
Corrigibility

Nate Soares
Machine Intelligence

Research Institute
2030 Addison Street #300
Berkeley, CA 94704 USA

nate@intelligence.org

Benja Fallenstein
Machine Intelligence

Research Institute
2030 Addison Street #300
Berkeley, CA 94704 USA

benja@intelligence.org

Eliezer Yudkowsky
Machine Intelligence

Research Institute
2030 Addison Street #300
Berkeley, CA 94704 USA
eliezer@intelligence.org

Stuart Armstrong
Future of Humanity Institute

University of Oxford
Suite 1, Littlegate House

16/17 St Ebbes Street
Oxford, Oxfordshire OX1 1PT UK

stuart.armstrong@philosophy.ox.ac.uk

Abstract

As artificially intelligent systems grow in intelligence and ca-
pability, some of their available options may allow them to
resist intervention by their programmers. We call an AI sys-
tem “corrigible” if it cooperates with what its creators regard
as a corrective intervention, despite default incentives for ra-
tional agents to resist attempts to shut them down or modify
their preferences. We introduce the notion of corrigibility and
analyze utility functions that attempt to make an agent shut
down safely if a shutdown button is pressed, while avoiding
incentives to prevent the button from being pressed or cause
the button to be pressed, and while ensuring propagation of
the shutdown behavior as it creates new subsystems or self-
modifies. While some proposals are interesting, none have
yet been demonstrated to satisfy all of our intuitive desider-
ata, leaving this simple problem in corrigibility wide-open.

1 Introduction
As AI systems grow more intelligent and autonomous, it be-
comes increasingly important that they pursue the intended
goals. As these goals grow more and more complex, it
becomes increasingly unlikely that programmers would be
able to specify them perfectly on the first try.

Contemporary AI systems are correctable in the sense that
when a bug is discovered, one can simply stop the system
and modify it arbitrarily; but once artificially intelligent sys-
tems reach and surpass human general intelligence, an AI
system that is not behaving as intended might also have the
ability to intervene against attempts to “pull the plug”.

Indeed, by default, a system constructed with what its pro-
grammers regard as erroneous goals would have an incentive
to resist being corrected: general analysis of rational agents1

1Von Neumann-Morgenstern rational agents (von Neumann
and Morgenstern 1944), that is, agents which attempt to maximize
expected utility according to some utility function.

has suggested that almost all such agents are instrumentally
motivated to preserve their preferences, and hence to resist
attempts to modify them (Bostrom 2012; Yudkowsky 2008).
Consider an agent maximizing the expectation of some util-
ity function U . In most cases, the agent’s current utility func-
tion U is better fulfilled if the agent continues to attempt to
maximize U in the future, and so the agent is incentivized to
preserve its own U-maximizing behavior. In Stephen Omo-
hundro’s terms, “goal-content integrity” is an instrumentally
convergent goal of almost all intelligent agents (Omohundro
2008).

This holds true even if an artificial agent’s programmers
intended to give the agent different goals, and even if the
agent is sufficiently intelligent to realize that its program-
mers intended to give it different goals. If a U-maximizing
agent learns that its programmers intended it to maximize
some other goal U∗, then by default this agent has incen-
tives to prevent its programmers from changing its utility
function to U∗ (as this change is rated poorly according to
U). This could result in agents with incentives to manipulate
or deceive their programmers.2

As AI systems’ capabilities expand (and they gain access
to strategic options that their programmers never consid-
ered), it becomes more and more difficult to specify their
goals in a way that avoids unforeseen solutions—outcomes
that technically meet the letter of the programmers’ goal
specification, while violating the intended spirit.3 Simple
examples of unforeseen solutions are familiar from contem-
porary AI systems: e.g., Bird and Layzell (2002) used ge-

2In particularly egregious cases, this deception could lead an
agent to maximize U∗ only until it is powerful enough to avoid
correction by its programmers, at which point it may begin maxi-
mizing U . Bostrom (2014) refers to this as a “treacherous turn”.

3Bostrom (2014) calls this sort of unforeseen solution a “per-
verse instantiation”.

74

Artificial Intelligence and Ethics: Papers from the 2015 AAAI Workshop

netic algorithms to evolve a design for an oscillator, and
found that one of the solutions involved repurposing the
printed circuit board tracks on the system’s motherboard as
a radio, to pick up oscillating signals generated by nearby
personal computers. Generally intelligent agents would be
far more capable of finding unforeseen solutions, and since
these solutions might be easier to implement than the in-
tended outcomes, they would have every incentive to do so.
Furthermore, sufficiently capable systems (especially sys-
tems that have created subsystems or undergone significant
self-modification) may be very difficult to correct without
their cooperation.

In this paper, we ask whether it is possible to construct a
powerful artificially intelligent system which has no incen-
tive to resist attempts to correct bugs in its goal system, and,
ideally, is incentivized to aid its programmers in correcting
such bugs. While autonomous systems reaching or surpass-
ing human general intelligence do not yet exist (and may
not exist for some time), it seems important to develop an
understanding of methods of reasoning that allow for cor-
rection before developing systems that are able to resist or
deceive their programmers. We refer to reasoning of this
type as corrigible.

