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Abstract
Voting among different agents is a powerful tool in
problem solving, and it has been widely applied to im-
prove the performance in machine learning. However,
the potential of voting has been explored only in im-
proving the ability of finding the correct answer to a
complex problem. In this paper we present a novel ben-
efit in voting, that has not been observed before: we
show that we can use the voting patterns to assess the
performance of a team and predict their final outcome.
This prediction can be executed at any moment during
problem-solving and it is completely domain indepen-
dent. We present a preliminary theoretical explanation
of why our prediction method works, where we show
that the accuracy is better for diverse teams composed
by different agents than for uniform teams made of
copies of the same agent. We also perform experiments
in the Computer Go domain, where we show that we
can obtain a high accuracy in predicting the final out-
come of the games. We analyze the prediction accuracy
for 3 different teams, and we show that the prediction
works significantly better for a diverse team. Since our
approach is completely domain independent, it can be
easily applied to a variety of domains, such as the video
games in the Arcade Learning Environment.

Introduction
It is well known that aggregating the opinions of different
agents can lead to a great performance when solving com-
plex problems (Marcolino et al. 2014). In particular, voting
has been extensively used to improve the performance in
machine learning (Polikar 2012). Besides, it is an aggrega-
tion technique that does not depend on any domain, being
very suited for general competence. However, a team of vot-
ing agents will not always be successful in problem-solving.
It is fundamental, therefore, to be able to quickly assess the
performance of teams, so that a system operator can take
actions to recover the situation in time.

Current works in the multi-agent system literature fo-
cus on identifying faulty or erroneous behavior (Khalastchi,
Kalech, and Rokach 2014; Lindner and Agmon 2014; Tara-
pore et al. 2013; Bulling, Dastani, and Knobbout 2013), or
verifying correctness of systems (Doan et al. 2014). Such
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approaches are able to identify if a system is not correct, but
provide no help if a correct system of agents is failing to
solve a complex problem.

Other works focus on team analysis. Raines, Tambe, and
Marsella (2000) present a method to automatically analyze
the performance of a team. The method, however, only
works offline and needs domain knowledge. Other meth-
ods for team analysis are heavily tailored for robot-soccer
(Ramos and Ayanegui 2008) and focus on identifying oppo-
nent tactics (Mirchevska et al. 2014).

In this paper, we show a novel method to predict the final
performance (success or failure) of a team of voting agents
without using any domain knowledge. Hence, our method
can be easily applied in a great variety of scenarios. More-
over, our approach can be quickly applied online at any step
of the problem-solving process, allowing a system operator
to identify when a team is failing.

The basic idea of our approach is to learn a classification
model, based on the frequencies of agreement over all pos-
sible subsets of agents. Hence, the feature vector of our pre-
diction model depends uniquely on the coordination method,
and has no dependency on the domain. We present a prelim-
inary theoretical model that explains why such an approach
is able to make accurate predictions. Moreover, our model
indicates that the prediction works better for diverse teams
composed by different agents than for uniform teams made
by copies of the same agent.

We present experimental results in the Computer Go do-
main, where we predict the performance of three different
teams of voting agents: a diverse, a uniform, and an inter-
mediate team (intermediate with respect to diversity). We
show that we can predict win/loss of Go games with around
73% accuracy for the diverse and intermediate team, and
64% for the uniform team. We also study the predictions
at every turn of the games, and compare with an analysis
performed by using an in-depth search. We show that our
method agrees with the analysis, from around the middle of
the games, more than 60% of the time for all teams, but is
significantly faster. As the technique depends only on the
coordination method, the same approach can be applied for
predicting the performance of teams of voting agents in any
domain. An interesting extension would be to test our pre-
dictions in the video games of the Arcade Learning Environ-
ment.
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Related Work
General competency has received considerable attention re-
cently (Legg 2008; Hutter 2005; Genesereth, Love, and Pell
2005). The main goal is to develop methods that can be
applied to a variety of domains (or even any possible do-
main). Recently, the Arcade Learning Environment was de-
veloped, allowing the experimentation of machine learning
algorithms across hundreds of different games (Bellemare et
al. 2013).

