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Abstract

Learning tasks from demonstration is key to the flexibility
of robots and their accessibility to non-programmers. We
present a task learning framework that combines the strengths
of discrete and continuous representations. The robot learns
a set of criteria and expectations to represent the goal of a
demonstrated task. The task consists of performing actions
that fulfill expectations on objects that meet the criteria. We
propose modeling continuous criteria and expectations with
Gaussian distributions. To deal with simultaneous demon-
stration of multiple tasks, we assume that expectations can
be multi-modal and model them as mixtures of Gaussians.
We present an implementation of this framework on the robot
Jimmy.

Introduction

The problem of learning by demonstration for a robot or au-
tonomous agent is the acquisition of knowledge or behav-
ior from examples demonstrated by a human. Robots that
learn from demonstration have the potential to offer more
flexibility and accessibility to non-programmers. Learn-
ing by demonstration can also provide a good initialization
or heuristic for the robot’s learning, especially for learning
problems with large or even infinite search spaces.
Learning by demonstration has been approached from

many different directions, including motion learning for mo-
tor control (Calinon and Billard 2008), action policy learn-
ing (Chernova and Veloso 2007), and graph-based planning
(Zoliner et al. 2005; Nicolescu and Mataric 2003). These
systems select either a continuous or discrete representa-
tion for learning. Discrete and continuous models both have
their uses and tradeoffs. The high-level structure offered
by discrete models is amenable to reasoning using tradi-
tional artificial intelligence, such as well-established partial-
order planning algorithms or first-order logic systems. On
the other hand, continuous models offer the benefit of more
granularity when representing the data, as well as reasoning
using confidence or uncertainty measures.
With appropriate perception, one can determine hierar-

chical labels for objects (such as “tool” being a parent of

∗This work is supported by the National Science Foundation.
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Robot Jimmy executing a sorting task.

“screwdriver”) and learn which objects are relevant to a par-
ticular action or task. It becomes more ambiguous how
to reason about world states when using continuous-valued
data. Ideally one wants to capture the structure of the contin-
uous space using a few parameters in a way that can still be
usable by a generative action model. Our goal in this study is
to reason with both types of data within a single framework.
In previous work, Bayesian maximum-likelihood learn-

ing was used for learning task goals from demonstra-
tions (Breazeal and Thomaz 2008). In this framework,
the goal is not provided a priori to the robot; instead, the
robot considers all hypotheses consistent with the demon-
strations and learns the maximally specific hypothesis as the
goal. Hypotheses are enumerated on a version space over
the discrete features. In this study, we extend the described
task learning method by (1) proposing a method that uses
both discrete and continuous features, and (2) presenting a
way to learn multiple subtasks simultaneously from a single
demonstration.

Approach

Our task learner expands upon the Bayesian learner de-
scribed in (Breazeal and Thomaz 2008), which reasons
about tasks in the following manner. The robot takes a snap-
shot of the perceived state of the world preceding and fol-
lowing every demonstration of a task. Perceptual features
(attributes) that remain unchanged are labeled as criteria,
and perceptual features that change are labeled as expecta-
tions. Task hypotheses are constructed as combinations of
criteria and expectations over a version space. The best hy-
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Figure 2: Sample task demonstration and the criteria and
expectations extracted after each step of the demonstration.

pothesis is the one of appropriate generality or specificity
that maximizes the coverage count over the demonstrated
examples. Executing the task consists of performing actions
that fulfill expectations on objects that meet the criteria.

Adding continuous features

In order to extend this method for continuous features, we
calculate the mean and variance of continuous-valued fea-
tures, treating each continuous feature independently. This
gives the robot an understanding of what it means to be a
representative example in this feature space, as well as how
much freedom it has when reproducing the task goal.

Criteria. The mean and variance are calculated for con-
tinuous features that do not change throughout the demon-
strations. Novel objects are compared against this model
to assess whether they meet the criteria of the learned task.
For example, the “height” of books that go on a particular
shelf is a continuous attribute that does not change during a
demonstration and has some variance over different demon-
strations given different books. One can decide whether a
new book of a different height would go onto the same shelf
according to the distribution of the heights of demonstrated
books.

Expectations. Similarly, the mean and variance are cal-
culated for continuous features that do change during the
demonstration. This model tells the robot what is expected
for objects that meet the task criteria. The mean represents
the ideal expected state of the object, and the variance rep-
resents the allowable deviation from the ideal. For exam-
ple, “location” and “orientation” of books are continuous
attributes that change during the demonstration of putting
books on a bookshelf. While the locations of the books may
have a high variance over the length of the bookshelf, the
orientations may have a small variance around a vertical po-
sition.

