stored (fifth tier) after which it is then sent to
distribution centers (sixth tier) to ultimately be shipped to
demand points (last tier). The demand in these final nodes is
assumed to belong to known probability distributions. Also,
note the one to one correspondence between the blood cen-
ters, component labs, and storage facilities. This is due to
the labs and storage facilities often being located within the
blood centers, so tiers 3-5 essentially represent the same fa-
cility and the links between them are processes that occur
within that facility.

The organization must decide how to optimally collect
and deliver blood to demand points given the allowable
paths. It does this by controlling the blood flow and adjusting
process capacities along paths in the network. For example,
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Figure 2: A model of the sustainable blood banking system
proposed in (Nagurney and Masoumi 2012). Blood flow and
link capacity constraints are adjusted to minimize health and
environmental impacts. Individuals or groups of users set de-
mand for blood at the demand points.

the organization may decide to collect 5 liters of blood per
day at collection site 1 which it then processes at blood cen-
ter / component lab / storage facility 2 to be distributed by
center 3 to demand point 4. Component lab 2 was originally
only equipped to process and test 4 liters of blood per day
so the organization incurs an investment cost (eg. more lab
equipment) to meet the increased capacity demand. Collec-
tion site 1 cannot realistically guarantee the availability of 5
liters of fresh blood each day so there is an associated risk
to the organization’s expectation that it will have to account
for in its utility model. Moreover, any mismatch in supply
at the hospitals will result in shortages or surpluses of blood
which are costly as well. Furthermore, throughout the sup-
ply chain, blood donations expire, test samples are disposed,
and surpluses are discarded. For these reasons, each link in
the network has a corresponding multiplier representing the
fraction of blood that actually survives the process.

In this model, the organization continuously adjusts its
blood flows and process capacities in order to minimize
all costs (assumed convex) including: operational costs,
waste disposal, capacity modification costs, supply short-
ages/surpluses, and collection risk.

3 Variational Inequalities
The two networks shown in Figure 1 and Figure 2 pose a
challenging computational problem, and our proposed so-
lution builds on the mathematical framework of variational
inequalities (VIs). As many readers may be unfamiliar with
the mathematics of VIs, we begin with a brief review.

3.1 Theory
The formal definition of a VI is as follows:

Definition 1. The finite-dimensional variational inequality
problem VI(F,K) involves finding a vector x∗ ∈ K ⊂ Rn
such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ K
where F : K → Rn is a given continuous function, K is
a given closed convex set, and 〈., .〉 is the standard inner
product in Rn.

Figure 3 provides a geometric interpretation of a varia-
tional inequality. The following general result characterizes
when solutions to VIs exist:
Theorem 1. Suppose K is compact and that F : K → Rn
is continuous. Then, there exists a solution to VI(F,K).

As Figure 3 shows, x∗ is a solution to V I(F,K) if and
only if the angle between the vectors F (x∗) and x− x∗, for
any vector x ∈ K, is less than or equal to 900.

Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

Figure 3: This figure provides a geometric interpretation of
the variational inequality V I(F,K). The mapping F defines
a vector field over the feasible set K such that at the so-
lution point x∗, the vector field F (x∗) is directed inwards
at the boundary, and −F (x∗) is an element of the normal
cone C(x∗) of K at x∗ where the normal cone C(x∗) at the
vector x∗ of a convex set K is defined as C(x∗) = {y ∈
Rn|〈y, x− x∗〉 ≤ 0,∀x ∈ K}.

Crucially, VI problems cannot be converted back into op-
timization problems, unless a very restrictive condition is
met on the Jacobian of the mapping F .
Theorem 2. Assume F (x) is continuously differentiable on
K and that the Jacobian matrix ∇F (x) of partial deriva-
tives of Fi(x) with respect to (w.r.t) each xj is symmetric and
positive semidefinite. Then there exists a real-valued convex
function f : K → R satisfying ∇f(x) = F (x) with x∗, the
solution of VI(F,K), also being the mathematical program-
ming problem of minimizing f(x) subject to x ∈ K.

