
State Space Abstraction in
Artificial Intelligence and Operations Research

Robert Holte
Computing Science Department

University of Alberta
Edmonton, Canada T6G 2E8

(rholte@ualberta.ca)

Gaojian Fan
Computing Science Department

University of Alberta
Edmonton, Canada T6G 2E8

(gaojian@ualberta.ca)

Abstract

In this paper we compare the abstraction methods used for
state space search and planning in Artificial Intelligence with
the state space relaxation methods used in Operations Re-
search for various optimization problems such as the Travel-
ling Salesman problem (TSP). Although developed indepen-
dently, these methods are based on exactly the same general
idea: lower bounds on distances in a given state space can be
derived by computing exact distances in a “simplified” state
space. Our aim is to describe these methods so that the two
communities understand what each other has done and can
begin to work together.

Introduction
In this paper we compare the abstraction methods used for
state space search and planning in Artificial Intelligence
(A.I.) with the state space relaxation methods used in Op-
erations Research (O.R.) for various optimization problems
such as the Travelling Salesman problem (TSP). We find that
the two communities have independently invented exactly
the same general idea: lower bounds on distances in a given
state space can be derived by computing exact distances in
a “simplified” state space. The intimate connection between
the ideas of these two communities has been noted once be-
fore, by Hernádvölgyi (2003; 2004).

This idea was introduced to the O.R. community by
Christofides, Mingozzi, and Toth (1981). Even a cursory
survey of the O.R. literature reveals that this technique has
continued to be developed up to the present day and is the
key technology for state-of-the-art performance in a vari-
ety of O.R. problems (Abdul-Razaq and Potts 1988; Bal-
dacci, Mingozzi, and Roberti 2012; Boland, Dethridge, and
Dumitrescu 2006; Frantzeskakis and Watson-Gandy 1989;
Gouveia, Paias, and Voß 2011; Righini and Salani 2008;
2009; Roberti and Mingozzi 2014).

In A.I., a specific form of this idea, which Pearl (1984)
later called “state space relaxation”, was first developed in
the Milan Polytechnic Artificial Intelligence Project (Guida
and Somalvico 1979) and independently invented by John
Gaschnig (1979). The general idea of state space abstrac-
tion is best credited to Mostow and Prieditis (1989). The
first major successes in using abstraction to achieve state-of-
the-art performance in A.I. are due to Culberson and Scha-
effer (1996) and Korf (1997).

State Space Search and Abstraction in A.I.
In optimal state space planning or search, one is given a
weighted directed graph (the state space), a start state, start,
and a goal state (or goal condition), goal, and the aim is to
find an optimal (least-cost) path from start to goal.1 A va-
riety of different algorithms to solve this problem have been
developed, with A* (Hart, Nilsson, and Raphael 1968) and
IDA* (Korf 1985) being the most widely used. The order in
which states are expanded2 by these algorithm is based on
the function f(s) = g(s) + h(s), where g(s) is the lowest
cost of all the paths from start to s seen so far, and h(s), the
heuristic function, is an estimate of the distance (cost of the
cheapest path) from s to goal, denoted d(s, goal). If h(s) is
a lower bound on d(s, goal), for all s, the heuristic function
is said to be “admissible”. A* and IDA* are guaranteed to
return an optimal path from start to goal if h is admissible.

An abstraction of a state space S is any mapping ψ to
any state space T such that the distance between a pair of
states in S is never smaller than the distance between the
corresponding states in T . Stated formally, ψ : S → T is
an abstraction if and only if dT (ψ(s1), ψ(s2)) ≤ dS(s1, s2)
for all states s1, s2 ∈ S . Here dS and dT refer to distances
measured in S and T respectively. If ψ : S → T is an
abstraction, the function hψ(s) = dT (ψ(s), ψ(goal)) is an
admissible heuristic for state space search in S.

Using abstraction to define heuristics for state space
search in this way is only practical if ψ(s) and
dT (ψ(s), ψ(goal)) can both be quickly calculated for ev-
ery state s ∈ S and every possible goal. We will discuss
each of these in turn.

