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Abstract

In the presented research project, a software and hardware
infrastructure for parking space focussed inter-modal route
planning in a public pilot region in Berlin is developed. One
central topic is the development of a prediction system which
gives an estimated occupancy for the parking spaces in the
pilot region for a given date and time in the future.
Occupancy data will be collected online by roadside parking
sensors developed within the project. The occupancy predic-
tion will be implemented using “Neural Gas” machine learn-
ing in combination with a proposed method which uses data
threads to improve the prediction quality.
In this paper, a short overview of the whole research project
is given. Furthermore, the concept of the software framework
and the learning methods are presented and first collected data
is shown. The prediction method using data threads is ex-
plained in more detail.

1 Motivation
There is a significant lack of parking spaces in most larger
cities today. In particular in densely populated inner-cities,
parking spaces are rare, both in residential areas and in com-
mercial zones. This has a direct impact on inner-city traf-
fic. Previous research has shown that the search for a park-
ing space creates a significant amount of additional traffic
(Shoup 2006; VDA 2009; Delatte et al. 2014). Subsequently,
this might even lead to a loss of quality of life when people
avoid moving their car again once they have found a park-
ing space, as found in previous studies (Delatte et al. 2014,
Wimobil).

On the other hand, as parking spaces are a rare commodity
they can be sold expensively and are thus a valuable asset
for often underfunded municipalities. Efficient methods for
the active management of parking spaces rank high on the
agenda of urban management plans.

To avoid unnecessary traffic and to better use the avail-
able parking spaces the driver should be informed where all
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spaces are occupied and where in the vicinity of his target
he can find an available parking space. In contrast to the
already existing systems all public roadside parking spaces
need to be covered: Here, (1) often unused capacities can
be found and (2) usually the most preferred parking spaces
(free and close to the destination) are located.

2 Related Work
Current solutions for parking space management, which
cover mostly only parking garages, are not sufficient because
on the one hand, public roadside parking is favoured by most
drivers over parking garages, and on the other hand there are
often unused, albeit hidden, capacities available. Examples
are fixed parking guidance traffic signs showing the way to
parking lots (with or without a display that gives the cur-
rent available capacity). App- or website-based versions of
such a solution are parking map services (e.g., Parkopedia)
that also cover only parking lots and that usually do not give
any information about the current occupancy. The parking
app system developed by the Australian city of Perth goes a
step further (Perth Parking App). There, a map of available
parking spaces can be found. Furthermore, an app-based
payment option is also supported. However, there are no
roadside parking spaces covered, either.

More related to the solution presented in this paper are
projects that include parking sensors. In the Belgian city
of Kortrijk a system “SENSIT” by Nedap is installed (Van-
dewinckele 2014). This project already finished the pi-
lot phase with 35 parking spaces. However, the focus of
this solution is in short-term parking where, e.g., load-
ing/unloading zones have to be kept available. Thus, the
information of the occupancy sensors is only given to park-
ing attendants and not to users seeking for available parking
spaces. The manufacturer offers parking guidance displays
but an access via a public website or a public app is not
available.

Another disadvantage of the solution chosen in the city of
Kortrijk is the sensor setup with separated and fixed parking
bays with one monitoring detector per bay. The detector is
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mounted in or on the parking space surface. Similar setups
are planned or already installed in other cities like London
and Moscow.

The solution presented in the following sections combines
two of the objectives mentioned above: first, the detection
of parking violations with data access and data visualization
for parking attendants. Second, a public access and route
planning tool available for users searching for an available
parking space. An occupancy prediction is included to guide
users when or before they start their trip. An automatic ac-
counting option is prepared and a website and an app ac-
cess will be implemented, too. With the decision to use top-
view sensors, the detection of arbitrarily laid out (slotted)
roadside parking spaces or even roadside parking without
any parking bay markers (unslotted) including “second-row”
parking is possible.