The algorithmic development of methods for solving VIs
begins with noticing their connection to fixed point prob-
lems.
Theorem 3. The vector x∗ is the solution of VI(F,K) if and
only if, for any α > 0, x∗ is also a fixed point of the map
x∗ = PK(x∗ − αF (x∗)), where PK is the projector onto
convex set K.

In terms of the geometric picture of a VI illustrated in Fig-
ure 3, this property means that the solution of a VI occurs at
a vector x∗ where the vector field F (x∗) induced by F onK
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is normal to the boundary ofK and directed inwards, so that
the projection of x∗ − αF (x∗) is the vector x∗ itself. This
property forms the basis for the projection class of methods
that solve for the fixed point.

Definition 2. A gap function is a function ψ : Rn →
R ∪ {+∞} which satisfies ψ(X) ≥ 0 for all X ∈ K and
ψ(X∗) = 0, X∗ ∈ K if and only if X∗ solves V I(F,K).

Typically, optimization problems are formulated with an
objective function, f(x), that may serve as a convergence
criterion (f(xk) − f(x∗)), however, a VI formulation does
not require an objective function. Gap functions attempt to
recover this lost feature. Numerous gap functions have been
developed satisfying the properties above (Dutta 2012). One
such function, useful in unbounded domains, was developed
separately by Fukushima and Auchmuty, gα(x). We will use
g2(x) later in our experiments to judge convergence.

gα(x) = sup
y∈K
{〈F (x), x− y〉 − α

2
||x− y||2} (1)

3.2 Algorithms
The basic projection-based method (Algorithm 1) for solv-
ing VIs is based on Theorem 3 introduced earlier. Here,

Algorithm 1 The Basic Projection Algorithm.
INPUT: Given VI(F,K), and a symmetric positive definite
matrix D.

1: Set k = 0 and xk ∈ K.
2: repeat
3: Set xk+1 ← PK(xk − αD−1F (xk)).
4: Set k ← k + 1.
5: until xk = PK(xk − αD−1F (xk)).
6: Return xk

PK is the orthogonal projector onto the convex set K. It
can be shown that the basic projection algorithm solves any
V I(F,K) for which the mapping F is strongly monotone
and Lipschitz smooth. A simple strategy is to set D = I

where α < L2

2µ , L is the Lipschitz smoothness constant, and
µ is the strong monotonicity constant. Setting D equal to a
constant in this manner recovers what is known as Euler’s
method and is the most basic algorithm for solving VIs.

The basic projection-based algorithm has two critical lim-
itations. First, it requires that the mapping F be strongly
monotone. If, for example, F is the gradient map of a contin-
uously differentiable function, strong monotonicity implies
the function must be strongly convex. Second, setting the
parameter α requires knowing the Lipschitz smoothness L
and the strong monotonicity parameter µ.

The extragradient method of Korpolevich (Korpelevich
1977) addresses some of these concerns, and is defined as
Algorithm 2. The extragradient algorithm has been the topic
of much attention in optimization since it was proposed, e.g.,
see (Peng and Yao 2008; Nesterov 2007).

The family of Runge-Kutta (RK) methods induced by
Nagurney’s general iterative scheme (Nagurney and Zhang

Algorithm 2 The Extragradient Algorithm.
INPUT: Given VI(F,K), and a scalar α.

1: Set k = 0 and xk ∈ K.
2: repeat
3: Set yk ← PK(xk − αF (xk)).
4: Set xk+1 ← PK(xk − αF (yk)).
5: Set k ← k + 1.
6: until xk = PK(xk − αF (xk)).
7: Return xk

1996) is defined as Algorithm 3. We will explain the motiva-
tion behind RK methods in the following section by observ-
ing their role in the solution of ordinary differential equa-
tions (ODEs). An RK method is defined by its values a and
bwhich are typically presented in what’s known as a Butcher
table. Heun-Euler and Cash-Karp refer to two tables that we
will use in our experiments.

Algorithm 3 The General Runge-Kutta Algorithm.
INPUT: Given VI(F,K), lower-triangular matrix a ∈
Rs−1×s−1, vector b ∈ Rs, and a sequence of scalars αk.

