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Abstract

This paper presents a novel approach to modeling the
dynamics of human movements with a grid-based rep-
resentation. For each grid cell, we formulate the lo-
cal dynamics using a variant of the left-to-right HMM,
and thus explicitly model the exiting direction from
the current cell. The dependency of this process on
the entry direction is captured by employing the Input-
Output HMM (IOHMM). On a higher level, we intro-
duce the place where the whole trajectory originated
into the IOHMM framework forming a hierarchical in-
put structure. Therefore, we manage to capture both lo-
cal spatial-temporal correlations and the long-term de-
pendency on faraway initiating events, thus enabling the
developed model to incorporate more information and
to generate more informative predictions of future tra-
jectories. The experimental results in an office corridor
environment verify the capabilities of our method.

Introduction
For robots engaged in long-term operations in real world
scenarios, one of the major challenges is to learn a model
of the environment with dynamic objects, such as people.
In modeling dynamics, many methods employ the occu-
pancy grid map representation (Moravec and Elfes 1985) for
mobile robots (Saarinen, Andreasson, and Lilienthal 2012;
Saarinen et al. 2013; Arbuckle, Howard, and Matari 2004;
Meyer-Delius, Beinhofer, and Burgard 2012). In the work
(Meyer-Delius, Beinhofer, and Burgard 2012), the occu-
pancy grid map is generalized and the static environment
assumption is relaxed by introducing the Hidden Markov
Model (HMM). The developed algorithm exhibits excel-
lent capability to distinguish between high dynamic (such
as people), semi-dynamic (such as chairs) and static objects.
However, the work assumes that the dynamics in the envi-
ronment is due to a stationary process, relying on the on-
line training procedure to handle non-stationary dynamics.
The recent work (Wang et al. 2014), which is based on the
Input-Output HMM (IOHMM), is capable of modeling the
inhomogeneous motion patterns of dynamic objects and re-
sponding to high dynamics without relying on online learn-
ing (Cappe 2011) or recency-weighted (Biber and Duckett
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2009) techniques.
We make the observation that the immediate moving ten-

dency of people in human-living environments is dependent
on both the manner of entering the current position and the
faraway initiating event. Locally, the occurrence of entering
events in a neighboring region contains valuable informa-
tion about possible future events in the region of interest.
This information was exploited in (Wang et al. 2014), but by
way of the occupancy of cells rather than explicitly model-
ing the tendency of moving. On a larger scale, people typi-
cally move under environmental constraints. For example in
an office corridor environment, typical human movements
start and end in functional places, termed as ‘resting places’
(Bennewitz et al. 2005), for example offices, kitchens and
bathrooms. The events in high-level human behaviors, such
as leaving a resting place, obviously have significant influ-
ence on the local movements in a specific location. We will
show that the long-term dependency of the local statistical
process on remote events can be captured due to the struc-
tured human behaviors.

In this paper we propose a method to model the dynam-
ics of human movements by capturing both local spatial-
temporal correlations and implicit long-term dependencies
with a grid-based representation of the environment. On the
local level, for each cell we employ a variant of the left-
to-right HMM to directly model the moving tendency to a
neighbor cell. The correlation between exiting and entering
the current cell is formulated by utilizing the IOHMM (Ben-
gio and Frasconi 1996; Bengio 1999). On the global level,
we introduce faraway initiating events, such as the resting
place where the trajectory starts, into the hierarchical input
of the IOHMM, and thus provide high-level guidance to the
local process. The two main contributions of our work are:

Firstly, we present a method that is capable of captur-
ing local spatial-temporal correlations in dynamics of hu-
man movements. The developed model, which is based on
the inhomogeneous IOHMM, provides rich dynamics to ac-
commodate the ever-changing nature of the motion pattern
of dynamic objects, and thus being capable of capturing lo-
cal correlations more efficiently.