A very interesting proposal with comparable properties of
the occupancy detection method was published by Mathur et
al. (2010). They used ultrasonic sensors attached to the pas-
senger side of a vehicle to collect parking occupancy data
while driving. The sensors measure distances to passenger-
side obstacles and the measured values are classified as “oc-
cupied” or ”available” space. With three vehicles in a 2
month time frame they collected a total of more than ≈ 500
miles of data. As drawbacks of their setup they reported (po-
tential) problems when driving at higher speeds and detect-
ing parking occupancy on multi-lane roads (among others is-
sues). In their data collection there was only data from roads
with single lanes. Coric and Gruteser (2013) use the same
data collection method to automatically generate a map of
legal and illegal parking spaces.

Further publications from other application domains that
propose methods comparable to those discussed in this paper
are presented in Section 5.2.

3 Proposed Solution
The research project “City2.e 2.0”, which provides the
framework for the research work presented in this paper,
brings together municipalities (Senate Department for Ur-
ban Development and Environment, Berlin), mobility infor-
mation service providers and IT-service developers (VMZ
Berlin1), large IT and infrastructure providers (Siemens
AG), and research institutes specialized both on the tech-
nical (DFKI RIC2) and legal and economic (IKEM3) dimen-
sion of the problem (City2.e 2.0). The objective is to develop
a solution for reliable monitoring and prediction of parking
space availability.

The underlying idea for the City2.e 2.0 solution is that if
drivers are informed as early as possible about the availabil-
ity of parking spaces in a given region, the amount of unnec-
essary traffic can be significantly reduced and the parking
spaces in that region can be optimally used.

In City2.e 2.0, a solution for the predictive management
of public and semi-private roadside parking spaces is de-

1VMZ Berlin Betreibergesellschaft mbH
2German Research Center for Artificial Intelligence, Robotics

Innovation Center
3Institute for Climate Protection, Energy and Mobility

veloped and evaluated in a real-world test environment in
Berlin. The solution integrates sensors for the monitoring of
parking spaces, a backend system for the collection of real-
time data, and tools for the prediction of parking space oc-
cupancy. As user interface a website and an app are planned.

A prediction system is needed to guide the user to a park-
ing space available at the time of his arrival. This system
learns the occupancy for the specific location and time based
on long-term gathered data. These learned predictions can
also give the user good estimates for future travels. Details
of the machine learning approach used in this project are de-
scribed in Section 5.

4 Project’s Pilot Region
The project’s main test area is to be set up in 2015. It will be
located in a public area at the Bundesallee in Friedenau (bor-
ough Tempelhof-Schöneberg) in Berlin (see Figure 1). The
set up will include occupancy sensors covering more than 50
parking spaces. Parts of the covered parking spaces are close
to commercial zones while other parts are in more residen-
tial areas. Some parking spaces are in parallel to the street
lanes, some are perpendicular. Most of the parking spaces
do not have any separation marks painted on the ground.
Furthermore, the sensors will be able to detect “second row”
parking cars (occupying additional regular parking spaces),
too. Also covered are parking spaces located at charging
stations for electric cars.

Figure 1: Location of the project pilot region in
Friedenau in the Berlin borough Tempelhof-Schöneberg.
( c©OpenStreetMap contributors, www.openstreetmap.org).

During the project runtime the parking spaces of the pilot
region will be available to the public like they were before
(with the same potential limitations, e.g., for disabled peo-
ple, for residents’ parking passes, or for electric cars). This
ensures real-world conditions for the project’s final studies.
An IT infrastructure will be set up including a web front end
with a route planner accessible to the public, too. Via this
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front end the parking sensor data and the predictions (and
their influence on the routing results) are accessible by the
parking space users.

In this pilot region the cars and their drivers are not iden-
tified or tracked. Especially, the number plates are not
scanned. Just the occupancy of a parking space is detected.
To identify residents’ parking passes, maybe a side channel
communication solution will be tested. For the pre-studies
in this and former projects, hash values of the number plates
and of vehicle properties were used. These hashes cannot be
used to identify a vehicle or its owner. Privacy preserving
issues are dealt with by the other project partners.