One common general approach to increase the perfor-
mance of machine learning methods is to aggregate different
learners through voting (Polikar 2012). Actually, the appli-
cability of voting goes beyond machine learning, as it has
been shown to improve the performance of many different
systems (Marcolino et al. 2014; Mao, Procaccia, and Chen
2013). In particular, social choice researchers extensively
study voting. Normally, voting is presented under one of two
perspectives: as a way to aggregate different opinions, or as
a way to discover an optimal choice (List and Goodin 2001;
Conitzer and Sandholm 2005). In this work we present a
novel view: we show that we can use the voting patterns as a
way to assess the performance of a team. Such “side-effect”
of voting has not been observed before, and was never ex-
plored in social choice theory and/or applications.

Concerning team assessment, the traditional methods rely
heavily on tailoring for specific domains. Raines, Tambe,
and Marsella (2000) present a method to build automated
assistants for post-hoc, offline team analysis, but domain
knowledge is necessary for such assistants. Other meth-
ods for team analysis are heavily tailored for robot-soccer,
such as Ramos and Ayanegui (2008), that present a method
to identify the tactical formation of soccer teams (number
of defenders, midfielders, and forwards). Mirchevska et al.
(2014) present a domain independent approach, but they are
still focused on identifying opponent tactics, not on assess-
ing the current performance of a team.

In the multi-agent systems community, we can see many
recent works that study how to identify agents that present
faulty behavior (Khalastchi, Kalech, and Rokach 2014;
Lindner and Agmon 2014; Tarapore et al. 2013). Other
works focus on verifying correct agent implementation
(Doan et al. 2014) or monitoring the violation of norms in an
agent system (Bulling, Dastani, and Knobbout 2013). Some
works go beyond the agent-level and verify if the system as
a whole conforms to certain specifications (Kouvaros and
Lomuscio 2013), or verify properties of an agent system
(Hunter et al. 2013). However, a team can still have a poor
performance and fail in solving a complex problem, even
when the individual agents are correctly implemented, no
agent presents faulty behavior, and the system as a whole
conforms to all specifications.

This work is also related to multi-agent learning (Zhang
and Lesser 2013), but normally multi-agent learning meth-
ods are focused on learning how agents should perform, not
on team assessment. An interesting approach has recently
been presented (Torrey and Taylor 2013), where they have
studied how to teach an agent to behave in a way that will
make it achieve a high utility. Besides teaching agents, it
should also be possible to teach agent teams. During the pro-

cess of teaching, it is fundamental to identify when the sys-
tem is leading towards failure. Hence, our approach could be
integrated within a team teaching framework.

Finally, it has recently been shown that diverse teams of
voting agents are able to outperform uniform teams com-
posed by copies of the best agent (Marcolino, Jiang, and
Tambe 2013; Marcolino et al. 2014; Jiang et al. 2014). Here
we present an extra benefit in having diverse teams: we show
that we can make better predictions of the final performance
for diverse teams than for uniform teams.

Identifying when Things Go Wrong
We start by presenting our prediction method, and later in
this section we will explain why the method works.

We consider scenarios where agents vote at every step
(i.e., world state) of a complex problem, in order to take
common decisions at every step towards problem-solving.
Formally, let T be a set of agents ti, A be a set of actions
aj and M be a set of world states mk. The agents must vote
for an action at each world state, and the team takes the ac-
tion decided by plurality voting rule (we assume that ties are
broken randomly). The team obtains a final reward r upon
completing all world states. In this paper, we assume two
possible final rewards: “success” (1) or “failure” (0).

We define the prediction problem as follows: without us-
ing any knowledge of the domain, identify the final reward
that will be received by a team. This prediction must be ex-
ecutable at any world state, allowing a system operator to
take remedy procedures in time.

We now explain our algorithm. The main idea is to learn
a prediction function, given the frequencies of agreements
of all possible agent subsets over the chosen actions. Let
P(T) = {T0,T1, . . .} be the power set of the set of agents,
ai be the action chosen in world state mj and Hj ⊆ T be
the subset of agents that agreed on ai in that world state.