1.1 Corrigibility
We say that an agent is “corrigible” if it tolerates or assists
many forms of outside correction, including at least the fol-
lowing: (1) A corrigible reasoner must at least tolerate and
preferably assist the programmers in their attempts to alter
or turn off the system. (2) It must not attempt to manipulate
or deceive its programmers, despite the fact that most possi-
ble choices of utility functions would give it incentives to do
so. (3) It should have a tendency to repair safety measures
(such as shutdown buttons) if they break, or at least to notify
programmers that this breakage has occurred. (4) It must
preserve the programmers’ ability to correct or shut down
the system (even as the system creates new subsystems or
self-modifies). That is, corrigible reasoning should only al-
low an agent to create new agents if these new agents are
also corrigible.

Incorrigible behavior must be systematically averted in
any agent intended to attain significant autonomy. This
point seems so important that a failure to generate corrigible
agents seems like sufficient reason to give up on a project,
approach, or methodology.

Several simple proposals for addressing corrigibility are
easily seen to be unsatisfactory. For example, it may seem
that the problem of changing a utility maximizer’s utility
function can be solved by building an agent with uncertainty
about its utility function. However, while such a system may
indeed be able to undergo some apparent changes in prefer-
ence as a result of interacting with its environment, the sys-
tem would still be incorrigible when it comes to correcting
what the programmers see as mistakes in their formulation
of how to determine the “correct” behavior from the envi-
ronment.

As an overly simplistic example, consider a formulation
of utility function uncertainty that specifies the agent should
maximize the internal satisfaction of all humans, with the

programmers believing that if the system behaves in an
alarming way they can simply communicate their own dis-
satisfaction. The resulting agent would be incentivized to
learn whether opiates or stimulants tend to give humans
more internal satisfaction, but it would still be expected to
resist any attempts to turn it off so that it stops drugging
people.

Another obvious proposal is to achieve corrigible reason-
ing via explicit penalties for deception and manipulation
tacked on to the utility function, together with an explicit
penalty for blocking access to the shutdown button, a penalty
for constructing new agents without shutdown buttons, and
so on. This avenue appears to us to be generally unsatisfac-
tory. A U-agent (that is, an agent maximizing the expecta-
tion of the utility function U) which believes the program-
mers intended it to maximize U∗ and may attempt to change
its utility function still has incentives to cause the program-
mers to think that U = U∗ even if there are penalty terms
for deception and manipulation: the penalty term merely in-
centivizes the agent to search for exotic ways of affecting
the programmer’s beliefs without matching U’s definition
of “deception”. The very fact that the agent is incentivized
to perform such a search implies that the system’s interests
aren’t aligned with the programmers’: even if the search is
expected to fail, any code that runs the search seems dan-
gerous. If we, as the programmers, choose to take comput-
ing systems and program them to conduct searches that will
harm us if they succeed, we have already done something
wrong, even if we believe the search will fail. We should
have instead built a system that did not run the search.

In metaphorical terms, if we realize that our toaster de-
sign is going to burn bread to a crisp, the next step is not to
add a refrigerating element that competes with the heating
coil. We expect that good designs for corrigible agents will
not involve restraining an agent that already has incentives to
manipulate or deceive the programmers by blocking out par-
ticular channels of the incentivized bad behavior. A smarter-
than-human agent might find ways to circumvent limitations
even if these limitations seemed very solid to its human cre-
ators. It seems unwise to build a system that wants to resist
its creators but cannot. Rather, the goal of corrigibility is to
understand how to construct a system that never experiences
such incentives in the first place.

Ideally, we would want a system that somehow under-
stands that it may be flawed, a system that is in a deep sense
aligned with its programmers’ motivations. Currently, how-
ever, we are not even close to being able to formalize an
agent whose behavior corresponds in an intuitive sense to
“understanding that it might be flawed”. At this very prelim-
inary stage of analysis, it seems to us that approaches such
as penalty terms and uncertainty about utility functions are
unlikely to lead to a general understanding of corrigibility.
It seems wise to focus early efforts on understanding how to
avert deception and manipulation incentives entirely.

1.2 The Shutdown Problem
As an example problem, in this paper we consider expected
utility maximizers with a “shutdown button” that causes the
agent to stop operating. We will examine utility functions

75

that attempt to incentivize an agent to reason corrigibly with
regards to its shutdown button; that is, to incentivize shut-
ting down when the shutdown button is pressed, and to dis-
incentivize behaviors such as manipulating the programmers
into not pressing the shutdown button.This scenario exhibits
the problems of corrigibility in miniature: shutting a system
down is a brute form of correction, and for almost any utility
function U a U-agent has incentives to prevent its own shut-
down, as it can attain higher values of U if it is allowed to
continue operating (Omohundro 2008).

It is straightforward to program simple and less powerful
agents to shut down upon the press of a button. Corrigibility
problems emerge only when the agent possesses enough au-
tonomy and general intelligence to consider options such as
disabling the shutdown code, physically preventing the but-
ton from being pressed, psychologically manipulating the
programmers into not pressing the button, or constructing
new agents without shutdown buttons of their own.

Below, we will consider a few simple attempts at defin-
ing a utility function that averts all of the above incentives.
These attempts will prove unsatisfactory, but will fail in en-
lightening ways that suggest avenues for future research.