Secondly, we provide a way of incorporating long-term
dependency on faraway initiating events into the above
IOHMMs and thus enable these processes collectively to
generate more instructive and informative prediction of fu-
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ture moving trajectories.
Our method works by learning cell transitions dependent

on both the adjacent grid cell that was occupied just before
the currently occupied cell was filled (i.e. the local direction)
and the high-level starting place of the trajectory (i.e. the
global source).

Related Work
In the study of dynamics in the environment, many meth-
ods are based on an underlying static representation, but ex-
tending it into a timescale framework or applying recency-
weighted techniques. Arbuckle et al. (Arbuckle, Howard,
and Matari 2004) extended the occupancy grid map by main-
taining multiple occupancy representations corresponding to
various timescales. With the resulting temporal occupancy
grid (TOG), the dynamics of each cell is classified by the oc-
cupancy values over different timescales. Biber et al. (Biber
and Duckett 2009) developed a multiple timescale map rep-
resentation using sample-based techniques. The map of each
layer is constructed from a sample set of sensor data used
as primitives. Each set is updated at a varied learning rate
to adapt to different extent of dynamics in the environment
according to the timescale. Saarinen et al. (Saarinen et al.
2013) proposed a 3D modeling approach combining the nor-
mal distributions transform (NDT) and the occupancy grid
map. The method has the ability of adapting to a dynamic
environment with a recency-weighted strategy. Impressive
results are provided for long-term applications in a large
scale dynamic environment in a milk production plant.

The dynamic occupancy grid (Meyer-Delius, Beinhofer,
and Burgard 2012), which utilizes a HMM with a two-state
Markov chain to model the occupancy of a cell, successfully
released the assumption of static environments for the tra-
ditional occupancy grid maps. The dynamics of each cell is
explicitly represented by the transition probabilities. How-
ever, the method is inherently homogeneous averaging dy-
namics in a certain timescale. The online training procedure
provides certain adaptive capabilities from the recent ten-
dency. In (Saarinen, Andreasson, and Lilienthal 2012), each
cell is modeled as an independent two-state Markov chain,
and the transition probabilities are modeled as two Poisson
processes and learned in an online manner, approximated by
the frequency of ‘exit’ and ‘enter’ events.

Common to the above methods based on occupancy grids
is that each individual cell is modeled independently. In
the Conditional Transition Maps developed by Kucner et
al. (Kucner et al. 2013), the cross-cell spatial relation is
modeled as a probability distribution of an object leaving
to a neighbor cell conditioned on the entry direction. Cross-
correlation is used to find entry and exit events and the value
of conditional transition parameters are learned by count-
ing these events. In the recent work (Wang et al. 2014), the
IOHMM is employed to model the occupancy of each cell.
The observations of neighboring cells are used as input to the
IOHMM of the current cell, and hence local spatial correla-
tions are captured. The transition parameters are estimated
by a training procedure using generalized EM within the
IOHMM framework. However both these two methods only
capture local correlations, while in the work we propose in

this paper both local spatial-temporal correlations and long-
term dependencies are captured, resulting in a more infor-
mative model.

Modeling Cell-level Correlation Using
IOHMM with Left-to-right Structure

Similar to the occupancy grid map representation, we di-
vide the overall map into grid cells in the two dimensional
space. Accordingly, the original data sequence is discretized
in time domain such that the observed human moves only to
a neighbor cell in one time step. The dynamics of the human
movement is studied on the cell level.

The continuous movement of an object can be considered
as the combination of a sequence of one-step movements,
which are defined as moving from the current cell to one of
the neighbor cells within one or more time steps subjective
to temporal and spatial discretization. We make the observa-
tion that where to go in the next time step is highly related
to the manner that the human entered the current cell. This
indicates the existence of correlations in the motion across
three cells, for example the motion in the order of L–C–R,
as indicated by the dashed arrowed line in Figure 1.