Consider the feature vector ~x = (x0, x1, . . .) computed at
world state mj , where each dimension (feature) has a one-
to-one mapping with P(T). We define xi as the proportion
of times that the chosen action was agreed upon by the sub-
set of agents Ti. That is,

xi =

||Mj||−1∑
k=0

I(Hk = Ti)

||Mj||

where I is the indicator function and Mj ⊆ M is the set of
world states from m0 to the current world state mj .

Hence, given a set X̃ such that for each feature vector
~xt ∈ X̃ we have the associated reward rt, we can estimate a
function, f̂ , that returns an estimated reward between 0 and 1
given an input ~x. We classify estimated rewards above 0.5 as
“success”, and below 0.5 as “failure”. In order to learn the
classification model, the features are computed at the final
world state.

We use classification by logistic regression, which models
f̂ as f̂(~x) = 1

1+e−(α+~βT~x)
, where α and ~β are parameters

that will be learned given X̃ and the associated rewards.
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{t0} {t1} {t2} {t0, t1} {t0, t2} {t1, t2}
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 2/3 0 1/3

Table 1: Example of the full feature vector after 3 iterations
of problem solving.

While training, we eliminate two of the features. The fea-
ture corresponding to the subset ∅ is dropped because an ac-
tion is chosen only if at least one of the agents voted for it.
Also, since the rest of the features sum up to 1, and are hence
linearly dependent, one of them is also dropped.

We also study a variant of this prediction method, where
we use only information about the number of agents that
agreed upon the chosen action, but not which agents exactly
were involved in the agreement. For that variant, we consider
a reduced feature vector ~y = (y0, y1, . . .), where we define
yi to be the proportion of times that the chosen action was
agreed upon by any subset of i agents. Thus,

yi =

||Mj||−1∑
k=0

I(||Hk|| = i)

||Mj||

where I is the indicator function and Mj ⊆ M is the set
of world states from m0 to the current world state mj . We
compare the two approaches in Section Results.

Example of Features
We give a simple example of our proposed feature vectors.
Consider a team of 3 agents: t0, t1, t2. Let’s assume two
possible actions: a0, a1. Consider that, in 3 iterations of the
problem solving, the voting profiles were:

Iteration 0: a0a0a1
Iteration 1: a1a1a0
Iteration 2: a0a1a1

where we show which action each agent voted for at each
iteration. Based on plurality voting rule, the action chosen
for the respective iterations would be a0, a1, and a1. In Table
1 we show an example of how the full feature vector will be
defined at each iteration, where each column represents a
possible subset of the set of agents, and each row represents
one iteration (in increasing order from iteration 0 to iteration
2), and we mark the frequency that each subset agreed in the
chosen action.

In Table 2, we show an example of the reduced feature
vector, where the column headings define the number of
agents involved in an agreement over the chosen action.
Note that the reduced representation is more compact, but
we have no way to represent the change in which specific
agents were involved in the agreements.

Explanation
We present here our preliminary theoretical work that ex-
plains why we can use the frequencies of agreement to pre-
dict the success or failure of teams. We start with a simple

1 2
Iteration 0 0 1
Iteration 1 0 1
Iteration 2 0 1

Table 2: Example of the reduced feature vector after 3 itera-
tions of problem solving.

example to show that we can use the outcome of plurality
voting to predict the success of a team. Consider a scenario
with two agents and two possible actions, a correct and an
incorrect one. We assume, for this example, that agents have
a probability of 0.6 of voting for the correct action and 0.4
of making a mistake.

If both agents vote for the same action, they are either both
correct or both wrong. Hence, the probability of the team be-
ing correct is given by 0.62/(0.62 + 0.42) = 0.69. Hence, if
the agents agree, the team is more likely correct than wrong.
If they vote for different actions, however, one will be cor-
rect and the other one wrong. Given that profile, and assum-
ing that we break ties randomly, the team will have a 0.5
probability of being correct. Hence, the team has a higher
probability of taking a correct choice when the agents agree
than when they disagree (0.69 > 0.5). Therefore, if across
multiple iterations these agents agree often, the team has a
higher probability of being correct across these iterations,
and we can predict that the team is going to be successful.
If they disagree often, then the probability of being correct
across the iterations is lower, and we can predict that the
team will not be successful.

