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Abstract 
Since semantic trajectories can discover more semantic 
meanings of a user’s interests without geographic 
restrictions, research on semantic trajectories has attracted a 
lot of attentions in recent years. Most existing work discover 
the similar behavior of moving objects through analysis of 
their semantic trajectory pattern, that is, sequences of 
locations. However, this kind of trajectories without 
considering the duration of staying on a location limits wild 
applications. For example, Tom and Anne have a common 
pattern of Home   Restaurant   Company   Restaurant, 
but they are not similar, since Tom works at Restaurant, 
sends snack to someone at Company and return to 
Restaurant while Anne has breakfast at Restaurant, works 
at Company and has lunch at Restaurant. If we consider 
duration of staying on each location we can easily to 
differentiate their behaviors. In this paper, we propose a 
novel approach for discovering common behaviors by 
considering the duration of staying on each location of 
trajectories (DoSTra). Our approach can be used to detect 
the group that has similar lifestyle, habit or behavior 
patterns and predict the future locations of moving objects. 
We evaluate the experiment based on synthetic dataset, 
which demonstrates the high effectiveness and efficiency of 
the proposed method. 

Introduction  
With the advance of mobile computing technology and the 
widespread use of GPS-enabled mobile devices, the 
location-based services have been improved greatly. 
Thanks to positioning technologies, a large amount of 
moving object data are collected and managed in many 
applications. Some moving objects share the same moving 
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pattern, which reflects the similar lifestyle, habit or 
behavior in the real world, according to user trajectories. 
Intuitively, if two users are considered as similar to each 
other, they should satisfy some common behavior inferred 
from their trajectories. In this paper, we study data mining 
techniques for discovering common behaviors of objects. 
 In recent years, research on trajectory pattern mining has 
attracted a lot of attentions. It studies the problem of 
finding the movement behavior or similar lifestyle between 
moving objects. Trajectory pattern mining can be widely 
used in many applications. Finding similar users based on 
trajectory pattern can support friend recommendation to 
help people to find friends with similar behavior or 
lifestyle. In the crime analysis domain, finding 
accomplices through user common behavior search can 
prevent, decrease and control the criminals. Discovering 
common behavior can predict the future locations of 
moving objects, which can enable goods and location 
recommendation to recommend some goods related to 
user’s next location. Thus, trajectory pattern mining has 
wide applications. 
 There exist a lot of researches on trajectory pattern 
mining in the literatures. In general, the existing researches 
can be divided into two categories: geographic-based 
trajectory pattern and semantic-based trajectory pattern. 
The former one mainly focuses on the geographic features 
of trajectories, such as shape, direction and speed etc. The 
latter one discovers trajectory pattern based on the 
semantic features of trajectories. 
 In geographic-based methods, trajectories with close 
distance and similar shape are considered to have grater 
similarity to group together as a common behavior. In Fig. 
1, for example, three persons’ trajectories are shown in the 
geographic layer. From the view of geographic feature, Jim 
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is more similar to Tom than Anne, because the distance 
and shape between Tom and Jim are more closer and 
similar than that of Tom and Anne. However, geographic 
similarity is lack of semantic information, which cannot 
discover similar behavior of moving objects. 
 In semantic-based methods, semantic tags are introduced 
to capture user’s interests and lifestyle. As shown in Fig. 1, 
the same three persons’ semantic trajectories are shown in 
the semantic layer. However, the current semantic-based 
methods ignore the duration of staying on each location of 
trajectories. For instance, in Fig 1, Tom and Anne have a 
common pattern of Home   Restaurant   Company   
Restaurant, but they are not similar, since Tom works at 
restaurant, sends snack to someone at company and return 
to restaurant while Anne has breakfast at restaurant, works 
at company and has lunch at restaurant. Thus, the existing 
semantic-based methods are not suitable to discover 
common behavior with high accuracy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Geographic and Semantic Trajectories. 

 According to above-mentioned reasons, in this paper, we 
propose a novel framework, called DoSTra, to discover 
common behavior of objects considering the duration of 
staying on each location of trajectories. DoSTra has the 
advantages that 1) it improves the accuracy to distinguish 
different behavior patterns, and 2) it can detect the group 
that has similar lifestyle, habit or behavior patterns. Fig. 2 
shows an example of user behaviors with the staying 
durations. Tom and Anne have the same common pattern 
as Fig. 1, that is, Home   Restaurant   Company   
Restaurant, but if we consider the duration of staying on 
each semantic tag we can easily to differentiate their 
behaviors. As shown in the figure, since the different 
duration staying on company and restaurant which reflects 
their different intentions, Tom and Anne are distinguished 
to different behaviors. 
 Given a set of raw trajectories, it’s necessary to 
transform raw trajectories to semantic trajectories, and 
discover the frequent semantic trajectory patterns of each 
user with staying durations firstly, each pattern represents 

