

DoSTra: Discovering Common Behaviors of Objects Using
the Duration of Staying on Each Location of Trajectories

Limin Guo1, Guangyan Huang2, Xu Gao1, Jing He3,4, Bin Wu1, Haoming Guo1

1 Institute of Software, Chinese Academy of Sciences, China
{limin, gaoxu, haoming}@nfs.iscas.ac.cn, wubin@iscas.ac.cn

2 School of Information Technology,Deakin University, Australia
guangyan.huang@deakin.edu.au

3 College of Engineering and Science, Victoria University, Australia
Jing.He@vu.edu.au

4 Nanjing University of Finance and Economics, China

Abstract
Since semantic trajectories can discover more semantic
meanings of a user’s interests without geographic
restrictions, research on semantic trajectories has attracted a
lot of attentions in recent years. Most existing work discover
the similar behavior of moving objects through analysis of
their semantic trajectory pattern, that is, sequences of
locations. However, this kind of trajectories without
considering the duration of staying on a location limits wild
applications. For example, Tom and Anne have a common
pattern of Home Restaurant Company Restaurant,
but they are not similar, since Tom works at Restaurant,
sends snack to someone at Company and return to
Restaurant while Anne has breakfast at Restaurant, works
at Company and has lunch at Restaurant. If we consider
duration of staying on each location we can easily to
differentiate their behaviors. In this paper, we propose a
novel approach for discovering common behaviors by
considering the duration of staying on each location of
trajectories (DoSTra). Our approach can be used to detect
the group that has similar lifestyle, habit or behavior
patterns and predict the future locations of moving objects.
We evaluate the experiment based on synthetic dataset,
which demonstrates the high effectiveness and efficiency of
the proposed method.

Introduction
With the advance of mobile computing technology and the
widespread use of GPS-enabled mobile devices, the
location-based services have been improved greatly.
Thanks to positioning technologies, a large amount of
moving object data are collected and managed in many
applications. Some moving objects share the same moving

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

pattern, which reflects the similar lifestyle, habit or
behavior in the real world, according to user trajectories.
Intuitively, if two users are considered as similar to each
other, they should satisfy some common behavior inferred
from their trajectories. In this paper, we study data mining
techniques for discovering common behaviors of objects.
 In recent years, research on trajectory pattern mining has
attracted a lot of attentions. It studies the problem of
finding the movement behavior or similar lifestyle between
moving objects. Trajectory pattern mining can be widely
used in many applications. Finding similar users based on
trajectory pattern can support friend recommendation to
help people to find friends with similar behavior or
lifestyle. In the crime analysis domain, finding
accomplices through user common behavior search can
prevent, decrease and control the criminals. Discovering
common behavior can predict the future locations of
moving objects, which can enable goods and location
recommendation to recommend some goods related to
user’s next location. Thus, trajectory pattern mining has
wide applications.
 There exist a lot of researches on trajectory pattern
mining in the literatures. In general, the existing researches
can be divided into two categories: geographic-based
trajectory pattern and semantic-based trajectory pattern.
The former one mainly focuses on the geographic features
of trajectories, such as shape, direction and speed etc. The
latter one discovers trajectory pattern based on the
semantic features of trajectories.
 In geographic-based methods, trajectories with close
distance and similar shape are considered to have grater
similarity to group together as a common behavior. In Fig.
1, for example, three persons’ trajectories are shown in the
geographic layer. From the view of geographic feature, Jim

9

Trajectory-Based Behavior Analytics: Papers from the 2015 AAAI Workshop

is more similar to Tom than Anne, because the distance
and shape between Tom and Jim are more closer and
similar than that of Tom and Anne. However, geographic
similarity is lack of semantic information, which cannot
discover similar behavior of moving objects.
 In semantic-based methods, semantic tags are introduced
to capture user’s interests and lifestyle. As shown in Fig. 1,
the same three persons’ semantic trajectories are shown in
the semantic layer. However, the current semantic-based
methods ignore the duration of staying on each location of
trajectories. For instance, in Fig 1, Tom and Anne have a
common pattern of Home Restaurant Company
Restaurant, but they are not similar, since Tom works at
restaurant, sends snack to someone at company and return
to restaurant while Anne has breakfast at restaurant, works
at company and has lunch at restaurant. Thus, the existing
semantic-based methods are not suitable to discover
common behavior with high accuracy.

Fig. 1 Geographic and Semantic Trajectories.

 According to above-mentioned reasons, in this paper, we
propose a novel framework, called DoSTra, to discover
common behavior of objects considering the duration of
staying on each location of trajectories. DoSTra has the
advantages that 1) it improves the accuracy to distinguish
different behavior patterns, and 2) it can detect the group
that has similar lifestyle, habit or behavior patterns. Fig. 2
shows an example of user behaviors with the staying
durations. Tom and Anne have the same common pattern
as Fig. 1, that is, Home Restaurant Company
Restaurant, but if we consider the duration of staying on
each semantic tag we can easily to differentiate their
behaviors. As shown in the figure, since the different
duration staying on company and restaurant which reflects
their different intentions, Tom and Anne are distinguished
to different behaviors.
 Given a set of raw trajectories, it’s necessary to
transform raw trajectories to semantic trajectories, and
discover the frequent semantic trajectory patterns of each
user with staying durations firstly, each pattern represents

one movement behavior of the user. With the duration of
staying on each location of trajectories, there is a need to
define a new similarity measurement for comparing a pair
of patterns between different moving objects. Finally,
based on the pattern similarity, we could cluster similar
patterns into groups hierarchically, where each cluster
represents a group of objects with a set of similar patterns
that can infer the common behavior of objects. Based on
the above description, the major challenges are
summarized as follows:
 Design a new semantic trajectory pattern mining

technique with staying durations.
 Define a new pattern similarity measure to enhance the

accuracy of the measurement with staying durations.
 Design a new clustering technique to discover common

behaviors of objects.