1: Set k = 0 and xk ∈ K.
2: repeat
3: Set k1 ← αkF (xk)
4: Set k2 ← αkF (PK(xk − a21k1))
5: Set k3 ← αkF (PK(xk − a31k1 − a32k2))

...
6: Set ks ← αkF (PK(xk−as1k1− . . .−as,s−1ks−1))
7: Set xk+1 ← PK(xk −

∑s
i=1 biki)

8: Set k ← k + 1.
9: until xk = PK(xk −

∑s
i=1 biki).

10: Return xk

4 Runge-Kutta Algorithms
In this section, we provide some intuition and explanation
for the strengths of Runge-Kutta methods and their associ-
ated stepsize scheme.

4.1 The Runge-Kutta Method for ODEs
Runge-Kutta methods are highly popular methods for solv-
ing systems of coupled first-order differential equations of
the form:

dx

dt
= f(x, t), x(t0) = x0 (2)

The simplest explicit RK method is Euler’s method:

xk+1 = xk + αf(xk, tk), tk+1 = tk + α (3)

Euler’s method, while simple, is not very accurate because
it only uses the derivative of the function at the beginning of
the interval. More accurate methods can be designed that ad-
vance xk by a weighted mean of the derivatives of the func-
tion in a neighborhood of (xk, tk). Runge-Kutta methods are
crafted such that the locations and corresponding weights
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at which the derivatives are computed induce an approxi-
mate taylor series expansion of the algorithm that matches
the infinite taylor series expansion of x up to some order
p, O(hp). The general explicit Runge-Kutta scheme is be-
low where ci and aij designate which locations to inspect
and bi defines the weights. Euler’s method corresponds to
s = 1, b1 = 1, c1 = 1.

xk+1 = xk + Σsi=1biki, tk+1 = tk + α, (4)

ki = αf(xk + Σi−1
j=1aijkj , tk + ciα) (5)

4.2 Using Adaptive Stepsizes in RK Methods
We now describe an additional enhancement of Runge-Kutta
methods that automatically tunes the stepsize. These adap-
tive methods are designed to produce an estimate of the local
truncation error of a single Runge-Kutta step. This can be
accomplished by computing and comparing steps with two
methods during each iteration of descent, however, more ef-
ficient methods make use of the same Runge-Kutta matrix,
but differing weights, bi. This is done by simultaneously us-
ing two methods, one with order p and one with order p− 1.
The lower-order step is given by

x∗k+1 = xk +

s∑
i=1

b∗i ki, (6)

where the ki are the same as for the higher-order method.
Then the error is

∆k+1 = xk+1 − x∗k+1 =
s∑
i=1

(bi − b∗i )ki, (7)

which is O(hp). Stepsizes can be updated as αk+1 ←
αk
∣∣ ∆0

∆k+1

∣∣1/p, where ∆0 is the desired accuracy.
Classical gradient rules commonly enforce diminishing

stepsizes. The scheme above, however, describes a stepsize
that depends on the local behavior of f and may possibly
grow with successive iterations. In fact, when used in prac-
tice, the stepsize increases as the solution nears the optimum
to account for the diminishing value of the gradient.

5 Experiments
We now compare the proposed RK family of methods
against standard VI algorithms on the domains discussed in
Section 2.

5.1 Sustainable Freightage Network Experiment
Our first example focuses on an emissions-conscious com-
petitive supply chain network (Nagurney, Yu, and Floden
2013). We assume the governing equilibrium is Cournot-
Nash and the utility functions are all concave and fully dif-
ferentiable. This establishes the equivalence between the
equilibrium state we are searching for and the variational
inequality to be solved where the F mapping is a vector
consisting of the negative gradients of the augmented La-
grangian utility functions for each firm. Since F is essen-
tially a concatenation of gradients arising from multiple in-
dependent, conflicting objective functions, it does not corre-
spond to the gradient of any single objective function. This

forces us to abandon an optimization formulation in favor of
a VI formulation.