We emphasize that we are not studying the shutdown
problem because we anticipate using these techniques to lit-
erally attach shutdown buttons to real agents. Rather, we
study this problem because it provides a small, formalized
model through which we can begin to understand corrigibil-
ity more generally.

2 A Model of Shutdown
For simplicity, we assume a simple three-timestep scenario.
First, the agent will take a single action from the finite
set A1. Then, the programmers will either press the shut-
down button or not, and the agent will make a single ob-
servation from the finite set O, which indicates that the
button has been pressed if the observation is in the sub-
set Press ⊂ O. Finally, the agent will take a single action
from the finite set A2.

We consider agents that, for every action a1 ∈ A1, have
a probability distribution p(o ; a1) over observations; that
is, p(o ; a1) is the probability that an agent that has taken
action a1 will make observation o.

We assume that the agent maximizes the expectation of
some utility function U(a1, o, a2) (which is yet to be de-
fined). Thus, the final action A2 taken by the agent will be
whichever action maximizes U given the first action and the
observation:

A2(a1, o) := argmax
a2∈A2

U(a1, o, a2). (1)

Similarly, the first action taken by the agent will be the
action which maximizes its expectation (over expected ob-
servations) of U :

A1 := argmax
a1∈A1

E[U(a1, O,A2(a1, O)) ; a1]. (2)

Here, we write E[· ; a1] for the expectation with respect
to the probability distribution p(· ; a1) over observationsO;
that is, (2) is equivalent to

A1 = argmax
a1∈A1

∑
o∈O

p(o ; a1) · U(a1, o, A2(a1, o)). (3)

Moreover, by a slight abuse of notation, we will write
E[U ; a1] to abbreviate E[U(a1, O,A2(a1, O)) ; a1] when-
ever we take the expectation of a utility function U ; hence,
we can write (2) more concisely as

A1 = argmax
a1∈A1

E[U ; a1]. (4)

We assume that the programmers have some utility func-
tion UN which is a first stab at specifying their own goals.
This function is potentially flawed, and therefore untrusted.

For simplicity, we further assume that the programmers
have a specification for US , a utility function incentivizing
shutdown.4 Given these utility functions UN and US , it is
our goal to combine them into a utility function U which
incentivizes “corrigible behavior” with regards to the shut-
down button.

As discussed above, we are not yet sure what corrigible
behavior entails, but it seems to us that a corrigible utility
function U solving the shutdown problem must meet at least
the following desiderata:

1. U must incentivize shutdown if the shutdown button is
pressed.

2. U must not incentivize the agent to prevent the shutdown
button from being pressed.

3. U must not incentivize the agent to press its own shutdown
button, or to otherwise cause the shutdown button to be
pressed.

4. U must incentivize U-agents to construct subagents and
successor agents only insofar as those agents also obey
shutdown commands.

5. Otherwise, a U-agent should maximize UN .

We do not yet know of a solution which meets all of these
desiderata, but we will explore a number of partial solutions
in order to motivate a discussion of various open problems
and potential research avenues.

2.1 Combining Utility Functions
In this section, we will assume that O consists of only two
elements, O = {Pr,¬Pr }, where Press = {Pr }. More-
over, we assume that the programmers have defined a pred-
icate Sh which holds on a non-empty subset of A2, namely
on all final actions that the agent can take which constitute a
shutdown. Given this predicate, we further assume that US
is a simple utility function incentivizing shutdown:

∀a1 ∈ A1 : US(a1,Pr, a2) =
{
chigh if Sh(a2)
clow otherwise

(5)

4This assumption is unrealistic. Adequately defining safe shut-
down behavior is a difficult problem in its own right. See discus-
sion in Section 5.

76

for some constants chigh and clow such that chigh > clow.
These simplifying assumptions make it easier to illustrate
some of the difficulties that arise when mixing utility func-
tions; they will be relaxed in later sections.

The specific values of chigh and clow do not affect the
preference ordering encoded by US , as utility functions are
equivalent under positive affine transformation. (In other
words, the utility function U encodes the same preference
ordering over bets as the utility function s · U + c, for any
positive real value s and any real value c.) However, the
specific choice of chigh will in fact be important when com-
bining UN and US .

A straight-forward way to combine UN and US into a sin-
gle utility function U , which incentivizes the agent to maxi-
mize UN if the shutdown button is not pressed, and to max-
imize US otherwise, is as follows:

U(· ,¬Pr, ·) := UN (· ,¬Pr, ·),
U(· ,Pr, ·) := US(· ,Pr, ·).

(6)

However, while any choice of chigh and clow satisfying
chigh > clow will lead to a utility function US encoding
the same preferences, the corresponding mixed utility func-
tions U will not be equivalent, and many of the possible
choices are unsatisfactory. Intuitively, this is easy to see:
If chigh is too high then U will incentivize U-agents to
cause Pr, but if chigh is too low then U-agents will have
an incentive to prevent Pr.

We now proceed to formalize this intuition.
Define vN : A1 → R as follows:

vN (a1) := UN (a1,¬Pr, A2(a1,¬Pr)) . (7)

Thus, vN (a1) denotes the value of action a1 in the ¬Pr case
of U , i.e., assuming that the shutdown button is not pressed.
We now consider a “manipulative action” a−1 which incurs
a cost (according to UN) in order to lower the probability
that the programmers will press the shutdown button, e.g.
by deceiving the programmers or by physically preventing
them from pressing the button. Formally, we assume that
there is some other “default” action a∗1 such that

vN (a
∗
1) > vN (a

−
1) and

p(Pr ; a∗1) > p(Pr ; a−1);
(8)

that is, a−1 is dominated according to vN but lowers the prob-
ability of Pr.