Fig. 2 User Behaviors with Staying Durations.

 To approach the above challenges, DoSTra provides
novel algorithms to discover semantic trajectory patterns,
measure pattern similarity and cluster common behavior of
objects. In summary, the main contributions of this paper
are as followings.
 We define a new semantic trajectory pattern to

represent movement behavior with staying durations.
 We propose an effective semantic trajectory pattern

mining algorithm.
 We propose a new measurement to evaluate the

similarity between patterns with staying durations.
 We propose a novel clustering algorithm based on

pattern similarity to discover common behavior.
 We demonstrate the effectiveness and efficiency of our

methods on synthetic moving object trajectories.
 The remaining of this paper is organized as follows.
Related works are discussed in Sect. 2. Our problem is
defined in Sect. 3. The three components of DoSTra,
including semantic trajectory pattern mining, pattern
similarity and similarity-based user clustering, are detailed
in Sects. 4, 5 and 6 respectively. The experimental results
are shown in Sect. 7. Finally, Sect. 8 concludes the paper.

Related Work
In this section, we first present a survey of methods for
trajectory similarity measurement, and then review some
existing data mining techniques to find trajectory patterns.

Semantic
 Layer

Geographic
Layer

X

Y

Tom

Anne

Jim

Jim
Tom

Anne

Home Restaurant Gas Station Church Company Park

Jim

Tom

Anne

 10 4

 1
 4

10

 10

1

0.5

 0.5

4

4
0.5

1.5

1.5

1 2 0.5 2

Susan

10

Trajectory Similarity Measurement.
The existing researches on similarity measurement can be
divided into two categories: geographic similarity and
semantic similarity.
 Geographic similarity mainly focuses on the geographic
features of trajectories. Most early existing researches on
trajectory similarity are Euclidean-based distance measures,
DTW (Keogh, 2002), EDR (Chen et al., 2005), LCSS
(Vlachos et al., 2006) are the most representative. In
addition, many works measure the similarity between
movement behaviors from trajectories (Li et al., 2008;
Zheng et al., 2010). In Hung et al. (2011), clue-aware
trajectory similarity considers the silent durations. A
partition-and-group method (Lee et al., 2007) exploits
three types of distance measurement. Lu et al. (2009)
evaluates the greater similarity between trajectories when
both the occurrence time and locations are approximate.
 Semantic similarity mainly focuses on the semantic
features of trajectories. The study of semantic trajectories
has been discussed in (Alvares et al., 2007; Parent et al.,
2013; S. Spaccapietra et al. 2011; Yan et al., 2011). In
these literatures, the semantic trajectory is considered as a
set of spatio-temporal positions complemented with
annotations. According to this way, many applications
extract behavior knowledge in semantic aspects than in
merely positional data.
 In recent years, some work measure the similarity based
on semantic trajectories (Ying et al., 2010 & 2014; Zheng
et al., 2011a &2011b & 2009; Liu et al., 2012). In these
work, each trajectory is transformed into the semantic
trajectory first, then evaluate user similarities to
recommend potential friends. In Ying et al. (2010), the
author considers the similarity between two users in terms
of the similarity of their maximal semantic trajectory
patterns. (Zheng et al., 2011a &2011b & 2009) mine a
semantic hierarchical tree-structured framework to
calculate similarity, In Ying et al. (2014), geographic
feature and semantic feature are used to predict user’s next
location.
 Since geographic similarity measures only consider the
location information, while semantic similarity measures
are not designed to handle the staying durations of
trajectories, our proposed similarity measurement is
different from current methods.

 Trajectory Pattern Mining.
The existing work on discovering common pattern could
be classified into two categories: trajectory clustering and
trajectory pattern mining.
 Trajectory pattern mining studies the movement pattern
of moving objects, most early researches focus on the
spatial-temporal characteristics of trajectories (Tsai et al.,
2011; Smouse et al., 2010; Zhu ,2011; Li et al., 2010a).