As this conclusion may trouble some readers, we provide
further clarification here. There is no well-behaved objective
function whose gradient equates to the F mapping defined
in this VI formulation. However, objective functions whose
optima directly coincide with the solutions of the VI surely
exist, a trivial example being the indicator function to the
solutions of the VI (I∗X(X)). It’s not clear how one might
go about constructing more satisfactory objective functions
with the same solutions as the VI. On a more intuitive level,
any single utility function that aggregates the interests of all
firms cannot act in the interest of all firms simultaneously.
As a hypothetical example, imagine the difference between
utilities of multiple individual firms competing in a market
economy and the utility of a single umbrella corporation in a
monopoly; individual voices get lost in this single objective
function and the market economy behaves differently.

In the model here, each firm is represented individually.
The parameterized utility function for each firm i is pre-
sented in Figure 4 and is defined in terms of the product
flows (x) on each unique path p from firm i to each of the
nR demand markets k as well as the operation frequencies
(γ). Total operational costs, frequency of operation costs,
frequency of operation limits, emission costs, demand-price
functions, and link-path indicator functions are designated
by ĉ, ĝ, ū, ê, ρ̂, and δap respectively. The first three compo-
nents of the utility function represent profit flow (revenue
- operational costs - frequency of operations costs) while
the last component represents the costs due to emissions
weighted by ωi.

Ui =
∑nR
l=1 ρ̂ik(x)

∑
p∈P i

k
xp −

∑
a∈Li ĉa(f)−

∑
a∈Li ĝa(γa)

−ωi
∑
a∈Li êa(fa, γa)

where x, γ ≥ 0 and fa =
∑
p∈P xpδap ≤ ūaγa, ∀a ∈ L

Figure 4: Sustainable Freightage Network Objective Func-
tions

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, where X = (x, γ, λ) ∈ RNX
+

F 1(X) =
∂Cp(x)

∂xp
+ ωi

∂Ep(x,γ)

∂xp
+
∑
a∈Li λaδap − ρik(x)

−
∑nR
l=1

∂ρil(x)
∂xp

∑
q∈P i

l
xq; p ∈ P ik; i = 1, . . . , I; k = 1, . . . , nR

F 2(X) = ∂ga(γa)
∂γa

+ ωi
∂Ep(x,γ)

∂γa
− µaλa; a ∈ Li; i = 1, . . . , I

F 3(X) = µaγa −
∑
q∈P xqδaq; a ∈ L

i; i = 1, . . . , I

Figure 5: Sustainable Freightage Network VI

The corresponding variational inequality model presented
in Figure 5 is defined with similar terms as above, however,
the frequency limits have been folded into the expression
through lagrange multipliers (λ) associated with each link a.
After some renaming, total operational costs, frequency of
operation costs, frequency limits, emission costs, demand-
price functions, and link-path indicator functions are des-
ignated by C, g, µ, E, ρ, and δap respectively. Please see
(Nagurney, Yu, and Floden 2013) for more detail.
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Figures 6 and 7 reveal the performance gains achieved in
employing Runge-Kutta methods, specifically Heun-Euler
with ∆0 = 10−1 (RKHE) and Cash-Karp with ∆0 = 10−3

(RKCK), over Euler’s method and the well-known extragra-
dient (EG) method in determining the solution to the above
VI as the size of the network (dimensionality of X = NX )
grows. Since in general, the value of our gap function in this
example, g2(X), grows with network size, we elect to judge
convergence by the reduction in g2(X) from the first itera-
tion, g2(X)/g2(X0) < ε, ε = 10−6. As you can see from
the figures, the Runge-Kutta methods scale better than the
other two methods both in terms of number of iterations to
convergence and time to completion. Even with constant it-
erations, runtime increases primarily because the evaluation
time of the mapping F (X), Feval, increases by more than
100 times over the growth of the networks.

Figure 6: This figure compares our proposed adaptive step-
size RK methods against Euler’s method (Algorithm 1
where D = I) used in (Nagurney, Yu, and Floden 2013)
and the well-known extragradient method on the basis of it-
eration count.