We now present our theoretical development. We base our
approach in the view of voting as a way to estimate a ground
truth. In social choice, this is modeled in the following way:
there is a ground truth (i.e., the correct outcome, for exam-
ple which action is correct and which one is incorrect), and
the agents try to estimate the ground truth. Since the agents
are not perfect, they have a noisy estimation of this ground
truth. Hence, a noise model is defined as the probability of
the agents voting for each action, given the correct outcome
(Conitzer and Sandholm 2005).

Therefore, given a voting profile, we can estimate the like-
lihood of each action being the best, and the optimal decision
is given by picking the action with the maximum likelihood
estimate (MLE). Hence, a voting rule is going to be optimal
if it corresponds to the MLE in any voting profile, given the
noise model of the agents. We assume here that the agents
are independent, and initially all actions are equally likely to
be the best one (i.e., the prior probabilities are uniform over
the action set), as usual in the classical voting models.

We consider, in this work, teams that play using plurality
voting. Hence, we start by assuming that the agents have a
noise model such that the likelihood is maximized by pick-
ing the action that received the highest number of votes in
a profile. That is, we start by assuming that plurality is the
optimal voting rule for the team. In this work, however, we
are not interested in finding the best action given a voting
profile, but rather in estimating how the probability of pick-
ing the correct action changes across different voting pro-
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files with different number of agents agreeing on the chosen
action. In other words, if the probability of the team being
correct (i.e., choosing the best action) is higher in voting pro-
files where the amount of agreement is higher, then we will
be able to predict the success of a team by observing the
amount of agreement across the iterations.

We show in the following observation that if plurality is
the optimal voting rule (i.e., it corresponds to the maximum
likelihood estimate — MLE), we can use the amount of
agreement among the agents to predict success.
Observation 1. The probability that a team is correct in-
creases with the number of agreeing agents m.

Proof. Let c be the best action (whose identity we do not
know). Let v1, v2, . . . vn be the votes of n agents. Let w be
the action chosen by the highest number of agents. We want
to know the probability of c = w:

P (c = w|v1, v2 . . . vn) ∝ P (v1, v2 . . . vn|c = w)P (c = w)

For any noise model where plurality is MLE, we have
that P (v1, v2 . . . vn|c = w) is proportional to the num-
ber of agents m that voted for c. Therefore, we have that
P (c = w|v1, v2 . . . vn) is also proportional to m.

Hence, given two voting profiles V1,V2, with mV1 >
mV2 , we have that PV1(c = w|v1, v2 . . . vn) > PV2(c =
w|v1, v2 . . . vn). Therefore, the team is more likely correct
in profiles where a higher number of agents agree.

In the next observation we show that we can increase the
prediction accuracy by knowing not only how many agents
agreed, but also which specific agents were involved in the
agreement. Basically, we show that the probability of a team
being correct depends on the agents involved in the agree-
ment. Therefore, if we know that the best agents are involved
in an agreement, we can be more certain of a team success.
Observation 2. Given two profiles V1,V2 with the same
number of agreeing agents m, the probability that a team
is correct is not necessarily equal for the two profiles.

Proof. We can easily prove by example. Consider a prob-
lem with 2 actions. Consider a team of 3 agents, where t0
and t1 have a probability of 0.8 of being correct, while t2
has a probability of 0.6 of being correct. We should always
pick the action chosen by the majority of the agents, as the
probability of picking the correct action is the highest for all
agents (List and Goodin 2001). Hence, plurality is MLE.