L C

D

R

U

Figure 1: An example of one-step movement in a corridor
environment, moving out of the current cell C toR, with the
entering cell being L, as indicated by the dashed arrowed
line. The solid arrowed lines indicate possible moving di-
rections from the current cell C.

We model the tendency of the object moving from the cur-
rent cell to a neighbor cell by a non-ergodic HMM, and the
structure facilitates capturing the spatial-temporal correla-
tion between the two cells in a movement. The dependency
on how the object entered the current cell is formulated
by using the Input-Output HMM and introducing the enter-
ing direction as the input, covering the correlations across
the three cells involved. Details of these two aspects of our
model will be described in the following two subsections.

Left-to-right HMM
Based on the above analysis, for each cell, we model the
one-step movement by a variant of the left-to-right HMM
with five states. Different from normal left-to-right HMMs,
our model has four absorbing states, instead of just one.
Abusing the term ‘left-to-right’, we refer to the structure of
our model as left-to-right in the rest of this paper for con-
ciseness.

A small grid map shown in Figure 1 is attached to each
cell in which the current cell is denoted asC. The process for
an individual cell starts from the object entering the current
cell. In each of the following time steps, the object can either
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stay in the current cell or move in one of the four directions
(left, right, up, down) as shown in Figure 1, and the pro-
cess ends when the object reaches any of the neighbor cells.
The latent variable xt represents the location of the object
in the five cells involved in the current one-step movement
at time step t, and it can take five states {C,L,R,U,D},
corresponding to the five cells (center, left, right, up, down).
Let zt be a random variable that represents the observation
of the object in a cell at time step t, and it can take five states
{C,L,R,U,D}. Due to the relatively large grid size we ap-
plied (0.3m in the experiments) and the temporal and spatial
discretization in generating training sequences, the four di-
rections are sufficient to describe the one-step movement of
a human. When the grid size is small, the chances of mov-
ing directly into the diagonal cells increase and the states
corresponding to the cells in the diagonal direction need to
be added.

The process under consideration is only one move from
the current cell, and thus the states {L,R,U,D} are spec-
ified as ‘absorbing states’. Let Alk represent the state tran-
sition probability from the lth state to the kth state, where
l, k = 1, . . . , 5. Figure 2(a) shows the transition diagram.
The corresponding transition matrix is sparse in that Alk =
0, (l > k) and Alk = 0, (l < k, l > 1). The ones on the
main diagonal, Alk = 1, (l = k, l > 1), indicate that the
corresponding states {L,R,U,D} are absorbing states.
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Figure 2: Two aspects of our model of the one-step move-
ment. (a) Transition diagram of the variant of the left-to-
right HMM. (b) Structure of the IOHMM.

Input-Output HMM
As shown in Figure 1, the direction from which the object
entered the current cell has a strong influence on the man-
ner in which it moves out. Hence the transition probabilities
in our model are also dependent on the location from which
it entered the current cell in form of p(xt+1|xt, Ut+1), in
which Ut+1 represents the observation of the location of the
object in neighbor cells surrounding the current cell at time
step t − 1. Figure 2(b) shows our formulation of the pro-
cess using the Input-Output HMM in which the transition
probability is conditioned on the input Ut+1. For the cur-
rent IOHMM the input Ut+1 is from the observations of the
IOHMMs in neighbor cells. Close examination shows that
the IOHMMs in different cells are independent conditioned
on the observation set.

By using the IOHMM, the local spatial-temporal corre-
lations across the three cells in the one-step movement are
captured. More correlations can be captured by adding more

observations of the location of the object further away from
the current cell at earlier time steps into Ut+1, but at the cost
of increased complexity. When the object stays in the cur-
rent cell for more than one time step, the elements in Ut+1

become all zero. The correlation with the entry direction is
still maintained due to the bias items of equation (1) in the
next subsection. The correlation is only blurred when ob-
jects staying in the current cell come from different direc-
tions. However this is addressed by introducing the starting
place into the input as described in the next section.