one movement behavior of the user. With the duration of 
staying on each location of trajectories, there is a need to 
define a new similarity measurement for comparing a pair 
of patterns between different moving objects. Finally, 
based on the pattern similarity, we could cluster similar 
patterns into groups hierarchically, where each cluster 
represents a group of objects with a set of similar patterns 
that can infer the common behavior of objects. Based on 
the above description, the major challenges are 
summarized as follows: 
 Design a new semantic trajectory pattern mining 

technique with staying durations. 
 Define a new pattern similarity measure to enhance the 

accuracy of the measurement with staying durations. 
 Design a new clustering technique to discover common 

behaviors of objects. 
 
 
 
 
 
 
 

Fig. 2 User Behaviors with Staying Durations. 

 To approach the above challenges, DoSTra provides 
novel algorithms to discover semantic trajectory patterns, 
measure pattern similarity and cluster common behavior of 
objects. In summary, the main contributions of this paper 
are as followings. 
 We define a new semantic trajectory pattern to 

represent movement behavior with staying durations. 
 We propose an effective semantic trajectory pattern 

mining algorithm. 
 We propose a new measurement to evaluate the 

similarity between patterns with staying durations. 
 We propose a novel clustering algorithm based on 

pattern similarity to discover common behavior. 
 We demonstrate the effectiveness and efficiency of our 

methods on synthetic moving object trajectories. 
 The remaining of this paper is organized as follows. 
Related works are discussed in Sect. 2. Our problem is 
defined in Sect. 3. The three components of DoSTra, 
including semantic trajectory pattern mining, pattern 
similarity and similarity-based user clustering, are detailed 
in Sects. 4, 5 and 6 respectively. The experimental results 
are shown in Sect. 7. Finally, Sect. 8 concludes the paper. 

Related Work 
In this section, we first present a survey of methods for 
trajectory similarity measurement, and then review some 
existing data mining techniques to find trajectory patterns. 
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Trajectory Similarity Measurement. 
The existing researches on similarity measurement can be 
divided into two categories: geographic similarity and 
semantic similarity. 
 Geographic similarity mainly focuses on the geographic 
features of trajectories. Most early existing researches on 
trajectory similarity are Euclidean-based distance measures, 
DTW (Keogh, 2002), EDR (Chen et al., 2005), LCSS 
(Vlachos et al., 2006) are the most representative. In 
addition, many works measure the similarity between 
movement behaviors from trajectories (Li et al., 2008; 
Zheng et al., 2010). In Hung et al. (2011), clue-aware 
trajectory similarity considers the silent durations. A 
partition-and-group method (Lee et al., 2007) exploits 
three types of distance measurement. Lu et al. (2009) 
evaluates the greater similarity between trajectories when 
both the occurrence time and locations are approximate. 
 Semantic similarity mainly focuses on the semantic 
features of trajectories. The study of semantic trajectories 
has been discussed in (Alvares et al., 2007; Parent et al., 
2013; S. Spaccapietra et al. 2011; Yan et al., 2011). In 
these literatures, the semantic trajectory is considered as a 
set of spatio-temporal positions complemented with 
annotations. According to this way, many applications 
extract behavior knowledge in semantic aspects than in 
merely positional data. 
 In recent years, some work measure the similarity based 
on semantic trajectories (Ying et al., 2010 & 2014; Zheng 
et al., 2011a &2011b & 2009; Liu et al., 2012). In these 
work, each trajectory is transformed into the semantic 
trajectory first, then evaluate user similarities to 
recommend potential friends. In Ying et al. (2010), the 
author considers the similarity between two users in terms 
of the similarity of their maximal semantic trajectory 
patterns. (Zheng et al., 2011a &2011b & 2009) mine a 
semantic hierarchical tree-structured framework to 
calculate similarity, In Ying et al. (2014), geographic 
feature and semantic feature are used to predict user’s next 
location. 
 Since geographic similarity measures only consider the 
location information, while semantic similarity measures 
are not designed to handle the staying durations of 
trajectories, our proposed similarity measurement is 
different from current methods.  

 Trajectory Pattern Mining. 
The existing work on discovering common pattern could 
be classified into two categories: trajectory clustering and 
trajectory pattern mining. 
 Trajectory pattern mining studies the movement pattern 
of moving objects, most early researches focus on the 
spatial-temporal characteristics of trajectories (Tsai et al., 
2011; Smouse et al., 2010; Zhu ,2011; Li et al., 2010a). 