Computing ψ Efficiently
If the state space S is given “explicitly”, i.e. as a set of
nodes and a set of edges enumerated individually, then T
can also be represented explicitly3 and so can ψ, as a set of

1The nodes in the graph are called states. The weight of an edge
in the graph is the cost of including the edge in a path. Costs are
assumed to be non-negative.

2to “expand” state s is to generate all its successors, i.e. all
those states that can be reached directly, in a single step, from s.

3unless T is much larger than S, which sometimes happens.
It also sometimes happens that states outside ψ(S) are needed to
compute distances.

55

Planning, Search, and Optimization: Papers from the 2015 AAAI Workshop

edges from states in S to the corresponding states in T . In
this case the calculation of ψ(s) is very efficient: one just
follows the ψ-edge from s to the corresponding state in T .

Normally, however, S is far too large to be given ex-
plicitly. Instead, it is defined “implicitly” in a formal-
ism specifically designed for defining state spaces, such as
PDDL (Ghallab et al. 1998), SAS+ (Bäckström 1992), or
PSVN (Holte, Arneson, and Burch 2014). These formalisms
differ in many details, but the following is representative of
how they define a state space. A state is represented by a
set of state variables whose values are drawn from a finite
set of possible values, the domain Dom. Transitions be-
tween states (the edges in the state space) are defined by a
set of operators, each of which has a precondition, an ef-
fect, and a cost. Operator op’s precondition defines the set
of states, pre(op), to which it can be applied. Operator op’s
effect is a function, which we denote op(s), mapping a state
s ∈ pre(op) to a state. For the sake of illustration, we will
assume that the precondition of an operator is a (possibly
empty) set of tests of the form Vi = vi where Vi is state
variable i and vi ∈ Dom, and the effect of an operator is
a set of assignments of the form Vi ← vi for all the state
variables that are changed by the operator.

As an example of a state space definition in this formal-
ism, consider the 5-disk Towers of Hanoi puzzle. In this
puzzle, there are three pegs and five disks of different sizes,
and at any point in time each disk is on one of the pegs. The
disks on each peg form a stack so that only the top disk on a
peg can be moved. The top disk on pegi can be moved to an-
other peg, pegj , only if pegj has no disks on it or the top disk
on pegj is larger than the disk being moved. There are many
ways of representing this puzzle’s state space in the formal-
ism described in the previous paragraph. The simplest is
to have five state variables (V1, . . . , V5), with Vi indicating
the peg on which disk i currently sits (disk 1 is the smallest
disk, disk 5 is the largest). The domain for these variables
is the set of pegs, Dom = {peg1, peg2, peg3}. An opera-
tor moves a specific disk from one specific peg to another.
There are therefore a total of 30 operators in this represen-
tation (5 choices for the disk, and 6 choices for the two pegs
involved in the move). The precondition of the operator that
moves disk 4 from peg2 to peg3 tests that disk 4 is on peg2
and that the smaller disks are on peg1. In the representation
we’re using in this paper, this would be expressed as

V1 = peg1, V2 = peg1, V3 = peg1, V4 = peg2

The only effect of this operator is to change the peg on which
disk 4 sits, which is expressed in our representation as

V4 ← peg3

When a state space is given implicitly, an abstraction ψ
must operate on the state space definition, not on the under-
lying state space (graph). Given a definition, DS of state
space S, ψ(DS) produces a state space definition DT for
some state space T . Note the ψ operates on both the states
of S and on the operators of DS , in the form in which they
are represented in the chosen formalism.

In order for ψ, defined on state space definitions, to
satisfy the formal requirements of being an abstraction

(dT (ψ(s1), ψ(s2)) ≤ dS(s1, s2) for all states s1, s2 ∈ S),
it is sufficient4 to show that ψ has the following properties
(here opψ is the abstract operator produced by applying ψ to
operator op):

(i) s ∈ pre(op) =⇒ ψ(s) ∈ pre(opψ)
(ii) s ∈ pre(op) =⇒ ψ(op(s)) = opψ(ψ(s))
(iii) cost(opψ) ≤ cost(op)

The first two properties guarantee that every edge in S has
a corresponding edge in T and the third property guarantees
that the cost of the corresponding edge in T is no larger than
the cost of the edge in S.