In the process of the one-step movement that is centered in
the current cell, at time step t, we connect Ut+1, which rep-
resents the location observation at time step t− 1, and zt+1

in the form of an input-output pair in the IOHMM. However,
this involves no efforts of tracking any object. The model is
purely based on the observation of events in the neighbor-
hood of the current cell at successive time steps.

Mapping Input to Transition Probabilities Using
Neural Network
Each transition probability is a conditional distribution,
through which the probability distribution of xt+1 is depen-
dent on xt and the input Ut+1 in the form of At+1,lk =
p(xt+1,k|xt,l, Ut+1), in which xt+1,k denotes the latent vari-
able at time step t+ 1 being in the kth state.

Due to the relatively large grid size (0.3m as used in the
experiments), the input Ut+1 represents the observation of
the object location in four neighbor cells (left, right, up,
down) at time step t−1. The observation is coded by four bi-
nary variables, zn1t−1, z

n2
t−1, z

n3
t−1, z

n4
t−1. The input at time step

t + 1 is Ut+1 = [zn1t−1, z
n2
t−1, z

n3
t−1, z

n4
t−1], where znit−1 rep-

resents the observation of object in the ith neighbor cell at
time step t − 1. When the grid size is small then the input
should include all eight neighbor cells.

The transition probabilities are formulated using a two
layer neural network, which is defined as follows (Bishop
2006). For clarity purpose, the time subscript is omitted in
the rest of this subsection and the input Ut+1 is denoted as
Ut+1 = [u1t+1, u

2
t+1, u

3
t+1, u

4
t+1].

First, four linear combinations of the inputs are con-
structed in the form

aj =
4∑

i=1

ρ
(1)
ji u

i + ρ
(1)
j0 , (1)

where j = 1, . . . , 4, and the superscript (1) indicates the
first layer of the network. The parameters ρ(1)ji and ρ(1)j0 are
referred to as weights and biases respectively.

Then each of aj , known as activation, is transformed by
using a sigmoidal function bj = h(aj) to obtain the hidden
units, bj , where j = 1, . . . , 4.

Lastly the hidden units are linearly combined to obtain the
transition probabilities A1k =

∑4
j=1 ρ

(2)
kj bj + ρ

(2)
k0 , where

k = 1, . . . , 5. The weights and biases are collectively de-
noted as ρ = [ρ

(1)
ji , ρ

(1)
j0 , ρ

(2)
kj , ρ

(2)
k0 ], where i, j = 1, . . . , 4,

k = 1, . . . , 5.
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Training Procedure
As the IOHMMs in different cells are independent condi-
tioned on the observation set, the training for an individual
IOHMM can be performed separately. We adapt the scheme
in (Bengio and Frasconi 1996) with the generalized EM
algorithm (Dempster, Laird, and Rubin 1977) to the spe-
cial needs in training our model. Due to the special left-to-
right structure of the HMM that we exploit, a single long-
observation sequence is not suitable for training, because
once any of the absorbing states is reached, the rest of the se-
quence provides no further information. We generate train-
ing data for each cell in the form of a set of short-observation
sequences each starting from the current cell and ending in
one of its neighbor cells. The procedure for training general
HMMs is also modified as follows to handle the left-to-right
structure (Levinson, Rabiner, and Sondhi 1983).

• As shown by the transition diagram in Figure 2(a), the
process always starts from the first state, C, termed as
the starting state, and hence the prior is set as π =
(1, 0, 0, 0, 0) and not reestimated.

• At the beginning of the forward-backward scheme (Ra-
biner 1989), set the transition probabilities Alk = 0, (l >
k) and Alk = 0, (l < k, l > 1).