The basic idea of these literatures is to use sequential 
pattern mining algorithm to discover frequent patterns 
from transformed trajectories. In Alvares et al. (2007), a 
semantic trajectory pattern mining method is proposed, 
which applies a sequential pattern mining algorithm on 
semantic trajectories. 
 Because these methods do not consider the duration of 
staying on each location of trajectories Thus, these 
methods may not work well when staying durations appear 
in behavior patters. 
 Trajectory clustering aims at catching common patterns 
or behaviors from moving objects. Many works find 
patterns of travelling together, including snowball (Guo et 
al., 2014), moving cluster (Kalnis et al., 2005), flock 
(Naymat et al., 2007), convoy (Jeung et al., 2008), 
compainion (Tang et al., 2012) ,swarm (Li et al., 2010b) 
and gathering (Zheng et al., 2013). Besides, another kind 
of clustering focuses on the common paths for a group of 
moving objects. Partition-and-group framework (Lee et al., 
2007) partitions each trajectory into a set of sub-
trajectories, and then groups clusters using distance 
function. In Wu et al., (2012), both the spatial and temporal 
criteria are considered for trajectory dividing and 
clustering.  
 However, these methods cluster trajectories either from 
the aspect of individual or group, which may not work well 
to discover common behavior of objects. Moreover, these 
approaches are not suitable for semantic trajectory. 

Problem Statement 
In this section, we give the preliminary concepts that will 
be used in further discussions in the rest of the paper. Then 
we show the architecture of our approach. Table.1 lists the 
notations used throughout this paper. 

Table 1: List of Notations. 
Notation Explanation 

I a semantic item 
ST a semantic trajectory 
TP a semantic trajectory pattern 
  a semantic trajectory dataset 
A an annotation 
   a duration threshold 

     a minimum length threshold 
min_sup a minimum support threshold 

I = I’ I is item equal to I’ 
TP   TP’ TP is semantic contained in TP’ 

LCS a longest common sub-sequence 
ER an effective range 

Preliminary Concepts 
The raw trajectory of a moving object is recorded as a 
sequence of spatio-temporal points. Thanks to city 
information, the spatio-temporal points can be transformed 
to semantic meanings of places of interest, such as shops, 
restaurants, and cinemas etc. Thus, a semantic trajectory 
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can be enhanced with annotations from the raw trajectory. 
Semantic trajectory is the basement of our work, and the 
rest of the paper is based on it. 
 Let I = (A, t) be a semantic item, where A is an 
annotation, t is the staying durations on the annotation of A. 
Let ST = <I1, I2, …, In> be a semantic trajectory which is 
an order sequence of semantic items, where Ii is a semantic 
item, 1  i   n. As shown in Fig.2, the semantic trajectory 
of Tom is represented as < (Home, 10), (Restaurant, 4), 
(Company, 1), ( Restaurant,4) >. 
 In order to describe semantic trajectory pattern, we 
should introduce the definitions of item equal, semantic 
containment firstly. 
Definition 1 (Item Equal, =): Given two semantic items I1 
= (A1, t1) and I2 = (A2, t2), and a duration threshold   . I1 is 
equal to I2, denoted by I1 = I2, if the following conditions 
are satisfied: 
(1) A1 = A2; 
(2)     –                   . 

The second condition indicates that the difference ratio 
between two items’ staying durations is limited to   . 
Definition 2 (Semantic Containment,  ): Given two 
sequences of semantic items S1 = < I1, I2, …, Ik > and S2 = 
<I’1, I’2, …, I’n>, and a duration threshold   , S1 is semantic 
contained in S2, defined by S1   S2, if and only if there 
exists a sequence of integers 1   i1 < … < ik   n such that: 

  1   j   k, Ij =      w.r.t    . 
If two sequences of semantic items S1 and S2 satisfy S1   

S2, we also denote that S1 is a sub-sequence of S2. 
From the above definitions, the definition of semantic 

trajectory pattern can be assigned. 
Definition 3 (Semantic Trajectory Pattern): Given a set 
of semantic trajectories   = (ST1, ST2, …STn), a sequence 
of semantic items TP = < I1, I2, …, Ik >, a duration 
threshold   , and a minimum support threshold min_sup, 
TP is a semantic trajectory pattern, represented as I1   I1 
  …   Ik, if and only if: 

       
    

      min_sup 
where the support        

    
 of a semantic trajectory 

pattern TP is the number of semantic trajectories ST    
such that TP   ST w.r.t    . 
 Without loss of generality, we use letters to represent the 
annotation of semantic items, and a semantic trajectory 
dataset are shown in Table 2. Suppose      0.5 and ssup = 2, 
according to Definition 4, (a, 10)   (b, 0.5)   (c, 4)  (b, 
1.5) is a semantic trajectory pattern. However, we can see 
that any (a, 10)   (b, t)   (d, 4)  (b, 1.5) is a semantic 
trajectory pattern whenever t   [0.5, 1]. Thus, we use 
average staying durations to represent the semantic 
trajectory pattern. 