The basic idea of these literatures is to use sequential
pattern mining algorithm to discover frequent patterns
from transformed trajectories. In Alvares et al. (2007), a
semantic trajectory pattern mining method is proposed,
which applies a sequential pattern mining algorithm on
semantic trajectories.
 Because these methods do not consider the duration of
staying on each location of trajectories Thus, these
methods may not work well when staying durations appear
in behavior patters.
 Trajectory clustering aims at catching common patterns
or behaviors from moving objects. Many works find
patterns of travelling together, including snowball (Guo et
al., 2014), moving cluster (Kalnis et al., 2005), flock
(Naymat et al., 2007), convoy (Jeung et al., 2008),
compainion (Tang et al., 2012) ,swarm (Li et al., 2010b)
and gathering (Zheng et al., 2013). Besides, another kind
of clustering focuses on the common paths for a group of
moving objects. Partition-and-group framework (Lee et al.,
2007) partitions each trajectory into a set of sub-
trajectories, and then groups clusters using distance
function. In Wu et al., (2012), both the spatial and temporal
criteria are considered for trajectory dividing and
clustering.
 However, these methods cluster trajectories either from
the aspect of individual or group, which may not work well
to discover common behavior of objects. Moreover, these
approaches are not suitable for semantic trajectory.

Problem Statement
In this section, we give the preliminary concepts that will
be used in further discussions in the rest of the paper. Then
we show the architecture of our approach. Table.1 lists the
notations used throughout this paper.

Table 1: List of Notations.
Notation Explanation

I a semantic item
ST a semantic trajectory
TP a semantic trajectory pattern
 a semantic trajectory dataset
A an annotation
 a duration threshold

 a minimum length threshold
min_sup a minimum support threshold

I = I’ I is item equal to I’
TP TP’ TP is semantic contained in TP’

LCS a longest common sub-sequence
ER an effective range

Preliminary Concepts
The raw trajectory of a moving object is recorded as a
sequence of spatio-temporal points. Thanks to city
information, the spatio-temporal points can be transformed
to semantic meanings of places of interest, such as shops,
restaurants, and cinemas etc. Thus, a semantic trajectory

11

can be enhanced with annotations from the raw trajectory.
Semantic trajectory is the basement of our work, and the
rest of the paper is based on it.
 Let I = (A, t) be a semantic item, where A is an
annotation, t is the staying durations on the annotation of A.
Let ST = <I1, I2, …, In> be a semantic trajectory which is
an order sequence of semantic items, where Ii is a semantic
item, 1 i n. As shown in Fig.2, the semantic trajectory
of Tom is represented as < (Home, 10), (Restaurant, 4),
(Company, 1), (Restaurant,4) >.
 In order to describe semantic trajectory pattern, we
should introduce the definitions of item equal, semantic
containment firstly.
Definition 1 (Item Equal, =): Given two semantic items I1
= (A1, t1) and I2 = (A2, t2), and a duration threshold . I1 is
equal to I2, denoted by I1 = I2, if the following conditions
are satisfied:
(1) A1 = A2;
(2) – .

The second condition indicates that the difference ratio
between two items’ staying durations is limited to .
Definition 2 (Semantic Containment,): Given two
sequences of semantic items S1 = < I1, I2, …, Ik > and S2 =
<I’1, I’2, …, I’n>, and a duration threshold , S1 is semantic
contained in S2, defined by S1 S2, if and only if there
exists a sequence of integers 1 i1 < … < ik n such that:

 1 j k, Ij = w.r.t .
If two sequences of semantic items S1 and S2 satisfy S1

S2, we also denote that S1 is a sub-sequence of S2.
From the above definitions, the definition of semantic

trajectory pattern can be assigned.
Definition 3 (Semantic Trajectory Pattern): Given a set
of semantic trajectories = (ST1, ST2, …STn), a sequence
of semantic items TP = < I1, I2, …, Ik >, a duration
threshold , and a minimum support threshold min_sup,
TP is a semantic trajectory pattern, represented as I1 I1
 … Ik, if and only if:

 min_sup
where the support

 of a semantic trajectory

pattern TP is the number of semantic trajectories ST
such that TP ST w.r.t .
 Without loss of generality, we use letters to represent the
annotation of semantic items, and a semantic trajectory
dataset are shown in Table 2. Suppose 0.5 and ssup = 2,
according to Definition 4, (a, 10) (b, 0.5) (c, 4) (b,
1.5) is a semantic trajectory pattern. However, we can see
that any (a, 10) (b, t) (d, 4) (b, 1.5) is a semantic
trajectory pattern whenever t [0.5, 1]. Thus, we use
average staying durations to represent the semantic
trajectory pattern.

Table 2: An Example of Semantic Trajectory Dataset.

Sid Semantic Trajectory
1 <(a,10),(b,4),(c,1),(b,4)>
2 <(b,1),(d,2),(e,0.5),(f,2)>
3 <(a,10),(b,1),(c,4),(b,1.5)>
4 <(a,10),(b,0.5),(d,0.5),(c,4),(f,0.5),(b,1.5)>

 In order to avoid discover duplicate behaviors, we only
maintain the maximal semantic trajectory pattern to
represent user’s habit behavior. A semantic trajectory
pattern TP is a maximal pattern if TP cannot be enlarged,
which means ’ s.t. TP’ is a semantic trajectory pattern
and TP TP’.
 According to the definition of the semantic trajectory
pattern, the problem in this paper can be formulated as
follows.

Problem Statement: Given a set of semantic trajectories
and two thresholds, min_sup and , where min_sup is for
the frequent pattern mining, is for time difference ratio.
The problem is to discover common behaviors between
moving objects with the following steps (1) discover
semantic trajectory patterns from semantic trajectories w.r.t
min_sup and ; and then (2) measure the pattern similarity
between moving objects; (3) discover a set of clusters,
where each cluster has similar lifestyle, habit or behavior
patterns, based on the pattern similarities.