5.2 Sustainable Blood Banking Experiment
In this second experiment, blood donations are accepted
at multiple collection sites and transferred through several
checkpoints in the supply chain to the demand markets (e.g.
hospitals and patients) (Nagurney and Masoumi 2012). In
this case, the blood bank supply chain is operated by a sin-
gle party and so the optimization and variational inequality
formulations are equivalent. We use this domain to express
VI’s flexibility in that regard.

The minimization problem described in Section 2.2 is
converted to the variational inequality in Figure 8 by apply-
ing Theorem 2. Since the F mapping of the resulting vari-
ational inequality is simply the gradient of the Lagrangian
formulation for the original objective function, we omit it
here. Please see (Nagurney and Masoumi 2012) for more
detail.

The corresponding variational inequality model presented
in Figure 8 is defined in terms of the blood donation flows

Figure 7: This figure repeats the comparison in Figure 6 on
the basis of runtime.

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, where X = (x, µ, γ) ∈ RNX
+

F 1(X) =
∂(

∑
q∈P Ĉq(x))

∂xp
+

∂(
∑

q∈P Ẑq(x))

∂xp

+λ+
k µpPk

(∑
p∈Pwk

xpµp
)
− λ−k µp

(
1− Pk

(∑
p∈Pwk

xpµp
))

+
∑
a∈L γaδap + θ

∂(
∑

q∈P R̂q(x))

∂xp
; p ∈ Pwk ; k = 1, . . . , nR

F 2(X) = ∂π̂a(ua)
∂ua

− γa; a ∈ L
F 3(X) = ūa + ua −

∑
p∈P xpαap; a ∈ L

Figure 8: Sustainable Blood Banking VI

(x) on each unique path p from the root node to demand mar-
ket k as well as the capacity adjustments (u) and lagrange
multipliers (γ) associated with each link a. The proportion
of blood that perishes along each link a and path p in the
supply chain is captured by the multipliers αa and µp re-
spectively. Penalties for surpluses and shortages of blood at
the demand markets are represented by the third and fourth
terms of F1(X) respectively where Pk is the probability dis-
tribution function over the demand for each demand market
k. Total operational costs, total discarding costs, and total
risk for each path p are designated by Ĉp, Ẑp, and R̂p while
total capacity modification cost for each link a is π̂a. The
constant θ weights the risk, R̂p, associated with blood col-
lection against the other costs mentioned above. The link-
path indicator function is denoted by δap. The value ūa rep-
resents the initial flow capacity on link a; in this experiment,
we’ve set all ūa’s to zero meaning we are building our sup-
ply chains from scratch.

Figures 9 and 10 repeat the same ε-convergence (ε =
10−3) experiment for the blood banking system as Figures
6 and 7 did for the freightage network. Here, RKHE is run
with ∆0 = 10−5 and RKCK with ∆0 = 10−6. In this case,
the Euler and extragradient methods only converge under the
iteration limit (106) for small scale models. The RK meth-
ods, on the other hand, require a scale-free, near constant
number of iterations and exhibit much more favorable run-
times. Here, Feval increases by over 1000 times.
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Figure 9: This figure compares our proposed adaptive step-
size RK methods against Euler’s method (Algorithm 1
where D = I) used in (Nagurney and Masoumi 2012) and
the well-known extragradient method on the basis of itera-
tion count.

Figure 10: This figure repeats the comparison in Figure 9 on
the basis of runtime.

6 Conclusion
In this paper, we proposed a novel computational sustain-
ability framework in AI based on variational inequalities.
We analyzed two real-world domains, both involving the
transportation of goods across a supply chain network. We
proposed a Runge Kutta algorithmic framework to solve
such networked VIs, and showed that it scales far better
than standard popular algorithms for solving VIs, such as
the projection method and the extragradient method. The so-
lutions to these variational inequality formulations contain
rich information useful for improving the sustainability of
the corresponding networks. For example, emissions regula-
tions would see much less resistance if we could convince
businesses that improving their shipping fleets and cutting
emissions could result in actual increases in profits. Simi-

larly, equilibrium solutions to the blood bank model would
tell us how we could modify existing capacities on links to
further minimize our cost function.
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