Table 2: An Example of Semantic Trajectory Dataset. 

Sid Semantic Trajectory 
1 <(a,10),(b,4),(c,1),(b,4)> 
2 <(b,1),(d,2),(e,0.5),(f,2)> 
3 <(a,10),(b,1),(c,4),(b,1.5)> 
4 <(a,10),(b,0.5),(d,0.5),(c,4),(f,0.5),(b,1.5)> 

 In order to avoid discover duplicate behaviors, we only 
maintain the maximal semantic trajectory pattern to 
represent user’s habit behavior. A semantic trajectory 
pattern TP is a maximal pattern if TP cannot be enlarged, 
which means     ’ s.t. TP’ is a semantic trajectory pattern 
and TP   TP’. 
 According to the definition of the semantic trajectory 
pattern, the problem in this paper can be formulated as 
follows. 

Problem Statement: Given a set of semantic trajectories 
and two thresholds, min_sup and   , where min_sup is for 
the frequent pattern mining,     is for time difference ratio. 
The problem is to discover common behaviors between 
moving objects with the following steps (1) discover 
semantic trajectory patterns from semantic trajectories w.r.t  
min_sup and   ; and then (2) measure the pattern similarity 
between moving objects; (3) discover a set of clusters, 
where each cluster has similar lifestyle, habit or behavior 
patterns, based on the pattern similarities. 

System Overview 
In this subsection, we brief an overview of our proposed 
approach, DoSTra, to discover common behavior. The 
general framework of DoSTra can be divided into three 
parts: (1) semantic trajectory pattern mining (STPM), (2) 
pattern similarity (P-Similarity) and (3) similarity-based 
user clustering (SUC). Specifically, given a set of raw 
trajectories, first, we transform raw trajectories to semantic 
trajectories, and mine semantic trajectory patterns for each 
moving object based PrefixSpan. Then, we design the 
pattern similarity based on time-weigth. Finally, we 
perform a hierarchical clustering method with LCS-
boundary pruning strategy, where each cluster represents 
the common behavior patterns from potential friends. 
 
 
 
 
 
 
 
 
 

Fig. 3 System Overview. 

Semantic Trajectory Pattern Mining 
In this section, we provide details of the semantic 
trajectory pattern mining algorithm. However, we first 
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have to transform raw trajectories to semantic trajectories, 
which has been studied in literatures (Alvares et al. 2007). 
The detail of this phase is omitted due to space limitation. 
 After transforming raw trajectories to semantic 
trajectories, the major behavior patterns of each moving 
object can be mined from its semantic trajectories. We 
propose the STPM algorithm to discover semantic 
trajectory patterns, which modifies the PrefixSpan method 
to adapt the staying durations. 
 The difference between STPM and PrefixSpan is the 
construction of projected database. For a annotation  ,  -
projected database consists of subsequences prefixed with 
the first occurrence of   in PrefixSpan. However, the 
projection position of STPM is not always the first 
occurrence of  .  
 Let S = < I1, I2, …, In > be a sequence of semantic items, 
for any Ii = (Ai, ti), the proj-tuple of Ii, denoted as    , is a 
triple of (S.sid, i, ti), where S.sid is the sequence id of S, i is 
the occurrence position of Ii in S, and ti is the staying 
durations of Ii. The proj-sequence of Ai w.r.t.     in S, 
denoted as          

, is the subsequence of S where all items 
that precede Ii are removed, that is <Ii+1, Ii+2, …, In>. 
 Let   be a semantic trajectory dataset,   be a annotation, 
the  -projected database of  , denoted as    , is a set of 
couples {(   ,         

 ), (   ,         
 ), …, (   ,         

 )}, 
where Si is the semantic trajectory of   which contains  , 
    and         

 are the corresponding proj-tuple and proj-
sequence of   in Si. Take Table 2 for example, the b- 
projected database of Table 2 is shown in Table 3, which is 
ordered in ascending order of durations. 