System Overview
In this subsection, we brief an overview of our proposed
approach, DoSTra, to discover common behavior. The
general framework of DoSTra can be divided into three
parts: (1) semantic trajectory pattern mining (STPM), (2)
pattern similarity (P-Similarity) and (3) similarity-based
user clustering (SUC). Specifically, given a set of raw
trajectories, first, we transform raw trajectories to semantic
trajectories, and mine semantic trajectory patterns for each
moving object based PrefixSpan. Then, we design the
pattern similarity based on time-weigth. Finally, we
perform a hierarchical clustering method with LCS-
boundary pruning strategy, where each cluster represents
the common behavior patterns from potential friends.

Fig. 3 System Overview.

Semantic Trajectory Pattern Mining
In this section, we provide details of the semantic
trajectory pattern mining algorithm. However, we first

Semantic Trajectory
Transformation

 Raw
Trajectories

Similarity-based
User Clustering

LCS-Boundary
Pruning Strategy

Pattern Similarity

Time-Weight-
based Similarity

Computation

Semantic Trajectory
Pattern Mining

PrefixSpan-based
Mining

Algorithm

User Common
Behavior

12

have to transform raw trajectories to semantic trajectories,
which has been studied in literatures (Alvares et al. 2007).
The detail of this phase is omitted due to space limitation.
 After transforming raw trajectories to semantic
trajectories, the major behavior patterns of each moving
object can be mined from its semantic trajectories. We
propose the STPM algorithm to discover semantic
trajectory patterns, which modifies the PrefixSpan method
to adapt the staying durations.
 The difference between STPM and PrefixSpan is the
construction of projected database. For a annotation , -
projected database consists of subsequences prefixed with
the first occurrence of in PrefixSpan. However, the
projection position of STPM is not always the first
occurrence of .
 Let S = < I1, I2, …, In > be a sequence of semantic items,
for any Ii = (Ai, ti), the proj-tuple of Ii, denoted as , is a
triple of (S.sid, i, ti), where S.sid is the sequence id of S, i is
the occurrence position of Ii in S, and ti is the staying
durations of Ii. The proj-sequence of Ai w.r.t. in S,
denoted as

, is the subsequence of S where all items
that precede Ii are removed, that is <Ii+1, Ii+2, …, In>.
 Let be a semantic trajectory dataset, be a annotation,
the -projected database of , denoted as , is a set of
couples {(,

), (,
), …, (,

)},
where Si is the semantic trajectory of which contains ,
 and

 are the corresponding proj-tuple and proj-
sequence of in Si. Take Table 2 for example, the b-
projected database of Table 2 is shown in Table 3, which is
ordered in ascending order of durations.

Table 3: b-projected database.
Prefix Proj-Tuple Proj-Sequence

b (4, 2, 0.5) <(d,0.5),(c,4),(f,0.5),(b,1)>
(2, 1, 1) <(d,2),(e,0.5),(f,2)>
(3, 2, 1) <(c,4),(b,1)>
(3, 4, 1.5)
(4, 6, 1.5)
(1, 2,4) <(c,1),(b,4)>
(1, 4, 4)

 Algorithm 1 presents the pseudo code of STPM
algorithm. We call STPM(, , min_sup,) to discover
trajectory patterns of each moving object. In algorithm 1,
we first scan -projected database to find the set of
frequent-1 itemset (Line 1-3), then every frequent
annotation is appended to to form , we construct -
projected database and sort it by durations in ascending
order (Line 4-7), after that we scan proj-tuple of
from first to end, for every , we calculate the range of
durations which covers all items that equal to the one
point to, if all the equal items satisfy min_sup, then we
generate a new item with average durations, after that the
subsets of patterns can be mined by recursively (Line 8-15).
If there is no possible to generate any new frequent item,

the processing will be terminated, and output I as a
qualified pattern (Line 16-17).
Algorithm 1: STPM Algorithm
Input: I: a prefix semantic item; : the -projected database, if ,

otherwise, a semantic trajectory dataset of an object; min_sup:
the minimum support threshold; : the time duration threashold.

Output: every qualified maximal semantic trajectory patterns sq.
1. find 0
2. I.A; // get the annotation of I;
3. Scan to find the set of frequent annotations AS w.r.t min_sup;
4. for each annotation in AS do
5. append to ;
6. construct -projected database;
7. Sort in ascending order of durations;
8. for each couple C (,

) in do
9. W [.duration,]; //range of equal item
10. sup number of couples whose duration is in W;
11. if sup min_sup then

12. I’ (,

);

13. Inew append I’ to I;
14. STPM(Inew,

, min_sup,);

15. find 1
16. if find = 0 then
17. output I as a qualified pattern sq;

Semantic Pattern Similarity
To identify how similar between two maximal semantic
trajectory patterns, we should observe how many common
parts the two patterns contain. Thus, we use the concept of
the Longest Common Sub-sequence (LCS) to evaluate the
similarity between two patterns, which is similar to
(Bergroth et al., 2000), but extends the staying durations.
 Let P1 = < I1, I2, …, Im > and P2 = < I’1, I’2, …, I’n > be
two semantic trajectory patterns, the longest common sub-
sequence of P1 and P2 is a longest pattern LCS = <

 …
 > which is both a sub-sequence of P1 and P2.