Extracting subtasks

The second issue addressed in this study is the simultaneous
demonstration of multiple subtasks. The previous version

of the learner required that each subtask be demonstrated
and labeled separately. However, it is often more convenient
to demonstrate multiple tasks simultaneously. In a house-
hold sorting scenario, the previous version would require
the teacher to first demonstrate that all the books go on one
shelf and label it as one task, then separately demonstrate
that all trash goes into the trash bin and label it as a separate
task. If both tasks were demonstrated together, they would
be taken as one collective task. The resulting criteria would
cover both books and trash, with either being destined for
the bookshelf or the trash bin. To deal with the issue of au-
tomatically differentiating subtasks, we add the assumption
that the expectations of tasks can be multi-modal.

Discrete features. If a discrete expectation has more than
one possible end value, a separate subtask is created for each
end value. For example, if a set of white colored objects are
being painted to red and blue, “coloring red” and “color-
ing blue” are considered two different tasks, and different
criteria are formed for each task. This potentially allows
the learner to capture different requirements, such as size or
shape of the object, for being colored blue or being colored
red.

Continuous features. For continuous features, having
multi-modal criteria means that instead of fitting a single
Gaussian over the changed continuous features, we fit a mix-
ture of Gaussians. Each Gaussian in the mixture corresponds
to a separate subtask. In this way the different locations for
sorting different objects can be learned from a demonstra-
tion of sorting different types of objects simultaneously.

Implementation

In our demonstration, a robot learns the goal configuration
of a set of simple blocks by observing a person’s demon-
strations. The robot then executes the task individually or
cooperatively with the person.

Robot Platform. We use the robot Jimmy, which is an
upper-torso humanoid on wheels built from Bioloid kits and
a webcam (Fig. 1). Its 8 degrees of freedom enable arm
movements, torso rotation, and neck tilt. The wheels are
used to navigate the workspace. The webcam’s head-like
appearance functions as a transparency mechanism for the
human to identify the robot’s object of attention during the
interaction.

Perception. Tasks demonstrated to Jimmy consist of
changing the state of objects in its environment. The ob-
jects are perceived through a fixed overhead camera that cap-
tures Jimmy’s entire workspace. Images are filtered for a set
of pre-defined colors, and multi-blob tracking is performed
on each filtered image. Then a set of features is extracted
from each blob. The location of the object corresponding to
the blob is determined using a homography from the table
plane to the camera image plane. The objects are also repre-
sented by two discrete features: color and shape. There are
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three possible colors (pink, green, and blue) and two pos-
sible shapes (cube or long prism). Shape is determined by
thresholding the ratio of the blob’s major axis to the blob’s
minor axis.
The robot detects people by skin color being present in the

workspace, as well by perceptual state changes that occur in-
dependently of the robot’s own actions. The starts and ends
of demonstrations are demarcated using a graphical user in-
terface or speech commands.

Behaviors. Jimmy’s behaviors are controlled by a state
machine that has three main states: (i) observing a demon-
stration, (ii) individual execution, and (iii) cooperative exe-
cution. The robot enters the demonstration state when either
(i) all the objects in the workspace are removed, or (ii) a
demonstration is triggered using the GUI or a speech com-
mand. When a demonstration starts, the robot initially gazes
towards the person, then gazes at the objects being manip-
ulated. When the demonstration ends, the robot models the
goal of the demonstrated task and transitions into execution
mode.
During execution, the robot tries to preserve the goal of

the learned task. If an object is perturbed from the goal
state, the robot attempts to restore the goal configuration.
If the object is within reach of the robot, the robot will (i)
navigate to the object, (ii) pick up the object, (iii) navigate
to the goal location, and (iv) place the object. Similarly, if a
novel object is introduced and placed in the workspace such
that it does not satisfy the current goal, the robot will pick
up the object and place it in the correct location. The robot
uses open-loop navigation based on prior calibration of du-
ration of travel with a fixed velocity. When all the objects in
the workspace are at their goal locations, the robot just looks
around.
If a person is present during execution, the robot solicits

the person’s help by (i) gazing towards the person, (ii) point-
ing to an object that needs to be moved, and (iii) pointing to
the goal location for that object. During cooperative exe-
cution, the robot gives priority to objects that are out of its
reach in order to benefit maximally from the person’s help.
If the action indicated by the robot is completed by the per-
son, the robot nods to confirm the action and moves on to the
next object. If the person does not respond to the robot af-
ter pointing to the object three times, the robot points to the
object and raises its arms asking for the object. If the person
hands the objects to the robot, the robot takes the object and
places it at the goal location. If the person does not reply to
three such queries, the robot gives up and starts individual
execution.