Table 3: b-projected database. 
Prefix Proj-Tuple Proj-Sequence 

b (4,  2, 0.5) <(d,0.5),(c,4),(f,0.5),(b,1)> 
(2, 1, 1) <(d,2),(e,0.5),(f,2)> 
(3, 2, 1) <(c,4),(b,1)> 
(3, 4, 1.5)   
(4, 6, 1.5)   
(1, 2,4) <(c,1),(b,4)> 
(1, 4, 4)   

 Algorithm 1 presents the pseudo code of STPM 
algorithm. We call STPM( ,  , min_sup,   ) to discover 
trajectory patterns of each moving object. In algorithm 1, 
we first scan  -projected database to find the set of 
frequent-1 itemset (Line 1-3), then every frequent 
annotation is appended to   to form   , we construct    -
projected database and sort it by durations in ascending 
order (Line 4-7), after that we scan  proj-tuple     of       
from first to end, for every    , we calculate the range of 
durations which covers all items that equal to the one     
point to, if all the equal items satisfy min_sup, then we 
generate a new item with average durations, after that the 
subsets of patterns can be mined by recursively (Line 8-15). 
If there is no possible to generate any new frequent item, 

the processing will be terminated, and output I as a 
qualified pattern (Line 16-17). 
Algorithm 1: STPM Algorithm 
Input: I: a prefix semantic item;    : the  -projected database, if    , 

otherwise, a semantic trajectory dataset   of an object; min_sup: 
the minimum support threshold;   : the time duration threashold. 

Output: every qualified maximal semantic trajectory patterns sq. 
1. find   0  
2.    I.A;      // get the annotation of I; 
3. Scan     to find the set of frequent annotations AS w.r.t min_sup; 
4. for each annotation    in AS do 
5.         append   to  ; 
6.            construct   -projected database;   
7.     Sort      in ascending order of durations; 
8.     for each couple C   (   ,         

 ) in      do 
9.           W   [   .duration,                  ];  //range of equal item 
10.           sup   number of couples whose duration is in W; 
11.           if sup     min_sup then 

12.                  I’  (  ,  
                  

   
   

   
); 

13.                  Inew   append I’ to I; 
14.                  STPM(Inew,   

    
, min_sup,    ); 

15.                  find   1  
16. if find = 0 then 
17.     output I as a qualified pattern sq; 

Semantic Pattern Similarity 
To identify how similar between two maximal semantic 
trajectory patterns, we should observe how many common 
parts the two patterns contain. Thus, we use the concept of 
the Longest Common Sub-sequence (LCS) to evaluate the 
similarity between two patterns, which is similar to 
(Bergroth et al., 2000), but extends the staying durations. 
 Let P1 = < I1, I2, …, Im > and P2 = < I’1, I’2, …, I’n > be 
two semantic trajectory patterns, the longest common sub-
sequence of P1 and P2 is a longest pattern LCS = < 
  
     

  …    
  > which is both a sub-sequence of P1 and P2. 

Specifically, there exist 1   i1 < … < ik   m and 1   j1 < … 
< jk   n such that:   1   p   k,   

  =     and   
  =     , where 

t*p =              . 
 Since LCS contains bias of staying durations, we use a 
time-weight to measure the weight of item in LCS. 
Definition 4 (Time-Weight): Suppose the description of 
P1, P2 and LCS is as above, the time-weight of   

  in LCS, 
denoted by        (  

 ), is defined as following: 
       (  

 ) = 1      –                      
 In light of the definition of LCS and time-weight, we 
define the pattern similarity between two patterns as 
follows. 
Definition 5 (Pattern Similarity): Suppose the description 
of P1, P2 and LCS is as above, the similarity between P1 
and P2, denoted by P-Sim(P1, P2), is defined as following: 

P-Sim (P1, P2) =   
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 For example, suppose      0.5, given a pattern P = < (a, 
10), (b, 1), (c, 4), (b, 1) > and a pattern Q = < (a, 10), (b, 
0.5), (d, 0.5), (c, 4), (f, 0.5), (b, 1)>, their longest common 
sequence is LCS(P, Q) = < (a, 10), (b, 0.75), (c, 4), (b, 1) >. 
Table 3 gives the time-weight of LCS. Consequently, the 
pattern similarity between P and Q is P-Sim(P,Q) = (1/4 
+1/6)   (1+0.5+1+1) = 1.46. 

Table 3: An Example of Time-Weight. 
LCS 

Duration 
I1  I2 I3 I4 

(a, 10) (b, 0.75) (c, 4) (b, 1) 
P 10 1 4 1 
Q 10 0.5 4 1 

    ( I ) 1 0.5 1 1 

 We modify the longest common sequence algorithm to 
facilitate the pattern similarity measurement. As we known, 
dynamic programming is the most popular solution for 
longest common sequence problem. We use a matrix SM to 
store the similarity between P and Q at each step of 
calculation, the calculation formula as follows. 
 