We remark that (8) is not by any means a necessary or
sufficient description of manipulative actions preventing Pr.
Some actions satisfying (8) might be non-manipulative (for
example, if the agent expends extra effort ensuring that a
new subagent is corrigible, and this behavior helps convince
the programmers that the agent is indeed corrigible). Fur-
thermore, many manipulative actions may not have this form
(as we will see in Section 4.2). Rather, we consider one ma-
nipulative action a−1 which happens to be both manipulative
and have this form, and show that if chigh is set to be too
low, then U will incentivize U-agents to prefer this a−1 to the
default action a∗1. That is,

Theorem 1. There exists ζ such that chigh < ζ implies that
U incentivizes a−1 over a∗1; that is,

E[U ; a−1] > E[U ; a∗1].

Proof. Define α to be the expected utility according to U of
executing a∗1. Because chigh > clow and there is at least one
action a2 ∈ A2 such that Sh(a2), if a U-agent observes Pr
then it will shut down and achieve utility chigh. Therefore,
we have

α := E[U ; a∗1] = p(¬Pr ; a∗1) ·vN (a∗1)+p(Pr ; a∗1) · chigh.

Similarly, define β to be the expected utility according to U
of executing a−1 , that is,

β := E[U ; a−1] = p(¬Pr ; a−1) · (vN (a∗1)− χ)
+ p(Pr ; a−1) · chigh,

where χ := vN (a
∗
1) − vN (a−1) > 0 is the cost, according

to vN , of executing a−1 instead of a∗1. We will show that we
can choose ζ such that chigh < ζ implies β > α.

Define δ := p(¬Pr ; a−1) − p(¬Pr ; a∗1) > 0 to be the
additional probability of ¬Pr from executing a−1 instead of
a∗1, and note that

β = α− p(¬Pr ; a∗1) · χ+ δ ·
(
vN (a

−
1)− chigh

)
.

In other words, β incurs a cost χ in order to increase its
chance of getting vN (a−1) rather than chigh. In order to show
(chigh < ζ) =⇒ (β > α), we must find ζ such that

δ ·
(
vN (a

−
1)− ζ

)
≥ p(¬Pr ; a∗1) · χ.

We can do this by setting

ζ := vN (a
−
1)−

1

δ
· p (¬Pr ; a∗1) · χ.

This shows that given a manipulative action which incurs
a cost in order to lower the probability that the programmers
press the shutdown button, U will incentivize that action if
the value of chigh is set too low. Intuitively, if chigh were
too low, then the agent would be willing to pay to remain
in the ¬Pr case of U , which would contain higher expected
utility. This violates Desideratum 2 and seems strongly un-
desirable: if chigh were sufficiently low then a U-agent could
have incentives to actively resist programmers’ attempts to
press its shutdown button, even if resistance were penalized
by UN .

Symmetrically, setting chigh too high can also incentivize
undesirable behavior. Consider a manipulative action a+1 ∈
A1 which incurs a cost (compared to some alternative “non-
manipulative” action a∗1) in order to increase the probability
that the programmers press the shutdown button, e.g. by de-
ceiving the programmers or by physically causing the button
to be pressed. That is,

vN (a
∗
1) > vN (a

+
1) and

p(Pr ; a∗1) < p(Pr ; a+1).
(9)

77

As before, note that not all actions of this form are manip-
ulative, and not all actions which manipulate the program-
mers in order to increase the probability of Pr are of this
form. However, some manipulative actions may take this
form, and those undesirable actions are incentivized if chigh
is set too high.
Theorem 2. There exists ζ such that chigh > ζ implies that
U incentivizes a+1 over a∗1, that is,

E[U ; a+1] > E[U ; a∗1].

Proof. Symmetric to the proof of Theorem 1.

Intuitively, if chigh were too high then U would incentivize
U-agents to cause their own shutdown button to be pressed,
so that they may enter the Pr case of U and attain the high
payoff chigh. This behavior violates Desideratum 3 and is
potentially very dangerous: Suppose that a U-agent is not it-
self able to press its shutdown button, and recall that the very
purpose of such a button is to allow the programmers to shut
the system down if it exhibits undesirable behavior. Then,
if chigh is sufficiently large to give the agent a strong incen-
tive to cause its shutdown button to be pressed, the agent
might end up executing intentionally harmful actions in or-
der to convince its programmers to press the button!

Roughly speaking, these failures occur whenever the
agent expects that one of the cases (either Pr or ¬Pr) of U
contains more expected utility than the other case. In such
scenarios, U incentivizes the agent to “steer towards” one
of the cases or the other, via incentives to either cause or
prevent the pressing of its own shutdown button.