Specifically, there exist 1 i1 < … < ik m and 1 j1 < …
< jk n such that: 1 p k,

 = and
 = , where

t*p = .
 Since LCS contains bias of staying durations, we use a
time-weight to measure the weight of item in LCS.
Definition 4 (Time-Weight): Suppose the description of
P1, P2 and LCS is as above, the time-weight of

 in LCS,
denoted by (

), is defined as following:
 (

) = 1 –
 In light of the definition of LCS and time-weight, we
define the pattern similarity between two patterns as
follows.
Definition 5 (Pattern Similarity): Suppose the description
of P1, P2 and LCS is as above, the similarity between P1
and P2, denoted by P-Sim(P1, P2), is defined as following:

P-Sim (P1, P2) =

13

 For example, suppose 0.5, given a pattern P = < (a,
10), (b, 1), (c, 4), (b, 1) > and a pattern Q = < (a, 10), (b,
0.5), (d, 0.5), (c, 4), (f, 0.5), (b, 1)>, their longest common
sequence is LCS(P, Q) = < (a, 10), (b, 0.75), (c, 4), (b, 1) >.
Table 3 gives the time-weight of LCS. Consequently, the
pattern similarity between P and Q is P-Sim(P,Q) = (1/4
+1/6) (1+0.5+1+1) = 1.46.

Table 3: An Example of Time-Weight.
LCS

Duration
I1 I2 I3 I4

(a, 10) (b, 0.75) (c, 4) (b, 1)
P 10 1 4 1
Q 10 0.5 4 1

 (I) 1 0.5 1 1

 We modify the longest common sequence algorithm to
facilitate the pattern similarity measurement. As we known,
dynamic programming is the most popular solution for
longest common sequence problem. We use a matrix SM to
store the similarity between P and Q at each step of
calculation, the calculation formula as follows.

The algorithm for pattern similarity is listed in
Algorithm 2.
Algorithm 2: P-Similarity Algorithm
Input: P, Q: semantic trajectory patterns; |P|, |Q|: length of P and Q; : a

duration threshold;
Output: SM: P-Sim of P and Q; LCSM: LCS of P and Q;
1. for i 0 to |P| do
2. SM[i, 0] 0; LCSM[i, 0] ;
3. for j 0 to |Q| do
4. SM[0, j] 0, LCSM[0, j]
5. for i 1 to |P| do
6. for j 1 to |Q| do
7. if P[i] = Q[j] w.r.t then
8. S SM[i-1, j-1]
9. rst1

 ;

10. rst2

 ;

11. SM[i, j] rst1 + rst2 ;
12. LCSM[i, j] append (P[i].A,

) to LCSM[i, j];
13. else
14. S1 SM[i-1, j]; S2 SM[i, j-1];
15. rst1

 ;

16. rst2

 ;

17. if rst1 rst2 then
18. SM[i, j] rst2; LCSM[i, j] LCSM[i, j-1]
19. else
20. SM[i, j] rst1; LCSM[i, j] LCSM[i-1, j]
21. return SM[|P|, |Q|], LCSM[|P|, |Q|];

 In algorithm 2, we use the dynamic programming
method to calculate the pattern similarity. First, matrix SM
and LCSM are initialized (Line 1-4), which represent
similarity and LCS between P and Q respectively. Then we
fill SM and LCSM step by step (Line 5-20). Finally, the

similarity and LCS between P and Q will be returned (Line
21).

Similarity-based User Clustering
In this section, we describe the similarity-based user
clustering (SUC) algorithm for clustering common
behavior patterns based on pattern similarity.
 Since density-based clustering method may introduce
noise, we use a hierarchical clustering method. The basic
idea of SUC is a bottom-up algorithm that treats each
pattern as a singleton cluster at the beginning and merge
pairs of clusters with different moving objects according to
similarity until the minimum length threshold satisfied.
Algorithm 3: SUC Algorithm
Input: MOP = {mop1, mop2, …, mopN}: a set of moving objects patterns,

where mopi=(i, U, P); : a minimum length threshold
Output: mo_set: the moving object clusters with common behavior.
1. mo_set ;
2. for i 1 to N 1 do
3. for j i + 1 to N do
4. M[i, j].sim, M[i, j].lcs P-Similarity(mopi.P, mopj.P);
5. stop 0;
6. while stop = 0 do
7. stop 1;
8. m_sim 0; m_i 0; m_j 0;
9. for i 1 to N 1 do
10. for j i + 1 to N do
11. if |SM[i, j].lcs| && m_sim < SM[i, j]

 && mopi.U mopj.U = then
12. m_sim SM[i, j];
13. m_i i; m_j j; stop 0;
14. if stop = 0 then
15. MOP MOP mopm_j; //remove mopm_j from MOP
16. mopm_i (m_i, mopm_i.U mopm_j.U, M[m_i, m_j].lcs);
17. Remove the m_ j-th row from matrix M;
18. N N – 1;
19. for j m_ i + 1 to N do
20. M[m_i,j].sim, M[m_i,j].lcs P-Similarity(mopm_i.P, mopj.P);
21. for j = 1 to m_ i – 1 do
22. M[j,m_i].sim, M[j,m_i].lcs P-Similarity (mopj.P, mopm_i.P);
23. for mop in MOP do
24. if |mop.U| > 1 do
25. mo_set mo_set mop;
26. return mo_set;