• The probability β(xt) in the forward-backward scheme
is defined as β(xt) = p(zt+1, . . . , zT |xt, Ut+1, . . . , UT ),
(t = 1, . . . , T − 1), where T is the total number of time
steps in the current training sequence (Bengio and Fras-
coni 1996). The initial condition β(xT ) is set as

β(xT ) =

{
1 if xT ∈ {L,R,U,D}
0 if xT ∈ {C}. (2)

Suppose the training data for the current cell are a set
of P short-observation sequences, {(zTp

1 (p), U
Tp

1 (p)); p =
1, . . . , P}. Each sequence consists of all observations
z
Tp

1 (p) = {z1(p), . . . , zTp(p)} and inputs U
Tp

1 (p) =
{U1(p), . . . , UTp(p)} of the corresponding one-step move-
ment. In the following the parameter p is omitted.

For each short-observation sequence, let γ(xt) denote
the marginal posterior distribution of the latent variable
xt, γ(xt) = p(xt|zT1 , UT

1 , Θ̂), and ξ(xt−1, xt) denote the
joint posterior distribution of two successive latent variables,
ξ(xt−1, xt) = p(xt−1, xt|zT1 , UT

1 , Θ̂), where Θ̂ is the latest
estimate of Θ representing all model parameters. The expec-
tation of the observation likelihood can be written as

Q(Θ, Θ̂) =
∑T

t=2

∑K
j=1

∑K
k=1 ξ(xt−1,j , xt,k)lnAjk

+
∑T

t=1

∑K
k=1 γ(xt,k)lnp(zt|xt,k),

(3)
where p(zt|xt,k) is the observation model andK is the num-
ber of states that the latent variable can take and in our case is
5. During the process of training the model parameters using
the generalized EM algorithm, the sum of the expectation of
the likelihood in equation (3) for all the P short-observation
sequences of the current cell needs to be maximized with
respect to Θ. In our method, the transition probabilities are

parameterized through multiple layers of neural units, which
has the effect of making the learning process smooth, as ver-
ified in (Bengio and Frasconi 1996).

Modeling Long-term Dependency by
Hierarchical Structure with Starting Place

In this section we model how the local moving tendency
from the current cell is dependent on initiating events hap-
pening many cells away at an earlier time by capturing the
implicit long-term statistical correlations. The connection
between higher level occurrences and cell-level movements
is explored by introducing the concept of a starting place
into the IOHMM forming a hierarchical input structure.

From the macroscopic point view, human living environ-
ments are structural and functional. For example, in an of-
fice building, a corridor connects many rooms which can
be offices, kitchens or bathrooms. These rooms, where peo-
ple stop and stay, are typical examples of the resting place.
The functional characteristics of the rooms decide about the
macroscopic behavior of people in that the resting places
are the origin and destination of human activities in the en-
vironment. Therefore, these topological behaviors from one
resting place to another globally characterize detailed cell-
level movements. It is the resting place where the movement
starts that carries valuable information of long-term depen-
dency of the local HMM process in a particular cell under
concern, which we refer to as the starting place.

IOHMM with Hierarchical Input Structure
The input Ut+1 of our IOHMM based model is local in the
sense that it varies for each short-observation sequence and
that it varies in the same HMM process at different time
steps. On the other hand, the starting place is used as a global
input such that its value remains the same for all short-
observation sequences that originate from that starting place.
Figure 3 illustrates the hierarchical input structure involving
the starting place, which is denoted as xs, and Ut+1.

U
t+1

x
t+1

x
t

z
t+1

z
t

xs

U
t

Figure 3: Our IOHMM based model with the hierarchical
input structure.

In a similar manner to construct the local input Ut+1, the
global input, xs, is coded by a number of binary variables
corresponding to the set of selected starting places in the
environment. With the starting place, the transition proba-
bilities become p(xt+1|xt, Ut+1, x

s, ρ).

Training with Starting Place
With the additional global input, xs, the mapping from in-
put to transition probabilities in our IOHMM based model
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needs to be modified. We introduce a switching function
gj(x

s, ρ
(1)
j ) into the mapping process, where j is the index

of the starting place and ρ(1)j represents the weight for the
corresponding starting place. By multiplying this function
to the first layer variables of the neural network, the training
data are grouped according to the starting place resulting in
a number of models each for a starting place.