5 Methods
To study a directed, parking-space-related user navigation, it
is required to set up a real-life fully-equipped test area. The
equipment includes

• sensors to detect occupied and available parking spaces,

• an IT infrastructure to collect and distribute occupancy
data,

• a prediction system to supply future occupancy data, and

• a navigation system to guide the user to available spaces.

The sensor is developed and built by the project leader
Siemens AG. It is designed as a roadside, top-view sensor to
be mounted to walls or street lights. The IT infrastructure is
set up by VMZ Berlin. Also the multi-modal routing soft-
ware was developed and implemented by VMZ Berlin. The
software can cover the path between parking spaces and the
actual start and target position.

The prediction system is developed and implemented by
the DFKI Robotics Innovation Center. It consists of (1) a
data collection and machine learning based prediction ba-
sis (including, e.g., class prototypes, see below) and (2) a
query response system generating parking space occupancy
predictions for a specific demanded time in the future using
the learned prediction basis. To automatically compare dif-
ferent methods and parameterizations of the algorithms, the
processing will be implemented using the signal processing
and classification environment pySPACE (Krell et al. 2013).
This framework supports regression, and clustering support
will be added, too.

5.1 Parking Occupancy Prediction Basis
The data basis and the desired prediction results have two
dominant properties:

1. The amount of collected data is rather small. A temporal
resolution of 15 minute slots is sufficient for both, original
sensor data collection and as temporal resolution of the
predictions. The data basis per sample consists of just
one value, namely the number of available parking spaces
per parking “lot”. Each parking “lot” in this particular
sense covers a group of a few up to a few dozen of parking
spaces and is combined in one prediction. Thus, for each
lot and each 15 minute slot in the future, there is one value
(the number of available parking spaces) to be predicted.
Hence, the data set to be acquired per year and per lot
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Figure 2: Example occupancies of one area of 14 parking
spaces at a side street (lot 17). Plotted are the data of one
Thursday and one Saturday. As can be seen, the occupancy
change over the day can differ a lot for the same parking
lot. In most of the lots there are no separation marks painted
on the ground. The number of cars fitting in one lot is es-
timated by standard parking space sizes. Hence, more than
100% occupancy can be found if smaller cars and/or smaller
inter-car distances and/or cars are present that cross the lot
borders. Data is taken from the Wimobil project (Wimobil).

is as small as 35 KB (or even with 64 bit alignment and
additional overhead for indices and pointers about 1 MB).

2. As first studies have shown, there is a dominant 24 hour
periodicity plus weekly repetitions (day of the week de-
pendency) in the parking occupancy data (see Figure 2).
This leads to a typical occupancy behaviour which mainly
depends on the location (e.g., residential vs. commercial
area) and the day of the week. Under the same condi-
tions the occupancy is not expected to vary a lot (Wimo-
bil). However, it can be expected that certain external
(and maybe unknown) conditions lead to different classes
of occupancy behaviour (e.g., holidays, winter weather,
street works, sports/cultural events).

These properties led to the following conclusions regard-
ing the prediction methods:

1. The whole sensor data can be logged and can be taken into
account when generating predictions or when adapting the
prediction basis to new sensor data (details see below).

2. The predictions have to be learned for each lot indepen-
dently and need the time of day and the day of the week
as input.

3. To learn the standard behaviour within one class (e.g.,
usual Thursday, no holidays, dry weather) and to separate
data of different classes (e.g., holidays vs. no holidays) a
clustering method has to be applied. Since the reason for
a change in the parking behaviour is potentially unknown
(depends on hidden variables) an unsupervised method
needs to be used. The first candidate method to be tested
will be the neural gas algorithm (Martinetz, Berkovich,
and Schulten 1993). The two tasks clustering and proto-
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type generation (within one class) may have to be sepa-
rated, see Section 5.2.