Learning Task. The learning task in this study is simpli-
fied by some assumptions and constraints. The number and
type of features of objects used in the tasks is limited. As
mentioned previously, the task space includes one continu-
ous feature (location) and two discrete features (color and
shape). The location feature is further simplified by pro-
jecting the 2-D position of the objects onto Jimmy’s 1-D

Figure 3: Jimmy’s workspace.

workspace, the region that the robot can reach by translat-
ing along a straight line and rotating its torso (Fig. 3).
The fact that some features can be changed while oth-

ers cannot also limits the number of different tasks that can
be demonstrated. In this case, location of objects can be
changed while shape and color cannot. Therefore, the pos-
sible criteria are color and shape, and the only possible ex-
pectation is location. With 1-D location being the only pos-
sible expectation, we cluster the locations based on a fixed
distance threshold and fit a single Gaussian on each cluster
rather than fitting a mixture of Gaussians (Fig. 3).
For this particular demo, we do not provide an interface

to demonstrate and label more than one task. Every time a
demonstration for a new task is given, the previous task is
erased. The start of a demonstration is always assumed to
be an empty workspace. Even if only part of the workspace
was changed during the demonstration, all objects in the
workspace are considered to be part of the task goal.

Results

The described system was demonstrated at the robot exhibi-
tion in IJCAI 2009, Pasadena. The robot was able to learn
different tasks demonstrated by visitors and perform the cor-
rect actions to reconstruct the goal.

Sample Demonstrations. Fig. 4 shows a few examples of
demonstrations given during the exhibition, together with
tests provided by the demonstrators to assess what the robot
learned and the robot’s responses to the test actions.
The demonstrations described in Fig. 4(a), 4(b) and 4(c)

involve two maximally specific clusters with both color and
shape criteria. In this case, only objects that are identical
to the ones used in the demonstration meet the criteria for
the learned subtasks and are placed next to the other objects
(Fig. 4(a)). Other objects are placed outside the workspace.
The demonstration given in Fig. 4(d) involves some varia-
tion within clusters (i.e. shape), so each subtask only has
one criterion feature (color). Similarly, in Fig. 4(e) and 4(f),
color varies within clusters and the subtasks have one cri-
terion feature (shape). After the demonstration, when the
robot is presented with an object it has not seen before (pink
cube or long green prism), it is able to place it in the right
cluster according to shape. Fig. 1 shows a picture of Jimmy
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Figure 4: Sample demonstrations and tasks.

taken during the exhibition while executing a task similar to
the one described in Fig. 4(e).

Issues. Most issues encountered during the exhibition
were related to noise in vision due to changing lighting con-
ditions or errors during open-loop navigation. Slippage in
the wheels caused the home position of the robot to drift
over time. As a result, the robot sometimes failed to pick
up objects and continued executing as if it had the object.
When this occurs, the robot realizes the failure only after it
has gone back to its home position. This can be addressed
using feedback from the webcam on the robot to make sure
the object has been picked before proceeding to place it.
Another issue was the discrepancy between people’s rep-

resentation of the task and the robot’s actual model. As a
result, the robot did always behave as they expected. For
instance, in the task given in Fig. 4(b), some subjects re-
ported that they expected the robot to place the green cube
with the blue cubes because it shared the shape feature with
this cluster but not with the other. They did not expect the
maximally specific consistent hypothesis, which designated
the color blue as a criterion. People’s assumptions about
the task space are important to consider in the learning by
demonstration problem.

Conclusion

We present two extensions of a task learning framework de-
veloped in previous work. Tasks are represented as collec-
tions of criteria and expectations, where the task consists of
performing actions that fulfill expectations on objects that
meet the criteria. We extend this framework (i) to handle
continuous features by representing them with Gaussian dis-
tributions, and (ii) to extract subtasks automatically (as op-
posed to relying on user labeling) by assuming that expec-
tations can be multi-modal. We demonstrate the extended
learning framework with simple block sorting tasks on the
robot Jimmy.
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