However, when only t0 and t1 agree, the probability that
the team is correct is given by: 0.82 ∗0.4/(0.82 ∗0.4+0.22 ∗
0.6) = 0.91. When only t1 and t2 agree, the probability that
the team is correct is given by: 0.8 ∗ 0.6 ∗ 0.2/(0.8 ∗ 0.6 ∗
0.2 + 0.2 ∗ 0.4 ∗ 0.8) = 0.59. Hence, the probability that the
team is correct is higher when t0 and t1 agree than when t1
and t2 agree.

Based on that, one would expect the prediction for a uni-
form team to be better than the predictions for a diverse
team, if the uniform team is composed by copies of the
best agent (since their likelihood of being correct is higher).
However, the best agent will not necessarily have noise mod-
els where the best action has the highest probability in all

A1

Θ

A2

Figure 1: Agents are correlated by the similarities in their
implementation Θ

world states. Hence, a suboptimal action could have the
highest probability, making the agents agree in the same
mistakes (Marcolino, Jiang, and Tambe 2013). Therefore,
when plurality is not actually a MLE in all world states,
we have that Observation 1 will not hold in the world states
where this happens. Hence, we will predict that the team
made a correct choice, when actually the team was wrong,
causing problems in our accuracy.

Therefore, we can actually expect to make better predic-
tions for a diverse team than for a uniform team. The basic
intuition is that a diverse team is going to be less likely to
agree in the same mistakes. For example, let’s start by con-
sidering an idealized diverse team, where the agents never
vote for the same mistakes (that is, never two or more agents
vote for the same suboptimal action). In Marcolino et al.
(2014) we show that this theoretically holds when the num-
ber of available actions goes to infinity. It is very easy to
show that we can make better predictions for such idealized
team. Basically, if two or more agents agree, the team would
be correct with probability 1. A uniform team, however,
might still be wrong if two or more agents agree. Hence, we
can make better predictions for the idealized diverse team.

Of course, in less idealized scenarios the diverse team
might still agree in a suboptimal action (although with a
lower probability than in the uniform team case), making the
situation more complex. Hence, to better understand how the
prediction accuracy might change for different teams, we in-
troduce a new model for diversity, where we do not assume
that the agents are independent any more, but correlated by
the similarities in their algorithms. We present in this paper
our preliminary model, where we consider only two agents
and two possible actions.

New Diversity Model We consider a situation with two
agents and two possible actions, a correct (C) and an incor-
rect (I) one. Let A1 and A2 be the random variables corre-
sponding to the actions chosen by the two agents in a world
state, with probability distribution over the correct and incor-
rect action as (s1, 1−s1) and (s2, 1−s2) respectively. Con-
trary to previous models that assume independence (Marcol-
ino, Jiang, and Tambe 2013; Marcolino et al. 2014), we do
not assume independence here. We consider that the agents’
algorithm might be similar in some account. We can model
this dependency, which is not deterministic and moreover,
cannot be observed, using a random variable θ. Hence, both
A1 and A2 depend on this random variable θ. This situation
is illustrated by the Bayesian network in Figure 1.

Since the agents are correlated, we define in Table 3 the
joint probability distribution of (A1, A2), where 0 ≤ e ≤ 1
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(C,C) (C, I) (I, C) (I, I)
s1 + s2 − e −s2 + e −s1 + e 1− e

Table 3: Joint probability table of (A1, A2).

is a constant defined by the correlation between the agents.
We define P (A1 = C) and P (A2 = C) (i.e., s1 and s2,
respectively) to be the strength of the agents, since it in-
dicates how likely the agents will choose the best action.
We define the diversity of the agents as the probability that
they disagree: i.e., P (A1 6= A2), which is 2e − s1 − s2
from our joint probability distribution table. Consequently,
γ = 1 + s1 + s2 − 2e is the similarity between the agents.

We now show that given two teams with the same strength
(that is, let s′1 and s′2 be the strength of the agents of the sec-
ond team, we have that s1 = s′1 and s2 = s′2), we can make
better predictions for the team that has the higher diversity.
We assume that the teams play using plurality voting (ties
are broken randomly). Although we fix the strength of the
agents, we consider that it is not known in advance by a sys-
tem operator (i.e., for the prediction). This is true in many
scenarios, as even though we might know the best agents
overall, the actual probability of correctness changes accord-
ing to each situation/world state (and some agent might be
better than the best agents for some fixed world state (Mar-
colino, Jiang, and Tambe 2013)).