In order to be able to calculate ψ(s) efficiently, for any
state s, its calculation must be efficient when expressed in
terms of the state variables used to represent states. Likewise
the preconditions and effects of the abstract operators (opψ)
must be succinctly representable in the chosen formalism
and efficient to calculate.

One example of such an abstraction is “projection”, which
merely ignores some of the state variables. This is trivial
to apply to states and to preconditions and effects in the
form described above. In the Towers of Hanoi representation
above, projecting out (ignoring) variable Vi has the intuitive
meaning “ignore disk i”. For example, if V1 and V2 were
both projected out, the operator shown above would have
only two preconditions (V3 = peg1, V4 = peg2) and would
allow disk 4 to be moved from peg2 to peg3 regardless of
the locations of disks 1 and 2. If V4 were projected out, this
operator would have no effects (it would be the identity op-
erator).

Another example of an abstraction technique that is eas-
ily applied to state space definitions is domain abstraction,
which is based on a mapping φ from the domain Dom to
a smaller domain Dom′. In this case, ψ(s) is calculated
by replacing each value v in the vector representing state
s by φ(v). Likewise, ψ is applied to operator precondi-
tions and effects by replacing all occurrences of value v
in them by φ(v). In the Towers of Hanoi representation
above, domain abstraction would make some of the pegs
indistinguishable from one another. For example, suppose
Dom′ = {pega, pegb} and φ maps peg1 and peg2 to pega
and maps peg3 to pegb. Knowing that a disk is on pega indi-
ciates that it is either on peg1 or peg2 but we can’t tell which.
The precondition of the operator above would become

V1 = pega, V2 = pega, V3 = pega, V4 = pega

and its effect
V4 ← pegb.

This allows disk 4 to be moved to peg3 (= pegb) as long as
it and the disks smaller than it are not currently on peg3.

As a final example, the historically first kind of state space
abstraction (Gaschnig 1979; Guida and Somalvico 1979)
was called state space relaxation by Pearl (1984). A state
space relaxation, in this sense, is a mapping that eliminates
one or more of the tests in the precondition of one or more
of the operators but otherwise acts as the identity function

4These conditions are sufficient but not necessary. For example,
delete relaxation is an abstraction but it does not always satisfy
property (ii).

56

(ψ(s) = s and operators’ effects are not changed by ψ). For
example, if the precondition V4 = peg2 was removed from
the operator above, disk 4 could be moved to peg3 no mat-
ter which peg it was on as long as the smaller disks were
on peg1. Heuristics defined by state space relaxation were
shown to be ineffective by Valtorta (1984).

The most recent forms of state space abstraction are
delete relaxation (Hoffmann and Nebel 2001), Cartesian
abstraction (Seipp and Helmert 2014), and merge-and-
shrink (Helmert et al. 2014; Fan, Müller, and Holte 2014).
There are also other, powerful methods for defining heuris-
tic functions that do not neatly fit this particular definition
of state space abstraction but are, in the same spirit, based
on computing some sort of distance-like measure in a space
derived from a given state space definition DS . Most no-
table among these are hm (Haslum and Geffner 2000) and
operator counting methods (Pommerening et al. 2014).

Computing dT (ψ(s), ψ(goal)) Efficiently
The most straightforward approach to computing
dT (ψ(s), ψ(goal)) is to search in T for an optimal
path from ψ(s) to ψ(goal) on demand, i.e. when h(s) is
needed in the search from start to goal in S. This is, in fact,
how heuristics based on delete relaxation are computed.5

In many situations, however, a much more efficient calcu-
lation is possible. For example, if the abstract space T is suf-
ficiently small, it is feasible to compute, and store in a data
structure, distances to ψ(goal) for all states in T from which
ψ(goal) can be reached. This is done as a preprocessing step
before search in S begins. During search in S the calcula-
tion of h(s) is extremely efficient, it is simply a lookup of the
distance associated with ψ(s) in the data structure. This is
how pattern databases (Culberson and Schaeffer 1996; Ball
and Holte 2008) and merge-and-shrink (Helmert et al. 2014;
Fan, Müller, and Holte 2014) are implemented.