Suppose there are N selected starting places in the en-
vironment and they are coded by the members in the set
{xsj ; j = 1, . . . , N}. The first step of the neural network
in equation (1) is changed to

aj = (
4∑

i=1

ρ
(1)
ji u

i + ρ
(1)
j0 )gj(x

s, ρ
(1)
j ), (4)

and the switching function gj(.) is defined as

gj(x
s, ρ

(1)
j ) =

{
ρ
(1)
j if xs = xsj

0 otherwise
(5)

where j = 1, . . . , N . The number of aj in the neural net-
work is decided by the number of selected starting places.
The function gj(.) acts as a switch in that if and only if
xs=xsj then aj results in a non-zero value. Thus the train-
ing data are divided into N groups according to the starting
place, and each ρ(1)j only applies to the corresponding group.
However, it is worth noting that all other parameters of the
neural network are shared by all training sequences.

The training procedure that is described in the previous
section remains unchanged in all other aspects.

Experiments
The goal of these experiments is to verify the capability of
the method we propose to capture the spatial-temporal dy-
namics of human movements. Considering the size of a hu-
man body, we choose a coarse representation of the envi-
ronment by setting the grid size as 0.3 × 0.3m in our map.
The experimental results show that this representation is suf-
ficient for studying the motion patterns of people in our ex-
perimental environment - a corridor in an office building.

We used a SICK LMS200 laser range-finder for collecting
2D data at approximately 37Hz. We set up the laser range-
finder at one end of the corridor and started data logging at
10:04. The data collection process went on till 20:23, corre-
sponding to 10 hours and 19 minutes of laser scans.

The endpoint model (Thrun, Burgard, and Fox 2006) is
applied to generate occupancy observations for each cell
in the map. With temporal and spatial discretization, we
transform the original occupancy observation sequences
into events of entering and occupying a grid cell. Then
a set of short-observation sequences each in the form of
(zT1 , U

T
1 , x

s) are generated. Tracking of the starting place
for each sequence is performed by analyzing the whole tra-
jectory. We noticed in the experiments that the training pro-
cess is significantly sped up due to the extraction of interest-
ing events, especially considering that those events happen
in a comparatively occasional manner during the prolonged
data collection period.

Training Results
The macroscopic models from our training results produced
in an offline manner using the collected data, which are over-
laid with the floor plan of the building, are shown in Fig-
ure 4. The model from training without the starting place is
shown in Figure 4(a). The training with four starting places
(two offices, the kitchen and the bathroom) results in four
models each for a starting place and Figure 4(b) shows the
one for the kitchen. The arrows indicate moving tendency
from the cell where the arrow starts to the cell where it points
to. In our current implementation, no training is carried out
for cells on the edge of the map, as they have one or two
neighbor cells missing, hence no arrows in them.
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Figure 4: Resulting models from (a) training without start-
ing places, and (b) training with four starting places (the one
with the kitchen being the starting place is shown), which
are overlaid with the floor plan of the building. The length of
arrows is proportional to the value of the corresponding tran-
sition probability that is calculated from the learned model
parameters in ρ and very weak transitions are not displayed.
The big black dot at the bottom indicates the sensor location.

As shown by Figure 4(a), in most cells, arrows along the
corridor are longer than sideways ones, which is in accor-
dance with the way people mostly walk in a corridor. On the
other hand, sideways arrows do appear in significant magni-
tude in areas right outside the office, the elevator, the kitchen
and the doorway to the bathroom where people walk side-
ways entering or leaving those places. Figure 4(b) clearly
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illustrates the tendency of people who exit from the kitchen
heading to the bathroom, nearby offices, or the two ends of
the corridor on the top and bottom.