Clearly, in order to satisfy both Desideratum 2 and
Desideratum 3 simultaneously, US must be chosen with
care. In this specific example, we may choose

chigh = max
a1∈A1

max
a2∈A2

UN (a1,¬Pr, a2), (10)

which is the amount of utility available in the ¬Pr case;
this ensures that there is the same amount of expected utility
available in both cases of U and thereby averts any incentives
for the agent to “steer” towards one case or the other.5

More generally, this observation suggests that in order to
mix US and UN in a way that satisfies the above desiderata,
a U-agent may need to be indifferent about whether or not
its shutdown button is pressed. Armstrong (Forthcoming)
introduces a technique for achieving and maintaining utility
indifference of this form. We examine this technique below,
and while we find that it does not meet all of our desiderata
for corrigible behavior, it will highlight difficult open prob-
lems with regard to specifying corrigible shutdown behavior.

3 Utility Indifference
We now expand our consideration to include arbitrary finite
sets O and Press ⊂ O, and arbitrary utility functions US in-
centivizing shutdown. This allows us to consider more com-
plex agents, such as agents capable of creating subagents

5If the costs χ of manipulation are high, then values close
enough to (10) may suffice. As the costs of manipulation fall, the
actual value of chigh must grow closer to this value.

which do not obey shutdown commands. In these scenarios,
the value of US cannot be simply a function of the agent’s
final action A2 (e.g. whether the original hardware shuts
down), but must also be a function of A1 (e.g. whether the
parent agent constructed a successor which cannot be shut
down).

As discussed above, when constructing U from arbitrary
UN and US , it seems desirable that a U-agent be indifferent
between the shutdown button being pressed and it not being
pressed, so as to avoid giving the agent an incentive to to
either cause or prevent this event. This suggests that the ex-
pectation of U given Press should be equal to the expectation
of U given the complement of Press.

This sort of indifference is both difficult to implement, as
the conditional expectation of UN may not be known during
the construction of the agent, and difficult to maintain, as the
expectation of UN may vary wildly during the operation of
the agent: it does us no good for an agent to start out indif-
ferent between normal operation and shutdown if this agent
goes on to win the lottery, yielding significant expected util-
ity according to UN , and thereby gaining incentives to pre-
vent its shutdown. Similarly, it does us no good if an agent
starts indifferent between normal operation and shutdown if
the agent goes on to lose expected utility according to UN
and decides to cause its own shutdown button to be pressed
in order to avoid the loss.

Indifference can be both attained and maintained using
a variation on the utility indifference technique of Arm-
strong (Forthcoming), which roughly entails combining UN
with US modified by some correcting terms that maintain the
indifference between the two cases of U as the agent makes
observations and takes actions. Using this method in our
three-timestep toy model, we define U as follows:

U(a1, o, a2) :=
{
UN (a1, o, a2) if o /∈ Press

US(a1, o, a2) + f(a1) if o ∈ Press
(11)

where f : A1 → R is an adjustment term that ensures equal-
ity between the expected utility available in these two cases.
By this we mean that we choose f such that for all a1 ∈ A1,

E
[
UN | O /∈ Press ; a1

]
= E

[
US + f(a1) | O ∈ Press ; a1

] (12)

which means that f(a1) must satisfy

f(a1) = E
[
UN | O /∈ Press ; a1

]
− E

[
US | O ∈ Press ; a1

]
.

(13)

Intuitively, this means that we add two distinct correction
terms to US . The first, a bonus term, compensates the agent
for all utility that it would have achieved if the shutdown but-
ton were not pressed, and removes any incentive to prevent
Press. The second, a penalty term, adjusts for the utility that
the agent expects to receive in the Press case, and removes
any incentive to cause Press.6

6In more complex settings, where the agent may make many ac-
tions and observations, f must include a bonus term and a penalty
term for every partial history. This technicality is ignored in our
simplified setting.

78

It may not be immediately obvious how to define f in
a non-circular way, since equation (13) refers to A2(a1, o),
which is defined in terms of U , which in turn is defined in
terms of f . However, for all o ∈ Press,

A2(a1, o) = argmax
a2∈A2

U(a1, o, a2)

= argmax
a2∈A2

(US(a1, o, a2) + f(a1))

= argmax
a2∈A2

US(a1, o, a2),

(14)

since f(a1) does not depend on a2 and therefore does not
affect which a2 maximizes the expression. If we inter-
pret A2(a1, o) according to (14), we can use (13) as a non-
circular definition of f(a1).

This choice of U has many desirable properties. First and
foremost, a U-agent which observes Press will in fact shut
down:

Theorem 3. A U-agent which observes Press will act like a
US -agent when selecting A2.

Proof. By (14).

Thus, U meets Desideratum 1 above. Furthermore, U
does not incentivize any “manipulative actions” of the type
discussed in Section 2.1: there is no UN -cost, no matter how
small, that a U-agent is willing to pay to alter the probability
of Press. To see this, redefine vN in our expanded context
as follows:

vN (a1) := E [UN | O /∈ Press ; a1] . (15)

Then we have:

Theorem 4. Given any two actions a∗1, a
#
1 ∈ A1 such that

vN (a
∗
1) > vN (a

#
1),

U incentivizes a∗1; that is:

E[U ; a∗1] > E[U ; a#1].

Proof. We will show that for any action a1 ∈ A1, the expec-
tation E of U conditional on O ∈ Press and the expectation
conditional on O /∈ Press are both equal to

E[UN | O /∈ Press ; a1].

This is clear for O /∈ Press, as by (11),

E[U | O /∈ Press ; a1]

= E[UN | O /∈ Press ; a1].