When dT (ψ(s), ψ(goal)) is being computed by searching
in T on demand, two methods have been proposed to make
this search faster. The first is to use hierarchical heuristic
search (Holte et al. 1996; Holte, Grajkowski, and Tanner
2005; Leighton, Ruml, and Holte 2011). The idea here is to
speed up the search in T by using heuristic search (e.g. A*
or IDA*) instead of a “blind” search algorithm like breadth-
first search or Dijkstra’s algorithm.

The heuristic used for searching in T is created by ab-
stracting T to create a more abstract space T ′ and using
exact distances in T ′ as estimates of the distances in T .
The search to compute distances in T ′ can either be blind
or heuristic, with the heuristic being defined by abstracting
T ′ to create a yet more abstract space T ′′, and so on. In this
way a hierarchy of abstract spaces is created with S at the
bottom, then T , then T ′, then T ′′ etc.

Another method for speeding up on-demand search in
T is to cache information from one search in T and use
it to speed up subsequent searches in T . For example,
when h(start) is calculated by finding an optimal path in
T from ψ(start) to ψ(goal), optimal distances to ψ(goal)

5Actual implementations may be more complex than this sim-
ple description for efficiency’s sake.

are known for all the abstract states on this path, not just for
ψ(start). If sufficient memory is available, it makes sense
to store these so that if they are needed in the future they
can just be looked up rather than being recalculated. Holte
et al. (1996) found it necessary to use such caching tech-
niques in order for hierarchical heuristic search based on A*
to outperform blind search in S.

State Space Search and Relaxation in O.R.
In this section we describe the state space search and re-
laxation methods introduced to the O.R. community by
Christofides, Mingozzi, and Toth (1981), who we will re-
fer to as CMT, and compare these methods to the A.I. search
and abstraction methods described in the previous section.

The set of “routing” problems addressed by CMT seems,
on the face of it, to be much broader than, and include as
a special case, the shortest path problem to which the A.I.
techniques described in the previous section have been ap-
plied. CMT defines a routing problem as follows (a “route”
in their terminology is what we have called a path). Given a
weighted, directed graph G “find a route, or set of routes, in
the graph G, so that certain constraints are satisfied and the
total cost of the routes is minimized.” This includes, for ex-
ample, the travelling salesman problem (TSP), which is not
a shortest path problem in the given graph G.

However, CMT is quick to point out that “every routing
problem is essentially a shortest path problem on some un-
derlying graph with additional constraints” and that the dy-
namic programming formulation of a routing problem de-
fines the state space in which a shortest path is to be sought
and also the start state and goal condition. For example, in
the natural dynamic programming formulation of the TSP,
a state summarizes the information about a partial tour us-
ing two components (state variables): (a) the set S of ver-
tices in G (“cities”) that have been visited so far, and (b) the
last city visited. The start state, start, is 〈{}, c0〉, where c0
is the city in which the tour starts and ends, and, if there
are n + 1 cities in G (c0, . . . , cn), the goal state, goal, is
〈{c0, , . . . , cn}, c0〉.6 For every edge exy = (cx, cy) in G
there is an operator, go-from-cx-to-cy , which can be ap-
plied to state 〈S, c〉 as long as c = cx and cy /∈ S. The cost
of this operator is the weight of exy inG and its result, when
applied to state 〈S, c〉, is the state 〈S ∪ {cy}, cy〉. The graph
G therefore serves as an implicit representation of this state
space, in exactly the sense defined in the previous section
and, indeed, could be directly encoded in the standard A.I.
formalisms for defining state spaces.

The state space relaxations developed by CMT are relax-
ations of this state space, not the graph G, and are directly
aimed at producing a lower bound, h(s), on the cost of
reaching goal, in this state space, from state s, in order to
speed up search for a shortest path from start to goal in this
state space. They are therefore directly analogous to the state
space abstraction methods discussed in the previous section.