Prediction of Future Trajectories
The overall transition model for the entire map, which is rep-
resented by the collection of parameters in ρ for all cells,
reflects the object moving trend in the environment. In this
section, we show that knowledge of this model enables in-
ferring future trajectories based on two initial observations.

We assume that two consecutive initial observations of the
object in two adjacent cells are available and use this as the
prior of the object location. The variables representing loca-
tions of the object at each time step form a directed graph
with the next location variable conditioned on the previous
one. We use the ancestral sampling approach (Bishop 2006)
to sample the underlining joint distribution and generate the
trajectory. The transition probabilities that are needed for the
sampling are calculated from the learned model as illustrated
in Figure 4. In this process, as observations of the object lo-
cation along the trajectory are not available, we use the pre-
diction of occupancy of the neighbor cells as input to our
IOHMM based model of the current cell for calculating the
transition probabilities.

In the experiment, we specify the two consecutive initial
observations in two adjacent cells right outside the kitchen
and repeat sampling the joint distribution 1000 times. At
each cell, the occupancy events are summed up for all sam-
ples. Figures 5(a) and 5(b) show the predicted trajectories
using the learned models shown in 4(a) and 4(b) respec-
tively. In both predictions, the tendency of movement is in
accordance with how people move in the corridor. For ex-
ample, a person walking out of the kitchen tends to go to the
bathroom, some offices or the exit at the bottom. The moving
tendency in Figure 5(a) is comparatively spread out and cer-
tain extent of randomness can be seen as some samples illus-
trate behaviors such as circling. This is because the modeled
dynamics in each cell is a summary of human movements
originating from all resting places. In contrast, the moving
tendency in Figure 5(b) is more focused and the prediction
of the future trajectory is more informative due to the guid-
ance of the starting place by way of long-term dependencies.

Conclusions
In this paper we proposed a novel method for modeling the
dynamics of human movements in the environment with a
grid-based representation. For each grid cell, we employ a
variant of the left-to-right HMM to explicitly model the lo-
cal moving tendency from the current cell to a neighbor-
ing cell. By exploiting the IOHMM formulation, we make
the transition probabilities adaptive to the entering direction,
capturing the spatial-temporal correlations across the three
cells involved. On the higher level of the input hierarchy of
the IOHMM, we introduce the starting place, capturing the
long-term dependency of local activities on faraway initiat-
ing events.

Our approach has two advantages over the state-of-the-
art. Firstly, being an inhomogeneous model based on the
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Figure 5: Results of prediction with the initial observations
being right outside the kitchen using the learned models
shown in Figure 4 from (a) training without the starting
place, and (b) training with four starting places (the model
for the kitchen is used). The number of occupancy events for
each cell is written in the cell and indicated by the darkness
of the cell (the darker the more occupancy events).

IOHMM, it provides rich expressive power to accommo-
date the inherently inhomogeneous nature of the dynamics
of moving objects, and thus capture local spatial-temporal
correlations more efficiently. Secondly, for each local pro-
cess the long-term dependency on faraway initiating events
is modeled by introducing the starting place and thus collec-
tively enabling more instructive and informative prediction
of future trajectories.

Our method is based on regularities in people’s move-
ments in human-living environments. For example, in an of-
fice building, people normally walk straight along the corri-
dor and only turn sideways in cases of entering rooms such
as a kitchen or an office. On the higher level, people exit-
ing a certain room tend to visit some rooms more often than
others, subjective to the structural and functional design of
the environment. The method we propose seamlessly incor-
porates information from the cell and topology levels into
local IOHMM processes for all cells in the map, which then
collectively are able to produce predictions of local imme-
diate movements and global long-distance trajectories. This
capability of capturing the ‘regular tracks’ and utilizing the
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information contained in the ‘habitual’ behavior is obviously
valuable in various robotic tasks such as long-term mapping
and/or localization with dynamic objects and navigation in-
volving avoiding or interacting with people.
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