Theorem 1. Given two teams with the same strength, we can
make better predictions for the team with higher diversity
(i.e., lower γ : P (A1 = A2)).

Proof. Given a profile where the agents agree, the probabil-
ity of the team being correct is given by:

P (C) =
P (A1 = A2 = C)

P (A1 = A2)
=

(s1 + s2 − e)
γ

Let us make use of the following equalities:

P (A1 = C) = P (A1 = C,A2 = C) + P (A1 = C,A2 = I) =

(s1 + s2 − e) + (−s2 + e)

P (A2 = C) = P (A1 = C,A2 = C) + P (A1 = I, A2 = C) =

(s1 + s2 − e) + (−s1 + e) =

(s1 + s2 − e) + 1− γ − (−s2 + e)

From the above two equalities:

P (A1 = C)+P (A2 = C) = s1+s2 = 2(s1+s2−e)+1−γ

Which can be rewritten as:

P (C) =
(s1 + s2 − e)

γ
=
s1 + s2 − 1

2γ
+

1

2

Given that 0 ≤ (s1+s2−e)
γ ≤ 1, we have that when 2 ≥

s1+s2 > 1, γ lies in [(s1+s2)−1, 1]. When 0 ≤ s1+s2 < 1,
γ lies in [1 − (s1 + s2), 1]. For both cases, as γ increases
towards 1 (for fixed s1 and s2),

∣∣∣ s1+s2−12γ

∣∣∣ decreases. Hence,

P (C) gets closer to 1
2 . Therefore, for two different teams

with the same s1 and s2, the team with higher γ (i.e., lower

diversity) will have its probability of being correct, P (C),
closer to 1

2 .
However, the closer the probability of the chosen action

being correct is to 0.5, the more difficult it is to predict
whether the action is correct or not. Consider a Bernoulli
trial with probability of success p ≈ 1. In the learning phase,
we will see many successes accordingly. In the testing phase,
we will predict the majority of the two for every trial, and we
will go wrong only with probability |1−p| ≈ 0. On the other
hand, if p ≈ 0.5, our predictions, whatever they be, will be
correct only with about 0.5 probability.

We must also consider the profiles where the agents dis-
agree. In such a case, it is easy to see that regardless of the
diversity (i.e., P (A1 6= A2)), one cannot make predictions
with an accuracy greater than 0.5, as we assume that the
strength of the agents is not known. Given a profile where
the agents disagree, the tie is going to be randomly broken,
and therefore the probability that the chosen action is the
correct one is 0.5. As we discuss above, we cannot have ac-
curate predictions for such probability.

We are currently working in extending this theory to cases
with more than two agents and two actions. However, it al-
ready gives an idea of why we can have a better prediction
for diverse teams than for uniform teams.

In the next section, we show that we can use our method
to predict the outcome of Computer Go games at any turn,
obtaining a high accuracy from the middle games. We also
show that the prediction is better for a diverse team than for
a uniform team with statistical significance.

Results
We test our prediction method in the Computer Go domain.
We use 4 different Go software: Fuego 1.1 (Enzenberger et
al. 2010), GnuGo 3.8, Pachi 9.01 (Baudiš and Gailly 2011),
MoGo 4 (Gelly et al. 2006), and two (weaker) variants of
Fuego (Fuego∆ and FuegoΘ), in a total of 6 different, pub-
licly available, agents. Fuego is considered the strongest
agent among all of them. The description of Fuego∆ and
FuegoΘ is available in Marcolino et al. (2014).
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Figure 2: Winning rates of the
3 different teams used in our
experiments.

We study three dif-
ferent teams: Diverse,
composed by one
copy of each agent;
Uniform, composed by
6 copies of the original
Fuego (initialized
with different random
seeds); Intermediate,
composed by 6 random
parametrized versions
of Fuego (from Jiang
et al. (2014)). In all
teams, the agents vote
together, playing as white, in a series of games against
the original Fuego playing as black. The winning rates
of the teams can be seen in Figure 2. The difference
between uniform and diverse is not statistically significant
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Figure 3: Performance when predicting in the end of games,
using the full feature vector.