4. In a previous study, occupancy was studied at three days
for 71 lots (Wimobil). There, it could be found that some
parking lots seem to have similar occupancy behaviours
while others differ a lot. While in general it could be an
option to combine the learning for predictions of similarly
behaving lots this will most likely not be done here. Given
the small data set sizes and the needed temporal resolu-
tions, the advantage of reducing the computational effort
and the needed data space is not relevant in this project.
Furthermore, there are just a few and rather different lots
planned. Thus, the prediction quality is expected to be
impaired. However, a combination of several lots’ data in
learning to improve the results is still an option that might
be studied.
To avoid overfitting within one occupancy prediction

class, the data needs to be averaged or combined in some
other way to a prototype time series. In Figure 3 the varia-
tions over five weeks are given for the whole pilot area (cur-
rently 59 parking spaces are observed manually) together.
The data is currently collected manually by the project part-
ner Berlin Senate Department to get a long-term view over
the future test and demonstration setup. Each plotted curve
was sampled at the same day of the week and at the same
time of day. One method to combine the samples (besides
averaging) could be the neural gas algorithm (potentially
in combination with the separation of different behaviour
classes).
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Figure 3: Example of variations in the parking occupancy
data over five weeks (for all lots together with 59 parking
spaces in total). The left plot shows morning data, right plot
afternoon. Data was collected by the Senate Department for
Urban Development and Environment, Berlin.

5.2 Data Threads Based Predictions
From the data processing perspective, the task of the project
is time series prediction. Prominent solution algorithms
are Neural Gas (Martinetz, Berkovich, and Schulten 1993)
and Kalman filters (Okutani and Stephanedes 1984; Har-
vey 1990). Also least squares have been used, to pre-
dict financial time series (Van Gestel et al. 2001). In the
context of urban time series prediction, the most promi-
nent example is traffic density estimation (Wang and Pa-
pageorgiou 2005; Papageorgiou 1983; Munoz et al. 2003;
Okutani and Stephanedes 1984; Zuefle et al. 2008). Other
examples are the analysis on water consumption (Zhou et al.

2000; Cardell-Oliver 2013), air pollution forecasting (Niska
et al. 2004; Schweizer et al. 2011), and waste management
(Dyson and Chang 2005).

In contrast to many other time series prediction problems,
the amount of data is rather small here (De Gooijer and
Hyndman 2006). For example, if you take an application
using electroencephalogram (EEG) data, the dimensional-
ity and the temporal resolution is much higher (Kirchner
et al. 2013). Moreover, the different occupancy behaviour
classes can differ a lot and new classes might come up often
and quickly (e.g., street works, company move, concerts or
sports events). In such cases, accessing old data (yesterday’s
or three years ago) and identifying the best matching class
even if it is a small one (e.g., only yesterday’s data) could
improve the prediction quality a lot. However, there will be
no means to use further external data to identify the correct
class for a queried prediction.

Proposed is a solution using threads of data i.e. chunks of
the timeline of previously recorded occupancy behaviours.
The expression “threads” is chosen deliberately to distin-
guish it from general time series which can be unlimited in
start or end. The threads used here have particular start and
end points. Furthermore, there can exist several threads in
parallel for the same time period (as explained below).

The proposed method is a two-step approach. The first
step of learning is an (unsupervised) clustering of the logged
data into classes of similar parking behaviour (similar over
24 hours). In the second step all 24-hours-threads of one
class are taken to generate a prototypical parking behaviour
of this class. For example, this prototype could be the av-
erage of all threads or Gaussian distributions fitted to the
threads.