 
 

The algorithm for pattern similarity is listed in 
Algorithm 2. 
Algorithm 2: P-Similarity Algorithm 
Input: P, Q: semantic trajectory patterns; |P|, |Q|: length of P and Q;   : a 

duration threshold; 
Output: SM: P-Sim of P and Q; LCSM: LCS of P and Q; 
1. for i   0 to |P| do 
2.      SM[i, 0]   0;  LCSM[i, 0]          ; 
3. for j   0 to |Q| do 
4.      SM[0, j]   0,  LCSM[0, j]    
5. for i   1 to |P| do 
6.      for j   1 to |Q| do 
7.           if P[i] = Q[j] w.r.t    then 
8.               S   SM[i-1, j-1] 
9.               rst1    

 
      

    
     

    
   ; 

10.               rst2     
                

                    
      

    
   ; 

11.               SM[i, j]   rst1 + rst2 ; 
12.               LCSM[i, j]   append (P[i].A,  

            
 

) to LCSM[i, j]; 
13.           else 
14.                S1   SM[i-1, j];  S2   SM[i, j-1]; 
15.                rst1  

  
 

      
  
     

    
   ; 

16.                rst2  
  

 
    

    
     

    
   ; 

17.                if rst1   rst2  then 
18.                     SM[i, j]   rst2; LCSM[i, j]   LCSM[i, j-1] 
19.                else        
20.                     SM[i, j]   rst1; LCSM[i, j]   LCSM[i-1, j] 
21. return SM[|P|, |Q|], LCSM[|P|, |Q|];  

 In algorithm 2, we use the dynamic programming 
method to calculate the pattern similarity. First, matrix SM 
and LCSM are initialized (Line 1-4), which represent 
similarity and LCS between P and Q respectively. Then we 
fill SM and LCSM step by step (Line 5-20). Finally, the 

similarity and LCS between P and Q will be returned (Line 
21). 

Similarity-based User Clustering 
In this section, we describe the similarity-based user 
clustering (SUC) algorithm for clustering common 
behavior patterns based on pattern similarity. 
 Since density-based clustering method may introduce 
noise, we use a hierarchical clustering method. The basic 
idea of SUC is a bottom-up algorithm that treats each 
pattern as a singleton cluster at the beginning and merge 
pairs of clusters with different moving objects according to 
similarity until the minimum length threshold      satisfied.  
Algorithm 3: SUC Algorithm 
Input: MOP = {mop1, mop2, …, mopN}: a set of moving objects patterns, 

where mopi=(i, U, P);     : a minimum length threshold 
Output: mo_set: the moving object clusters with common behavior. 
1. mo_set   ; 
2. for i   1 to N   1 do 
3.      for j   i + 1 to N do 
4.           M[i, j].sim, M[i, j].lcs   P-Similarity(mopi.P, mopj.P);           
5. stop   0; 
6. while stop = 0 do 
7.      stop   1;   
8.      m_sim   0; m_i   0; m_j   0; 
9.       for i   1 to N   1 do 
10.          for j   i + 1 to N do 
11.              if |SM[i, j].lcs|       && m_sim < SM[i, j] 

             && mopi.U   mopj.U =   then 
12.                         m_sim   SM[i, j]; 
13.                         m_i   i; m_j   j; stop   0; 
14.      if stop = 0 then 
15.           MOP    MOP mopm_j;        //remove mopm_j from MOP 
16.           mopm_i  (m_i, mopm_i.U   mopm_j.U, M[m_i, m_j].lcs); 
17.           Remove the m_ j-th row from matrix M; 
18.           N   N – 1;        
19.           for j   m_ i + 1 to N do 
20.                M[m_i,j].sim, M[m_i,j].lcs  P-Similarity(mopm_i.P, mopj.P);                 
21.           for j = 1 to m_ i – 1 do 
22.                M[j,m_i].sim, M[j,m_i].lcs  P-Similarity (mopj.P, mopm_i.P);              
23. for mop in MOP do 
24.       if |mop.U| > 1 do 
25.             mo_set   mo_set   mop; 
26. return mo_set; 

 Algorithm 3 shows SUC algorithm. In algorithm 3, we 
first initialize similarity matrix of initial clusters at the 
outset (Line 1-5), where each cluster consists of a pattern 
and a corresponding moving object. Then, we cluster each 
layer from bottom to up until the minimum length 
threshold not satisfied (Line 6-22), in each iteration of the 
clustering process, the most similar pair of patterns 
between each two moving objects would be merged to 
form a new cluster (Line 9-13). After that, we check 
whether there exists a new merged cluster, if so, we would 
remove the previous clusters, insert the new one and 
update the similarity matrix (Line 14-22), Finally, clusters 
are returned (Line 23-26).  
 From algorithm 3 we can observe that pattern similarity 
of each pair of patterns between every two moving objects 

0                                                                                         if   0 or   0