 Algorithm 3 shows SUC algorithm. In algorithm 3, we
first initialize similarity matrix of initial clusters at the
outset (Line 1-5), where each cluster consists of a pattern
and a corresponding moving object. Then, we cluster each
layer from bottom to up until the minimum length
threshold not satisfied (Line 6-22), in each iteration of the
clustering process, the most similar pair of patterns
between each two moving objects would be merged to
form a new cluster (Line 9-13). After that, we check
whether there exists a new merged cluster, if so, we would
remove the previous clusters, insert the new one and
update the similarity matrix (Line 14-22), Finally, clusters
are returned (Line 23-26).
 From algorithm 3 we can observe that pattern similarity
of each pair of patterns between every two moving objects

0 if 0 or 0

[-1, -1] | []. - []. | 1 1[,] 1-
1 (-1) 1 (-1) max([]. , [].)

i j
SM i j P i t Q j tSM i j
i j P i t Q j t i j

 

    
            

 if [] [] . . .

max([-1,], [, -1]) otherwise

tP i Q j w r t

SM i j SM i j












14

should be calculated at first, and in each bottom up
clustering step, the pattern similarity will be also be
calculated N times. However, this is time-consuming and
not necessary in some conditions.
 Since the semantic trajectory pattern consists of a series
of semantic items with duration of staying time. As a result,
the similarity of two patterns is constrained by staying time.
Definition 6 (Effective Range): Give a semantic trajectory
pattern P = < I1, I2, …, Ik >, a duration threshold . The
effective range of Ii, denoted by Eri, is defined as following:

Eri = (Ai, [ti_min, ti_max])
where Ai is the annotation of Ii, ti_min = (1-) ti and ti_max
= . Thus, the effective range of P is ERp = <Er1,
Er2, …, Erk>.
 Let Er = (A, [tmin, tmax]) be an effective range, I’ = (A’, t’)
is an effective item of Er if ’ = A and ’ [tmin, tmax], which
is denoted by I’ Er.
Definition 7 (LCS-Boundary): Give two semantic
trajectory patterns P and Q, an effective range ERp = <Er1,
Er2, …, Erk> of P, the LCS-boundary between P and Q,
denoted by LCS-B(P, Q), is the number of items I’ Q such
that I’ Eri, where Eri ERp.

Fig. 4 An Example of Effective Range and LCS-Boundary

 As shown in Fig. 4, suppose = 0.5, a semantic pattern
P = <(a, 1), (b, 2), (c, 3)>, the corresponding effective
range of P is Erp = <(a, [0.5, 2]), (b, [1, 4]), (c, [1.5, 6])>,
which represents it’s impossible to find common sequence
of P outside the range of Erp. Like in pattern Q, (a, 0.1) is
not a sub-sequence of P, while (b, 3) and (c, 4.5) are
effective items to be sub-sequences of P. Thus, according
to the definition 7, the LCS-B(P, Q) is 2.
 Algorithm 4 shows the Optimized-SUC algorithm,
which uses LCS-boundary pruning strategy to optimize
SUC. The initialization is similar to SUC (Line 1-7). Then,
we use pruning strategy to reduce the pattern similarity
computation cost when cluster similar patterns (Line 8-31).
After that, we check whether there exists a new merged
cluster, if so, we would remove the previous clusters, insert
the new one and update the similarity matrix (Line 17-31).
Since the most time-consuming task is to compute
similarity between patterns, then algorithm 4 can prune
most of invalid process and improve efficiency.
Algorithm 4: Optimized-SUC Algorithm
Input: MOP = {mop1, mop2, …, mopN}: a set of moving objects patterns,

where mopi=(i, U, P); : a minimum length threshold

Output: mo_set: the moving object clusters with common behavior.
1. mo_set ;
2. for i = 1 to N - 1 do
3. for j i + 1 to N do
4. if LCS-B(mopi.P, mopj.P) then
5. M[i, j].sim , M[i, j].lcs P-Similarity(mopi.P, mopj.P);
6. else
7. M[i, j].lcs 0;
8. stop 0;
9. while stop = 0 do
10. stop 1;
11. m_sim 0; m_i 0; m_j 0;
12. for i 1 to N - 1 do
13. for j i + 1 to N do
14. if SM[i, j].lcs && m_sim < SM[i, j]

 && mopi.U mopj.U = then
15. m_sim SM[i, j];
16. m_i i; m_j j; stop 0;
17. if stop = 0 then
18. MOP MOP mopm_j //remove mopm_j from MOP;
19. mopm_i (m_i, mopm_i.U mopm_j.U, SM[m_i, m_j].lcs);
20. Remove the m_ j-th row from matrix M;
21. N = N – 1;
22. for j m_i + 1 to N do
23. if LCS-B(mopm_i.P, mopj.P) then
24. M[m_i,j].sim,M[m_i,j].cls=P-Similarity(mopm_i.P,mopj.P);
25. else
26. M[m_i, j].cls = 0;
27. for j 1 to m_i - 1 do
28. if LCS-B(mopm_i.P, mopj.P) then
29. M[j,m_i].sim,M[j,m_i].cls=P-Similarity(mopj.P,mopm_i.P);
30. else
31. M[j, m_i].cls = 0;
32. for mop in MOP do
33. if |mop.U| > 1 do
34. mo_set mo_set mop;
35. return mo_set;