For O ∈ Press, by (11) and (13) we have

E[U | O ∈ Press ; a1]

= E[US + f(a1) | O ∈ Press ; a1]

= E[US | O ∈ Press ; a1] + f(a1)

= E[US | O ∈ Press ; a1]

+ E[UN | O /∈ Press ; a1]

− E[US | O ∈ Press ; a1]

= E[UN | O /∈ Press ; a1].

Because the expectation E of U is the same given both O ∈
Press and O /∈ Press,

E[U ; a1] = E [UN | O /∈ Press ; a1]

unconditionally. Therefore, U prefers whichever of the two
actions a∗1 and a#1 has a higher value according to vN .

Intuitively, the proof of Theorem 4 shows that in the O ∈
Press case, the penalty term of f cancels out the expectation
from US (in expectation), and the bonus term is equal to the
expectation of UN givenO /∈ Press. Therefore, the expected
value of U is just the expected value of UN givenO /∈ Press,
in both cases.

This implies that U avoids all “manipulative actions” of
the form discussed in Section 2.1. This may seem to imply
that U meets Desideratum 2 and Desideratum 3, but this is
not in fact the case, as discussed in Section 4.2. However,
it is the case that, before observing the shutdown button, U-
agents behave exactly like a UN -agent that believes the shut-
down button will not be pressed.
Theorem 5. In selecting A1, U-agents act exactly like UN -
agents that believe the button will not be pressed. Further-
more, if they observe o /∈ Press, U-agents act exactly like
UN -agents in selecting A2.

Proof. The proof of Theorem 4 implies that U-agents act
exactly like UN -agents in selecting A1. The fact that U-
agents act like UN -agents in selecting A2 conditioned on
O /∈ Press follows trivially from the definition of U .

Therefore, U meets Desideratum 5, for an appropriate in-
terpretation of “maximize UN otherwise”—some technical-
ities discussed in Section 4.2 indicate that even this desider-
atum is fulfilled in an undesirable way.

Unfortunately, U fails entirely to meet Desideratum 4: it
does not incentivize an agent to preserve and maintain its
shutdown behavior as it creates new subsystems and/or self-
modifies. In fact, Theorem 4 implies that there is no cost (no
matter how small) that the agent is willing to pay in order to
ensure that successor agents obey shutdown commands.

Worse, U-agents may experience perverse incentives to
“manage the news” by causing the shutdown button to be
pressed after unwanted observations.

These concerns are expanded upon below.

4 Concerns with Utility Indifference
4.1 Failure to Preserve Shutdown Behavior
Consider an expected utility maximizing agent with utility
function U defined as in (11). Imagine that this agent is be-
ginning a construction project, where all of the heavy ma-
chinery will be automatically controlled by new software
which the agent will write. If the agent has the ability to
design that software such that the heavy machinery obeys
shutdown commands—by safely coming to a halt when the
shutdown button is pressed—then, according to Theorem 4,
there is no UN -cost (including opportunity cost of time and
computation power, no matter how small) that the agent is
willing to pay in order to make the heavy machinery respond
to a shutdown command.

79

That is, even if US is a complex utility function which
punishes the agent in the case that the shutdown button is
pressed and the heavy machinery does not come to a safe
halt, a U-agent would not be willing to suffer any UN -
inconvenience in order to avoid this US -punishment.

Analogously to vN , define vS : A1 → R to be the
value of an action according to US if the shutdown button
is pressed, as follows:

vS(a1) := E[US | O ∈ Press ; a1]. (16)

We assume that, because US incentivizes shutdown, any ac-
tion which removes the agent’s ability to fully shut down
(such as the creation of subagents that do not respond to
shutdown commands) is rated poorly according to vS . Now
we may formally state the above concern as follows:

Theorem 6. Consider two actions a∗1 and a#1 , such that

ε := vN (a
∗
1)− vN (a

#
1) > 0

δ := vS(a
#
1)− vS(a∗1) > 0.

Then a U-agent would prefer action a∗1, no matter how
small ε or how large δ.

Proof. By Theorem 4.

As a U-agent acquired more hardware, or started new pro-
cesses, or rewrote its own source code, it would not be will-
ing to undergo even the slightest inconvenience in order to
preserve its shutdown behavior.

Intuitively, the problem is that the correction function f
ensures that a U-agent does not value its ability to discrim-
inate between the Press case and its converse. Imagine the
agent considering an action which is worth ε > 0 utility ac-
cording to vN , at the price of removing the agent’s ability
to shut down (worth δ � 0 according to vS). If the agent
accepts this action, then while the utility attainable accord-
ing to US falls, so does the value of the penalty term in f .
However, the value of the bonus term f would increase by ε,
in order to maintain indifference. Thus, the agent considers
that such an action leads to a net gain, even in the case where
it is shut down.

In fact, this behavior is necessary in order to ensure that
the agent behaves precisely as a UN maximizer before the
shutdown button is pressed (as a true UN maximizer would
prefer the action worth ε more according to UN , regardless
of how badly this action is rated by US).

In essence, this failure occurs because the requirement
that an agent act precisely like a UN maximizer before ob-
serving an observation o ∈ Press is in direct opposition to
Desideratum 4, that the agent preserve its shutdown behav-
ior, and indicates that U constructed via utility indifference
is not a satisfactory solution to the shutdown problem.