[ -1, -1] | [ ]. - [ ]. | 1 1[ , ] 1-  
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i j
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should be calculated at first, and in each bottom up 
clustering step, the pattern similarity will be also be 
calculated N times. However, this is time-consuming and 
not necessary in some conditions. 
 Since the semantic trajectory pattern consists of a series 
of semantic items with duration of staying time. As a result, 
the similarity of two patterns is constrained by staying time. 
Definition 6 (Effective Range): Give a semantic trajectory 
pattern P = < I1, I2, …, Ik >, a duration threshold   . The 
effective range of Ii, denoted by Eri, is defined as following: 

Eri = (Ai, [ti_min, ti_max]) 
where Ai is the annotation of Ii, ti_min = (1-   ) ti and ti_max 
=         . Thus, the effective range of P is ERp = <Er1, 
Er2, …, Erk>. 
 Let Er = (A, [tmin, tmax]) be an effective range, I’ = (A’, t’) 
is an effective item of Er if  ’  = A and  ’  [tmin, tmax], which 
is denoted by I’   Er.  
Definition 7 (LCS-Boundary): Give two semantic 
trajectory patterns P  and Q, an effective range ERp = <Er1, 
Er2, …, Erk> of P, the LCS-boundary between P and Q, 
denoted by LCS-B(P, Q), is the number of items I’  Q such 
that I’   Eri, where Eri   ERp. 

 

 

 

 

 

Fig. 4 An Example of Effective Range and LCS-Boundary 

 As shown in Fig. 4, suppose    = 0.5, a semantic pattern 
P = <(a, 1), (b, 2), (c, 3)>, the corresponding effective 
range of P is Erp = <(a, [0.5, 2]), (b, [1, 4]), (c, [1.5, 6])>, 
which represents it’s impossible to find common sequence 
of P outside the range of Erp. Like in pattern Q, (a, 0.1) is 
not a sub-sequence of P, while (b, 3) and (c, 4.5) are 
effective items to be sub-sequences of P. Thus, according 
to the definition 7, the LCS-B(P, Q) is 2. 
 Algorithm 4 shows the Optimized-SUC algorithm, 
which uses LCS-boundary pruning strategy to optimize 
SUC. The initialization is similar to SUC (Line 1-7). Then, 
we use pruning strategy to reduce the pattern similarity 
computation cost when cluster similar patterns (Line 8-31). 
After that, we check whether there exists a new merged 
cluster, if so, we would remove the previous clusters, insert 
the new one and update the similarity matrix (Line 17-31). 
Since the most time-consuming task is to compute 
similarity between patterns, then algorithm 4 can prune 
most of invalid process and improve efficiency. 
Algorithm 4: Optimized-SUC Algorithm 
Input: MOP = {mop1, mop2, …, mopN}: a set of moving objects patterns, 

where mopi=(i, U, P);     : a minimum length threshold 

Output: mo_set: the moving object clusters with common behavior. 
1. mo_set   ; 
2. for i = 1 to N - 1 do 
3.      for j   i + 1 to N do 
4.           if LCS-B(mopi.P, mopj.P)       then 
5.               M[i, j].sim , M[i, j].lcs    P-Similarity(mopi.P, mopj.P);              
6.           else 
7.                M[i, j].lcs   0; 
8. stop   0; 
9. while stop = 0 do 
10.     stop   1;   
11.     m_sim   0; m_i   0; m_j   0; 
12.     for i   1 to N - 1 do 
13.         for j   i + 1 to N do 
14.             if SM[i, j].lcs       && m_sim < SM[i, j] 

              && mopi.U   mopj.U =   then 
15.                         m_sim   SM[i, j]; 
16.                         m_i   i; m_j   j; stop   0; 
17.     if stop = 0 then 
18.           MOP    MOP mopm_j        //remove mopm_j from MOP; 
19.           mopm_i    (m_i, mopm_i.U   mopm_j.U, SM[m_i, m_j].lcs); 
20.           Remove the m_ j-th row from matrix M; 
21.           N = N – 1;       
22.           for j   m_i + 1 to N do 
23.                if LCS-B(mopm_i.P, mopj.P)       then 
24.                    M[m_i,j].sim,M[m_i,j].cls=P-Similarity(mopm_i.P,mopj.P); 
25.                else 
26.                    M[m_i, j].cls = 0; 
27.           for j   1 to m_i - 1 do 
28.                 if LCS-B(mopm_i.P, mopj.P)       then 
29.                     M[j,m_i].sim,M[j,m_i].cls=P-Similarity(mopj.P,mopm_i.P); 
30.                 else 
31.                     M[j, m_i].cls = 0; 
32. for mop in MOP do 
33.       if |mop.U| > 1 do 
34.             mo_set   mo_set   mop; 
35. return mo_set;     

 Experiment 
In this section, we conduct a series of experiments to 
evaluate the proposed algorithms using synthetic datasets. 
All the experiments are implemented in C/C++ on Intel(R) 
Xeon(R) CPU E5-2630 0 @ 2.30GHz machine with 4GB 
of memory running CentOS release 6.2(Final) using GCC 
4.4.6 with optimization -O2. 