The recall is a two-step process, too: First, the identifica-
tion of the best matching class and, second, the computation
of the actual prediction based on the selected threads. To
identify the best matching behaviour class, not only the time
of day and the day of the week is used but also the current
occupancy situation at the time of the query. By this means,
the maximum of the data available (the most recent mea-
surements) can be used to adapt to very recent changes in
the parking behaviour. Moreover, this method exploits the
temporal relationship between a) the recorded data match-
ing the current measurements and b) the recorded data fol-
lowing a) up to the data set equivalent to the queried pre-
diction (see Figure 4 for an example plot). This means that
if, for example, new road works (started shortly before the
time of the query tq) influence the latest measurements then
the temporal relationship between previous road works’ be-
ginnings and previous road works’ subsequent parking be-
haviours can be used for a better prediction of the new road
works’ behaviour.

Additionally, as all recorded data are available, a very
good estimation of the prediction error can be computed and
given to the user. This is also possible because of the two-
step recall process (see Figures 4 and 5): At first only the
learned time series prototypes of all classes are compared
with the recent measurements (i.e. one per class). Then all
original data threads associated with the winning class (i.e.
all data that generated this class) are followed to their partic-
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Figure 4: Visualization of the occupancy prediction method
using data threads. At point tq the user queries for a park-
ing space occupancy prediction for the point tp. “class 1”
(dashed blue curve) and “class 2” (solid red curve) are two
potential time series (prototype data threads) learned before
(e.g., Thursday in winter weather, holidays vs. Thursday but
dry working day). The dotted green curve depicts the current
measurements from the sensor. For these current measure-
ments at tq (or a time span some hours before up to tq) the
best matching class is taken. This winning data thread is fol-
lowed up to tp to find the occupancy value to be predicted.

ular prediction value related to tp. This leads to a range of
occupancies that in the history followed an occupancy sit-
uation as it is currently measured. Now, all selected data
threads together show the distribution of occupancies (of the
winning class) in the past. The occupancies of other park-
ing behaviour classes are filtered out in the first step. Thus,
we expect to end up in a distribution and an error estimation
based on that distribution which fits well to the situation at
the time tp. In case there are multiple winning classes, this
range includes all those associated data threads’ values re-
lated to tp. Perhaps, a soft-assignment will be needed here
by weighting the N closest (“winning”) classes differently.
Depending on the user’s preferences a standard deviation,
a minimum, or a maximum of all this range of historical
values can be given. Even more complex – but in this appli-
cation more appropriate – estimations can be computed, for
example, the probability (given all historical values related
to tp) that there will be at least one free parking space.
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Figure 5: Visualization of the occupancy prediction method
using data threads (step 2). The thin lines depict the original
data threads (sensor measurements).

However, of course there will be the case of predictions
for the farther future (tp � tq) where there is no relation-
ship to the current measurements anymore. In this case, the
class selection needs to be changed. Possible could be the
selection of an “overall standard” class or, of course, the se-
lection of all classes. This needs to be studied when the
parking space sensors are set up and data can be collected.
While the user should be able to give any future date, the
selection of the best class(es) is designed for the focus of the
prediction time span (which is the next minutes and hours,
up to one day).

6 Summary and Outlook
Presented was the concept of a parking space occupancy pre-
diction method using a combination of Neural Gas vector
quantization and the raw data timeline in data threads. The
combination of a machine learning clustering method and
the original temporal relations of the raw data is supposed to
lead to good prediction results. However, the applicability
of the presented methods and the quality of the prediction
results need yet to be studied with the real data.

Furthermore, the whole research project in which the pre-
diction system is embedded was described. The main focus
of the project is a practical real-world test of public roadside
parking detection in a Berlin pilot region. Included is an IT
infrastructure with an inter-modal routing planner using the
current parking occupancy sensor data as well as the parking
space occupancy predictions.

The main pilot area in Berlin will be set up in 2015. When
online, all parking occupancy data will be logged and used
to train the occupancy prediction system (planned to run for
at least half a year). At the end of the project an evaluation
of the whole system and of the prediction quality will be
carried out.
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