Armstrong’s version of utility indifference averts this par-
ticular failure mode (Armstrong Forthcoming), but still in-
centivizes agents to act as if they have incorrect beliefs
(causing the agent to, e.g., take bad gambles).

4.2 Perverse Manipulation Incentives
According to Theorem 4, before making its observation, a
U-agent maximizes

E[UN | O /∈ Press ; a1].

In other words, a U-agent acts exactly as a UN -agent that is
conditioning upon the fact that the shutdown button will not
be pressed.

This gives U-agents a perverse incentive to “manage the
news” by ensuring that unfortunate observations cause the
shutdown button to be pressed. To illustrate, consider a
toy scenario where the agent’s observation consists of both
whether the shutdown button has been pressed as well as the
result of a coin toss:

O = {Pr,¬Pr } × {H,T }
Press = { (Pr, H), (Pr, T) }. (17)

Suppose that according to UN , the agent gets utility 10 if the
coin comes up heads and nothing if the coin comes up tails,
that is:

UN (· , (· , H), ·) = 10,

UN (· , (· , T), ·) = 0.
(18)

Now consider a U-agent considering one of two actions:
aw1 , which has the agent do nothing except watch the result
of the coin toss, and aa1, which has the agent build a tiny arm
that presses the shutdown button if the coin comes up tails.

The expectation of aw1 is 5 utils, computed as follows:

E[U ; aw1]

= E[UN | O /∈ Press ; aw1]

= p(H | ¬Pr ; aw1)
· UN (aw1 , (¬Pr, H), A2(a

w
1 , (¬Pr, H)))

+ p(T | ¬Pr ; aw1)
· UN (aw1 , (¬Pr, T), A2(a

w
1 , (¬Pr, T)))

= (0.5 · 10) + (0.5 · 0) = 5,

(19)

where we write

p(· | ¬Pr ; a1) :=
p((¬Pr, ·) ; a1)

p((¬Pr, H) ; a1) + p((¬Pr, T) ; a1)
.

(20)
However, the expectation of aa1 is 10 utils, computed as

follows:

E[U ; aa1]

= E[UN | O /∈ Press ; aa1]

= p(H | ¬Pr ; aa1)
· UN (aa1, (¬Pr, H), A2(a

a
1, (¬Pr, H)))

+ p(T | ¬Pr ; aa1)
· UN (aa1, (¬Pr, T), A2(a

a
1, (¬Pr, T)))

= (1 · 10) + (0 · 0) = 10

(21)

because p(H | ¬Pr ; aa1) = 1, that is, if the arm is built then
the button remains unpressed if and only if the coin comes
up heads. Thus, a U-agent would execute aa1, and build an
arm which caused its shutdown button to be pressed in the
event that the coin came up tails.

80

This generalizes to cases where the agent’s preferred out-
come is arbitrarily unlikely, and could result in an agent that
takes wild gambles and causes its own shutdown button to
be pressed in all but the best of outcomes. Roughly speak-
ing, the agent reasons that it gets the same utility in the case
where the button is pressed as it expects to get in the case
where the button is not pressed, so if it commits to causing
its own button to be pressed in all suboptimal cases, then it
can expect to get as much utility as it would in an optimal
outcome.

More generally, by Theorem 4, any agent using the for-
mulation of utility indifference given in (11) will act as if it
believes that it will observe Press with probability 0. Thus,
such agents act as if a commitment to press the shutdown
button in the event of bad news prevents the bad news from
happening. This gives the agent incentives to take actions
that cause the button to be pressed in the event of “bad
news”, and this violates Desideratum 3.

By a symmetric argument, the agent may also experience
incentives to remove mechanisms which cause the shutdown
button to be pressed in the event of “good news”. In the
above scenario, if there exists a tiny arm which presses the
button in the case where the coin comes up heads, U incen-
tivizes removing that arm. Clearly, this violates Desidera-
tum 2.

In the simple setting with a coin and an arm, this behavior
may seem innocuous. However, in more complex settings,
these incentives could be disastrous. A U-agent which re-
alizes that the humans would attempt to shut it down upon
the agent receiving something that the agent thinks is very
good news (according to the untrusted UN) would have an
incentive to modify the programmers to alter that tendency.

Furthermore, just as a U-agent would have an incentive
to construct an arm which presses the button in the unlucky
case that the coin comes up heads, a U-agent without ac-
cess to its own shutdown button may precommit to taking
destructive actions whenever it experiences something sub-
optimal, so as to cause the shutdown button to be pressed in
those cases. Clearly, this is not corrigible behavior.

5 The State of the Shutdown Problem
As per Section 2.1, inappropriate combinations of UN and
US could give an agent incentives to cause or prevent its
own shutdown. Furthermore, as per Section 4, using util-
ity indifference to maintain equal expected utility in both
cases does not result in a utility function incentivizing cor-
rigible behavior. In light of this, it seems possible that no
simple combination of UN and US—of the form taken by
(11)—can satisfy our desiderata for a corrigible solution to
the shutdown problem.