(p = 0.1492), and both teams are clearly significantly better
than intermediate (p < 6.3× 10−14).

We use a dataset of 691 games for each team. For all re-
sults, we used 5-fold cross validation (each fold had approx-
imately the same class ratio as the original distribution). In
all graphs, the error bars show the 95% confidence interval.

We start by studying the performance of our prediction in
the end of the games (i.e., after the last move). The result is
in Figure 3. We could make high-quality predictions for all
teams. For diverse and intermediate, we have around 73%
accuracy, while for uniform 64%. This difference is statis-
tically significant, with p ≈ 0.003467. Concerning failure
precision, success precision and failure recall, the prediction
for diverse is better than for uniform, with p ≈ 0.002361,
3.821× 10−6 and 3.821× 10−6, respectively.

It is also interesting to note that although intermediate is
significantly weaker than uniform, we could achieve a higher
accuracy for intermediate (with p ≈ 0.00379). We would
expect, however, to make better predictions for diverse than
intermediate, but they have very similar accuracy results in
the end. However, by analyzing the other metrics, we can
notice that the prediction for “Failure” is better for interme-
diate, while the one for “Success” is better for diverse.

As we could see, with absolutely no data about which spe-
cific actions were made and which specific world states were
encountered, we are able to predict the outcome of the games
with high accuracy for all the 3 teams, with better results for
diverse than uniform, even though these two teams have sim-
ilar winning rates.

We also ran our classifier at every turn of the games. In
order to verify the predictions, we used the evaluation of
the original Fuego, but we give it a time limit 50× longer.
Since this version is approximating a perfect evaluation of
a board configuration, we will refer to it as “Perfect”. We,
then, use Perfect’s evaluation of a given board state to esti-
mate its probability of victory, allowing a comparison with
our approach. Considering that an evaluation above 0.5 is
“success” and below is “failure”, we compare our predic-
tions with the ones given by Perfect’s evaluation, at each
turn of the games. We use this method because a team could
be “winning” at a certain stage, but change to “losing” after
making a mistake (or vice-versa after an opponent’s mis-
take). Therefore, simply comparing with the final outcome
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Figure 4: Performance metrics over all turns of 691 games,
using the full feature vector.

of the game would not be accurate.
We can see the result in Figure 4. Since the games have

different length, we divide all games in 20 stages, and show
the average evaluation of each stage. Therefore, a stage is
defined as a small set of turns (on average, 2.43±0.5 turns).
We were able to obtain a high-accuracy, already crossing
the 0.5 line in the 3rd stage. From around the middle of the
games (stage 10), the accuracy for diverse and uniform al-
ready gets close to 60% (with intermediate only close be-
hind). Although we can see some small drops, overall the
accuracy increases with the game stage number, as expected.
Moreover, for most of the stages, the accuracy is higher for
diverse than for uniform. The prediction for diverse is sig-
nificantly better than for uniform (with p < 0.1) in 25% of
the stages.

We also run experiments using the reduced feature vec-
tor for all teams. In Figure 5 we can see the results when
predicting in the end of the games. The accuracy does not
change much for diverse and intermediate (when comparing
against the accuracy in both teams using the full feature vec-
tor), and the difference is not significant (p = 0.9929 and
p = 0.8403 for diverse and intermediate). For uniform we
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Figure 5: Performance when predicting in the end of games,
using the reduced feature vector.

observe an improvement in the accuracy of 4% (which is not
statistically significant, p = 0.2867). In Figure 6 we see the
prediction at each stage of the games, again comparing with
Perfect’s evaluation. As we can see, we also obtain a high
accuracy quickly with the reduced feature vector, reaching
60% again towards the middle of the games. This time, there
is less difference in the accuracy between diverse and uni-
form, but we can still show that diverse is significantly bet-
ter than uniform (with p < 0.1) in 15% of the stages (20%
including a stage where p ≈ 0.1). Again, the accuracy for
the intermediate team is close to the one for uniform, even
though intermediate is a significantly weaker team.