The general definition CMT gives of a state space relax-
ation (Section II.A. in (Christofides, Mingozzi, and Toth

6The exact formulation in CMT is slightly different in certain
unimportant details.

57

1981)) is virtually identical to properties (i)-(iii) given in the
previous section, and their discussion of what is required for
a state space relaxation to be useful in practice touches on
issues very similar to those in the previous section.

Much of the remainder of CMT’s paper is devoted to ex-
amples of state space relaxations specifically for the TSP and
two other routing problems, the Travelling Salesman Prob-
lem with Time Windows, and the Vehicle Routing Problem.
In all these problems, the representation of a state involves
the set, S, of cities that have been visited so far. CMT ob-
serves that the state space is exponentially larger than the
given graph of cities, G, because S can be any subset of the
cities. Their relaxations are different ways of mapping S’s
2n possible values onto a smaller set of possible values.

One of their methods for the TSP, for example, they call
q-path relaxation. In this method, an integer qi ≥ 1 is as-
sociated with each city ci, and the set S is mapped to the
quantity φ(S) =

∑
ci∈S

qi. The choice of the qi determines

the size of the relaxed state space. For example, if qi = 1
for all i then φ(S) = |S|, the cardinality of S, and the re-
laxed state space contains n2 states. At the other extreme, if
qi = 2i then each different S gets mapped to a unique inte-
ger and the relaxed state space is isomorphic to the original
state space.

Given a maximum value Q̂ for the sum of all the qi,
CMT proposes searching for a set of qi values that max-
imizes h(start), the distance from start to goal in the
relaxed state space. They refer to this process as “state-
space modification”. In A.I. terminology, this is search-
ing through the space of possible abstractions of a partic-
ular type to find the “best” abstraction of that type (for a
particular definition of “best”). For example, Hernádvölgyi
searched in the space of possible domain abstractions of
Rubik’s Cube for the largest pattern database that would
fit in memory ((Hernádvölgyi 2001); for additional details
see Section 4.5 of (Hernádvölgyi 2004)), and Haslum et
al. (2007) searched among sets of projection abstractions for
the set whose “canonical heuristic function” was estimated
to minimize search effort. For the TSP, CMT’s state-space
modification search consisted of adjusting the current value
of qi up or down depending on the occurrences of city ci in
the optimal path from start to goal in the relaxed state space
defined by the current qi values. Roughly speaking, qi would
be decreased if city ci did not occur in the path, and would
be increased if it occurred more than once.7 The whole pro-
cess was then repeated with the new set of qi values. This
is not guaranteed to improve the value of h(start) but in
the experiment reported by CMT it increased h(start) from
being 90% of optimal (1536 compared to the true optimal
solution cost of 1704) to being 99.8% of optimal (1700). A
similar search for good qi has been used for a job scheduling
problem (Abdul-Razaq and Potts 1988).

A modern variation on this method is “decremental” state
space relaxation (Boland, Dethridge, and Dumitrescu 2006;
Righini and Salani 2008; 2009). The set of cities is di-
vided into two groups, critical and non-critical. The non-

7personal communication, Aristide Mingozzi, Oct. 9, 2014.

critical cities have qi values associated with them. In the
relaxed state space, a state records precisely which subset of
the critical cities has been visited en route to the state and∑
qi for the non-critical cities. There is an iterative process

in which additional cities are moved from the non-critical
group to the critical group. It starts with all cities in the
non-critical group. This is ordinary q-path relaxation, as de-
scribed above. If the sequence of cities in the optimal path
from start to goal in this relaxed state space satisfies all
the constraints of the original problem, then it is an optimal
solution to the original problem. If a constraint is violated,
one or more of the non-critical cities are added to the critical
group, with the aim of preventing that constraint violation
from possibly occurring in the new relaxed state space. For
example, in the TSP, every city is supposed to be visited once
and only once. Some or all of the cities that are not visited
at all, or that are visited more than once, would be added
to the critical group. This process continues until an opti-
mal solution is found that violates none of the constraints.
This must eventually happen, because once all the cities are
critical, the relaxed state space is equal to the original state
space. It is hoped, however, that it will happen when there
are few critical cities, since that implies the relaxed state
space is small. A similar idea has recently been introduced
in the A.I. community under the name Counterexample
Guided Abstraction Refinement (Seipp and Helmert 2013;
2014).8