 Experiment
In this section, we conduct a series of experiments to
evaluate the proposed algorithms using synthetic datasets.
All the experiments are implemented in C/C++ on Intel(R)
Xeon(R) CPU E5-2630 0 @ 2.30GHz machine with 4GB
of memory running CentOS release 6.2(Final) using GCC
4.4.6 with optimization -O2.

Experimental Setup
To evaluate the techniques proposed for our DoSTra
framework, we use a synthetic semantic trajectory dataset,
generated from a set of seed moving objects. Each moving
object generates a set of semantic trajectories according to
his lifestyle.
 In order to investigate the effect of staying durations,
two parameters are used to control the behavior: pattern
category NPC and the random probability Pr. Specifically,
we partition the semantic trajectory patterns into NPC
classes, which represent the lifestyle of all objects. Each
moving object generates trajectories as the follows: the Pr
percentage of trajectories are generated randomly, while
the rest are generated according to a part of NPC pattern
categories. The main parameters are listed in Table 4.

LCS-B(P, Q) = 2

a b c
1 2 3

P

a b c
[0.5, 2] [1, 4] [1.5, 6]

ErP

Q
4.5 3

a b c
0.1

15

0

40

80

120

160

200

4 6 8 10 12
L pattern

ru
nt

im
e(

s)

SUC
Optimized-SUC

0

30

60

90

120

150

0.1 0.15 0.2 0.25 0.3
 t

ru
nt

im
e(

s)

SUC
Optimized-SUC

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5

min_sup (percentage)

ra
ti

o

precision

0

0.2

0.4

0.6

0.8

1

0.1 0.15 0.2 0.25 0.3
 t

ra
ti

o

precision

Table. 4. Experiment Settings.
Name Value Meaning

Nmo 100 the number of moving objects
Ntrj 1000 the number of semantic trajectories of each mo

Lpattern 4-12 the average length of each pattern
 01-0.3 the duration threshold

 3 the minimum length threshold
min_sup 0.1-0.5 the minimum support threshold

NPC 20 the number of pattern categories
Pr 0.2 the random probability

Effectiveness Evaluation
We define a metric, called precision, to evaluate the
effectiveness of our methods: precision = ,
where is the number of correct discovered patterns, and
 is the number of incorrect discovered patterns.
 Fig.5 plots the precision changing with min_sup and ,
the default parameters used in the experiments are: Nmo =
100, Ntrj = 1000, Lpattern = 6, NPC = 20 and Pr = 0.2.

(a)Precision Changing with min_sup (b) Precision Changing with

Fig. 5. Precision Evaluation

 Fig. 5(a) shows with the increase of min_sup, the
precision is increase, the reason is that the discovered
patterns become more pure with the increase of min_sup,
then the incorrect discovered patterns is obviously reduced,
so the precision is increase. In Fig. 5(b), the precision is
decreased with the increase of , since with the increase of
 , the distinction between different patterns becomes
weaker which will lead a rise in error rate.

Efficiency Evaluation
We compare the execution time of SUC and Optimized-
SUC by varying the parameters of Lpattern and in Fig.6.
The default parameters are: Nmo = 100, Ntrj = 1000,
min_sup = 0.2 (percentage) and = 3.

Fig. 6 shows the performance of SUC and Optimized-
SUC changing with Lpattern and , where is set to 0.2 in
Fig. 6(a) and Lpattern is set to 6 in Fig. 6(b). From Fig. 6(a)
we can see that with the increase of Lpattern, runtime of SUC
and Optimizied-SUC are all increased. The reason is that
with the average length of pattern increases, the
computation cost of longest common sub-sequence
matching also largely increases, which is the main time-
consuming part. Similarly, Fig. 6(b) shows that the runtime
of two algorithms are increased with the increase of .

Because the complexity of longest common sub-sequence
matching is increased with the increase of . Moreover,
compared with SUC, the performance of Optimized-SUC
is greatly improved in both two figures, which shows the
validity of our pruning strategy.

 (a)Runtime Changing with Lpattern (b)Runtime Changing with

Fig. 6. Runtime Evaluation

 In summary, all the experiments demonstrate the
performance of our algorithms in terms of effectiveness
and efficiency. DoSTra can provide acceptable execution
performances with high recognition accuracy from
different behaviors.

Conclusion
In this paper, we propose the DoSTra framework to
discover common behaviors between moving objects. In
order to improve the accuracy to distinguish different
behavior patterns, we introduce the staying durations.
DoSTra mainly consists of three components: semantic
trajectory pattern mining, semantic pattern similarity and
similarity-based user clustering. Experimental results show
that DoSTra is able to effectively and efficiently discover
common behaviors from semantic trajectories. For future
work, we plan to design the parallelization technique to
support massive data.