As we can see, for all teams and both feature vectors, our
predictions match Perfect’s evaluation roughly 60% of the
time. However, our method is much faster, since it only re-
quires one linear calculation that takes a few microseconds,
while Perfect’s evaluation takes a few minutes.

Discussion
We show in this work, both theoretically and experimen-
tally, that we can make high-quality predictions about the
performance of a team of voting agents, using only infor-
mation about the frequency of agreements among agents.
We present two kinds of feature vectors, one that includes
information about which specific agents were involved in
an agreement and one that only uses information about how
many agents agreed together. Although the number of fea-
tures in the former increases exponentially with the number
of agents, causing scalability concerns, the latter represen-
tation scales better as it increases linearly. Theoretically the
full feature vector should have better results, but in our ex-
periments both approaches achieved a high accuracy. Hence,
for large teams we can use the reduced feature vector, avoid-
ing scalability problems.

Moreover, in real applications we usually do not have ex-
tremely large teams of voting agents. Unless we have an ide-
alized diverse team, the performance is expected to converge
after a certain number of agents (Jiang et al. 2014). In Mar-
colino, Jiang, and Tambe (2013) and Marcolino et al. (2014),
significant improvements are already obtained with only 6
agents, while Jiang et al. (2014) shows little improvement as
teams grows larger than 15 agents. Therefore, the scalability
of the feature vector might not be a real concern.
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Figure 6: Performance metrics over all turns of 691 games,
using the reduced feature vector.

Based on classical voting theory, we would expect the pre-
dictions to work better in the uniform team (or at least as
well as for the diverse team). However, we show in our ex-
periments that the prediction works significantly better for
the diverse team, and we present a preliminary theoretical
model to explain this phenomenon. It is also surprising that
the prediction for intermediate works as well as for the other
teams, even though it is significantly weaker (i.e., it has a
much lower wining rate). We would expect at least that the
prediction in diverse should be better than in intermediate,
since diverse is both stronger and has higher diversity. Un-
derstanding why this happens is still open, and an immediate
next step is to quantify the amount of diversity (for exam-
ple, as defined in Marcolino, Jiang, and Tambe (2013)) in all
teams to better understand this phenomenon.

Although we showed a great performance in prediction,
what an operator should actually do as the prediction of fail-
ure goes high is not discussed in this paper. Possible rem-
edy procedures vary according to each domain. For example,
for a complex problem being solved in a cluster of comput-
ers, we could allocate a higher number of resources when

41



it becomes necessary. Preliminary experiments in Computer
Go show that we can actually obtain a high winning rate if
games are re-started when the prediction of failure is high.
Finding ways to recover the situation in Computer Go games
(such as dynamically changing the team or the voting rule)
is an interesting avenue for future work.

Finally, as our approach is domain independent, it would
be interesting to test the prediction in different domains,
such as the variety of games available in the arcade learning
environment. For such games, it is also interesting to come
up with coping strategies for when the prediction of failure
goes high, to see how we can improve the performance of
actually playing these games.

Conclusion
Voting is a widely applied domain independent technique in
machine learning. We present a novel method to predict the
performance of a team of agents that vote together at ev-
ery step of a complex problem. Our method does not use
any domain knowledge and is based only on the frequencies
of agreement among the agents of the team. We present a
preliminary theoretical work that explains why our method
works, besides showing that the prediction should work bet-
ter in teams composed by different agents (diverse teams).
We perform experiments in the Computer Go domain with 3
different teams, where we show that we can achieve a high
accuracy in diverse teams, even when doing the prediction
in a particular stage of the game (instead of in the end of
the problem solving process), allowing an operator to take
remedy procedures if the team is not performing well. The
accuracy for the uniform team, although significantly lower
than for the diverse team at some stages, is also high.
Acknowledgments: This research was supported by MURI
grant W911NF-11-1-0332, and by IUSSTF.
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