Any of the alternatives for computing distances in the re-
laxed state space discussed in the previous section could
be applied, but the O.R. community tends to favour on-
demand calculation because it allows different relaxed state
spaces to be used for different states.9 For example, con-
sider the two states of the TSP s1 = 〈{c1, c2, c5}, c5〉 and
s2 = 〈{c3, c4, c5}, c5〉. The relaxation φ(S) = |S| maps
both states to 〈3, c5〉, so if the same state space relaxation
is used throughout the state space, they will have the same
heuristic value. However, the cities on the path to c5 in these
two states are entirely distinct and it is often advantageous to
take that into account when defining the relaxed state spaces
in which h(s1) and h(s2) are calculated.

Conclusions
The O.R. community based on the seminal work of
Christofides, Mingozzi, and Toth (1981) and the A.I. com-
munity using state space abstraction to define heuristic func-
tions for state space planning/search clearly have much of
value to exchange with one another. The routing problems
studied in O.R., when formulated as dynamic programs, are
shortest path problems in state spaces that have special prop-
erties compared to the generic states spaces studied by A.I.,
but the general notion of state space relaxation/abstraction
is identical in both cases, and often provides the key tech-
nology for obtaining state-of-the-art performance. The O.R.
routing problems would be challenging tests of the generic

8Yang et al. (2007) test for the feasibility of an additive combi-
nation of heuristic values, but do not modify the abstractions when
infeasibility is detected.

9personal communication, Aristide Mingozzi, Oct. 9, 2014.

58

A.I. abstraction methods, and the idea of state-space modi-
fication in response to constraint violations is deserving of
close study by the A.I. community.

Acknowledgements
Aristide Mingozzi was very helpful in clarifying details
about state space relaxation in the O.R. sense (Christofides,
Mingozzi, and Toth 1981). Financial support for this re-
search was in part provided by Canada’s Natural Science
and Engineering Research Council (NSERC).

References
Abdul-Razaq, T. S., and Potts, C. N. 1988. Dynamic
programming state-space relaxation for single-machine
scheduling. Journal of the Operational Research Society
39(2):141–152.
Bäckström, C. 1992. Equivalence and tractability results
for SAS+ planning. In Proceedings of the 3rd International
Conference on Principles on Knowledge Representation and
Reasoning, 126–137.
Baldacci, R.; Mingozzi, A.; and Roberti, R. 2012. New
state-space relaxations for solving the traveling salesman
problem with time windows. INFORMS Journal on Com-
puting 24(3):356–371.
Ball, M., and Holte, R. C. 2008. The compression power
of symbolic pattern databases. In Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling (ICAPS), 2–11.
Boland, N.; Dethridge, J.; and Dumitrescu, I. 2006. Accel-
erated label setting algorithms for the elementary resource
constrained shortest path problem. Operations Research
Letters 34(1):58 – 68.
Christofides, N.; Mingozzi, A.; and Toth, P. 1981. State-
space relaxation procedures for the computation of bounds
to routing problems. Networks 11(2):145–164.
Culberson, J., and Schaeffer, J. 1996. Searching with pattern
databases. In Proceedings of the 11th Biennial Conference
of the Canadian Society for Computational Studies of Intel-
ligence, volume 1081 of Lecture Notes in Computer Science,
402–416. Springer.
Fan, G.; Müller, M.; and Holte, R. 2014. Non-linear merg-
ing strategies for merge-and-shrink based on variable inter-
actions. In Proceedings of the Seventh Annual Symposium
on Combinatorial Search (SoCS).
Frantzeskakis, M., and Watson-Gandy, C. D. T. 1989. The
use of state-space relaxation for the dynamic facility loca-
tion problem. Annals of Operations Research 18.
Gaschnig, J. 1979. A problem similarity approach to de-
vising heuristics: First results. In Proceedings of the 6th In-
ternational Joint Conference on Artificial Intelligence, 301–
307.
Ghallab, M.; Isi, C. K.; Penberthy, S.; Smith, D. E.; Sun,
Y.; and Weld, D. 1998. PDDL - the planning domain def-
inition language. Technical report, CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Con-
trol.