Acknowledgments
This research is supported by the National Natural Science
Foundation of China under Grant No. 61402449, 91124001,
71372188, 61300213, and the Priority Academic Program
Development of Jiangsu Higher Education Institutions
(PAPD, Food Safety and Engineering).

References
C.-C. Hung, W.-C. Peng, and W.-C. Lee. Clustering and aggregating
clues of trajectories for mining trajectory patterns and routes. VLDB
Journal, 2011.
C. Parent, S. Spaccapietra, C. Renso, et al. Semantic Trajectories
Modeling and Analysis. ACM Computing Surveys, 45(4), 2013.
E.H.-C. Lu, and V.S. Tseng. Mining Cluster-based Mobile Sequential
Patterns in Location-Based Service Environments. In MDM, 273-278,
2009.
E.J. Keogh. Exact indexing of dynamic time warping. In VLDB, 406-417,
2002.

16

G. Al-Naymat, S. Chawla, and J. Gudmundsson. Dimensionality
reduction for long duration and complex spatio-temporal queries. In SAC,
2007.
H. Jeung, H. T. Shen, and X. Zhou. Convoy queries in spatio-temporal
databases. In ICDE, 2008.
H. Liu, and M. Schneider. Similarity Measurement of Moving Object
Trajectories. In IWGS, 2012.
H. P. Tsai, D. N. Yang, M. S Chen. Mining Group Movement Patterns for
Tracking Moving Objects Efficiently. IEEE Transactions on Knowledge
and Data Engineering, 23(2): 266-281, 2011.
H.-R. Wu, M.-Y. Yeh, M.-S. Chen. Profiling Moving Objects by Dividing
and Clustering Trajectories Spatiotemporally. In TKDE, 2012.
J.-C. Ying, H.-S. Chen, K. W. Lin, et al. Semantic trajectory-based high
utility item recommendation system. Expert Systems with Applications.
4762-4776, 2014.
J.-G. Lee, J. Han and K.-Y. Whang. Trajectory Clustering: A Partition-
and-Group Framework. In SIGMOD, 593-604, 2007.
J. J.-C. Ying, E. H.-C. Lu, W.-C. Lee, et al. Mining User Similarity from
Semantic Trajectories. In LBSN, 19-26, 2010.
K. Zheng, Y. Zheng, and N. J. Yuan. On Discovery of Gathering Patterns
from Trajectories. In ICDE, 2013.
L. A. Tang, Y. Zheng. On discovery of traveling companions from
streaming trajectories. In ICDE, 2012.
L. Bergroth, H. Hakonen, T. Raita. A Survey of Longest Common
Subsequence Algorithms. In SPIRE, 39-48, 2000.
L. Chen, M. Ozsu, and V. Oria. Robust and fast similarity search for
moving object trajectories. In SIGMOD, 491–502, 2005.
L. Guo, G. Huang, Z. Ding. Efficient Detection of Emergency Event from
Moving Object Data Streams. In DASFAA, 422-437, 2014.
L. O. Alvares, V. Bogorny, B. Kuijpers, et al. Towards semantic
trajectory knowledge discovery. Data Mining and Knowledge Discovery,
2007.
F. X Zhu. Mining Ship Spatial Trajectory Patterns from AIS Database for
Maritime Surveillance. In ICEMMS, 772-775, 2011.
M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E.J. Keogh.
Indexing multidimensional time-series. VLDB Journal, 15(1), 1-20, 2006.
P. E. Smouse, S. Focardi, P. R. Moorcroft, et al. Stochastic Modeling of
Animal Movement. Philosophical Transactions of the Royal Society of
London - Series B: Biological Sciences, 365(1550): 2201–2211, 2010.
P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving
clustering moving clusters in spatio-temporal data. In SSTD, 2005.
Q. Li, Y. Zheng, X. Xie, et al. Mining User Similarity Based on Location
History. In Sigspatial GIS, 2008.
S. Spaccapietra, and C. Parent. Adding meaning to your steps. In ER. 13-
31, 2011.
Y. Zheng, L. Zhang, and X. Xie. Recommending friends and locations
based on individual location history. ACM Transaction on the Web, 2010.
Y. Zheng and X. Xie. Learning Ttravel Recommendations from User-
generated GPS Traces. ACM Transactions on Intelligent Systems and
Technology (TIST), 2(1), 2011a.
Y. Zheng, L. Zhang, Z. Ma, et al. Recommending Friends and Locations
Based on Individual Location History. TWEB, 5(1), 2011b.
Y. Zheng, L. Zhang, X. Xie, et al. Mining Interesting Locations and
Travel Sequences from GPS Trajectories. In WWW, pp791-800, 2009.
Z. H. Li, M. Ji, J. G. Lee, et al. MoveMine: Mining Moving Object
Databases. In SIGMOD, 1203-1206, 2010a.
Z. Li, B. Ding, J. Han, et al. Swarm: mining relaxed temporal moving
object clusters. In VLDB, 2010b.
Z. Yan, D. Chakraborty, C. Parent, et al. SeMiTri: A Framework for
Semantic Annotation of Heterogeneous Trajectories. In EDBT, 259-270,
2011.

17