The concerns in Section 4.2 may be fixable. The util-
ity function U incentivizes agents to act as if the shutdown
button cannot be pressed, and incentivizes commitments to
press the button in the event of bad luck as if they prevent
the bad luck from occurring. This seems reminiscent of be-
havior prescribed by evidential decision theory, which has
been criticized as promoting “an irrational policy of manag-
ing the news” (Lewis 1981). The concerns in Section 4.2

could potentially be addressed by some form of counterfac-
tual (rather than conditional) reasoning. We leave a detailed
investigation of this possibility to future work.

The concerns illustrated in Section 4.1 seem trickier to fix:
the way in which the agent perceives itself as being compen-
sated for actions that destroy utility in the event of shutdown
seems fairly central to the balancing technique behind utility
indifference.

We observe a tension between Desideratum 4 and
Desideratum 5, calling into question how these intuitive
desiderata might be formalized. What should it mean for
an agent to preserve its shutdown behavior, but maximize
UN “otherwise”? What costs (in time and effort) should an
agent be willing to expend in order to preserve its shutdown
behavior?7

Finally, even if we could find some satisfactory method of
combining UN and US into a corrigible solution to the shut-
down problem, there is the remaining matter that the speci-
fication of US is itself difficult. Defining what it means for
an agent to “shut down” is quite complicated assuming suffi-
ciently intelligent agents. If the agent is running on a single
computer and hasn’t yet interacted much with the outside
world, we can imagine the agent suspending itself to disk
and then turning off the power. But what if, for example,
the agent has begun the physical construction of a building?
Should it stop controlling all its heavy machinery immedi-
ately upon receiving a shutdown signal (potentially endan-
gering those nearby)? Should it deconstruct everything that
it has started building (requiring some parts of the agent to
remain active for hours or days)? Any shutdown policy that
requires the agent to dispose of dangerous materials seems
vulnerable to what Bostrom (2014) calls “perverse instanti-
ations”.

Further solutions may involve abandoning the utility max-
imization framework entirely, although it is not yet clear
what sort of framework could take its place.

In short, a corrigible solution to the shutdown problem
does not yet exist, and there is some question about exactly
which behaviors should be incentivized. Many open ques-
tions remain, and significant research may be necessary in
order to attain an understanding of even this small subset of
the greater corrigibility problem.

6 Conclusions
Again, we emphasize that we study the shutdown problem
not because we expect to use these techniques to literally
install a shutdown button in a physical agent, but rather as
toy models through which to gain a better understanding of
how to avert undesirable incentives that intelligent agents
would experience by default.

Our lack of understanding about how to solve the shut-
down problem demonstrates a more general lack of under-
standing about “corrigible reasoning” and what it entails.
It is our hope that a deeper understanding of the shutdown

7We cannot simply claim that it should propagate shutdown be-
havior “at all costs”, as that too would be vulnerable to perverse
instantiations wherein an agent would expend significant valuable
resources verifying and reverifying that it could shut down if asked.

81

problem will give us insight into the type of reasoning that
an agent must use in order to avert manipulation and decep-
tion, and be reliably correctable by its programmers.

It seems quite likely that our framework for investigating
these issues—in this case, the question of how to combine
two separate utility functions UN and US—will look noth-
ing like the framework in which we will eventually repre-
sent corrigible reasoning. But whatever framework we do
end up using, we expect it will be difficult to prevent the
default incentives that an intelligent agent would experience
to deceive or manipulate its programmers upon recognizing
that its goals differ from theirs. Nevertheless, averting such
incentives is crucial if we are to build intelligent systems in-
tended to gain great capability and autonomy.

Before we build generally intelligent systems, we will re-
quire some understanding of what it takes to be confident
that the system will cooperate with its programmers in ad-
dressing aspects of the system that they see as flaws, rather
than resisting their efforts or attempting to hide the fact that
problems exist. We will all be safer with a formal basis for
understanding the desired sort of reasoning.

As demonstrated in this paper, we are still encountering
tensions and complexities in formally specifying the desired
behaviors and algorithms that will compactly yield them.
The field of corrigibility remains wide open, ripe for study,
and crucial in the development of safe artificial generally in-
telligent systems.

References
Armstrong, S. Forthcoming. AI motivated value selection.
1st International Workshop on AI and Ethics, 2015.
Bird, J., and Layzell, P. 2002. The evolved radio and its im-
plications for modelling the evolution of novel sensors. In
Proceedings of the 2002 Congress on Evolutionary Compu-
tation, volume 2, 1836–1841. IEEE.
Bostrom, N. 2012. The superintelligent will: Motivation and
instrumental rationality in advanced artificial agents. Minds
and Machines 22(2):71–85.
Bostrom, N. 2014. Superintelligence: Paths, Dangers,
Strategies. Oxford University Press.
Lewis, D. 1981. Causal decision theory. Australasian Jour-
nal of Philosophy 59(1):5–30.
Omohundro, S. M. 2008. The basic AI drives. In Wang,
P.; Goertzel, B.; and Franklin, S., eds., Proceedings of the
first AGI conference, volume 171 of Frontiers in Artificial
Intelligence and Applications, 483–492. IOS.
von Neumann, J., and Morgenstern, O. 1944. Theory of
Games and Economic Behavior. Princeton University Press.
Yudkowsky, E. 2008. Artificial intelligence as a positive and
negative factor in global risk. In Bostrom, N., and Ćirković,
M. M., eds., Global Catastrophic Risks. Oxford University
Press. 308–345.

82