Gouveia, L.; Paias, A.; and Voß, S. 2011. Models for a trav-
eling purchaser problem with additional side-constraints.
Computers & OR 38(2):550–558.
Guida, G., and Somalvico, M. 1979. A method for com-
puting heuristics in problem solving. Information Sciences
19(3):251–259.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Trans. Systems Science and Cybernetics 4(2):100–
107.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Proceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, 140–149.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the 22nd AAAI Conference on Artificial Intelligence,
1007–1012.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gen-
erating lower bounds in factored state spaces. J. ACM
61(3):16:1–63.
Hernádvölgyi, I. T. 2001. Searching for macro operators
with automatically generated heuristics. In Advances in Ar-
tificial Intelligence, 14th Biennial Conference of the Cana-
dian Society for Computational Studies of Intelligence, 194–
203.
Hernádvölgyi, I. 2004. Automatically Generated Lower
Bounds for Search. Ph.D. Dissertation, University of Ot-
tawa.
Herndvlgyi, I. T. 2003. Solving the sequential ordering
problem with automatically generated lower bounds. In Se-
lected Papers of the International Conference on Operations
Research (OR 2003), 355–362. Springer Verlag.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. J. Artif. Intell.
Res. (JAIR) 14:253–302.
Holte, R. C.; Arneson, B.; and Burch, N. 2014. PSVN Man-
ual (June 20, 2014). Technical Report TR14-03, Computing
Science Department, University of Alberta.
Holte, R. C.; Perez, M. B.; Zimmer, R. M.; and MacDonald,
A. J. 1996. Hierarchical A*: Searching abstraction hierar-
chies efficiently. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI), 530–535.
Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hierarchi-
cal heuristic search revisited. In Abstraction, Reformulation
and Approximation, 6th International Symposium (SARA),
121–133.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Korf, R. 1997. Finding optimal solutions to Rubik’s Cube
using pattern databases. In Proceedings of the 14th AAAI
Conference on Artificial Intelligence, 700–705.

59

Leighton, M. J.; Ruml, W.; and Holte, R. C. 2011. Faster
optimal and suboptimal hierarchical search. In Proceedings
of the Fourth Annual Symposium on Combinatorial Search
(SoCS).
Mostow, J., and Prieditis, A. 1989. Discovering admissible
heuristics by abstracting and optimizing: A transformational
approach. In Proceedings of the 11th International Joint
Conference on Artificial Intelligence, 701–707.
Pearl, J. 1984. Heuristics – Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. Lp-based heuristics for cost-optimal planning. In Pro-
ceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS).
Righini, G., and Salani, M. 2008. New dynamic pro-
gramming algorithms for the resource constrained elemen-
tary shortest path problem. Networks 51(3):155–170.
Righini, G., and Salani, M. 2009. Decremental state space
relaxation strategies and initialization heuristics for solving
the orienteering problem with time windows with dynamic
programming. Computers & OR 36(4):1191–1203.
Roberti, R., and Mingozzi, A. 2014. Dynamic ng-path relax-
ation for the delivery man problem. Transportation Science
48(3):413–424.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
cartesian abstraction refinement. In Proceedings of the
Twenty-Third International Conference on Automated Plan-
ning and Scheduling (ICAPS).
Seipp, J., and Helmert, M. 2014. Diverse and additive carte-
sian abstraction heuristics. In Proceedings of the Twenty-
Fourth International Conference on Automated Planning
and Scheduling (ICAPS).
Valtorta, M. 1984. A result on the computational complex-
ity of heuristic estimates for the A* algorithm. Information
Sciences 34(1):47–59.
Yang, F.; Culberson, J. C.; and Holte, R. 2007. Using infea-
sibility to improve abstraction-based heuristics. In 7th In-
ternational Symposium on Abstraction, Reformulation, and
Approximation (SARA), 413–414.

60