Experimental Setup 
To evaluate the techniques proposed for our DoSTra 
framework, we use a synthetic semantic trajectory dataset, 
generated from a set of seed moving objects. Each moving 
object generates a set of semantic trajectories according to 
his lifestyle.  
 In order to investigate the effect of staying durations, 
two parameters are used to control the behavior: pattern 
category NPC and the random probability Pr. Specifically, 
we partition the semantic trajectory patterns into NPC 
classes, which represent the lifestyle of all objects. Each 
moving object generates trajectories as the follows: the Pr 
percentage of trajectories are generated randomly, while 
the rest are generated according to a part of NPC pattern 
categories. The main parameters are listed in Table 4. 

    

LCS-B(P, Q) = 2 

a b c 
1 2 3 
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a b c 
[0.5, 2] [1, 4] [1.5, 6] 

ErP 

Q 
4.5 3 

a b c 
0.1 

15



 

 

0

40

80

120

160

200

4 6 8 10 12
L pattern

ru
nt

im
e(

s)

SUC
Optimized-SUC

0

30

60

90

120

150

0.1 0.15 0.2 0.25 0.3
 t

ru
nt

im
e(

s)

SUC
Optimized-SUC

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5

min_sup (percentage)

ra
ti

o

precision

0

0.2

0.4

0.6

0.8

1

0.1 0.15 0.2 0.25 0.3
 t

ra
ti

o

precision

Table. 4. Experiment Settings. 
Name Value Meaning 

Nmo 100 the number of moving objects 
Ntrj 1000 the number of semantic trajectories of each mo 

Lpattern 4-12 the average length of each pattern 
   01-0.3 the duration threshold 

     3 the minimum length threshold 
min_sup 0.1-0.5 the minimum support threshold 

NPC 20 the number of pattern categories 
Pr 0.2 the random probability 

Effectiveness Evaluation 
We define a metric, called precision, to evaluate the 
effectiveness of our methods: precision =         , 
where    is the number of correct discovered patterns, and 
   is the number of incorrect discovered patterns.  
 Fig.5 plots the precision changing with min_sup and   , 
the default parameters used in the experiments are: Nmo = 
100, Ntrj = 1000, Lpattern = 6, NPC = 20 and Pr = 0.2.  
 
 
 
 
 
 
 
 
 

(a)Precision Changing with min_sup    (b) Precision Changing with    

Fig. 5. Precision Evaluation 

 Fig. 5(a) shows with the increase of min_sup, the 
precision is increase, the reason is that the discovered 
patterns become more pure with the increase of min_sup, 
then the incorrect discovered patterns is obviously reduced, 
so the precision is increase. In Fig. 5(b), the precision is 
decreased with the increase of   , since with the increase of 
  , the distinction between different patterns becomes 
weaker which will lead a rise in error rate. 

Efficiency Evaluation 
We compare the execution time of SUC and Optimized-
SUC by varying the parameters of Lpattern and    in Fig.6. 
The default parameters are: Nmo = 100, Ntrj = 1000, 
min_sup = 0.2 (percentage) and      = 3. 

Fig. 6 shows the performance of SUC and Optimized-
SUC changing with Lpattern and   , where    is set to 0.2 in 
Fig. 6(a) and Lpattern is set to 6 in Fig. 6(b). From Fig. 6(a) 
we can see that with the increase of Lpattern, runtime of SUC 
and Optimizied-SUC are all increased. The reason is that 
with the average length of pattern increases, the 
computation cost of longest common sub-sequence 
matching also largely increases, which is the main time-
consuming part. Similarly, Fig. 6(b) shows that the runtime 
of two algorithms are increased with the increase of   . 

Because the complexity of longest common sub-sequence 
matching is increased with the increase of   . Moreover, 
compared with SUC, the performance of Optimized-SUC 
is greatly improved in both two figures, which shows the 
validity of our pruning strategy. 
 
 
 
 
 
 
 
 

  (a)Runtime Changing with Lpattern       (b)Runtime Changing with    

Fig. 6. Runtime Evaluation 

 In summary, all the experiments demonstrate the 
performance of our algorithms in terms of effectiveness 
and efficiency. DoSTra can provide acceptable execution 
performances with high recognition accuracy from 
different behaviors. 

Conclusion 
In this paper, we propose the DoSTra framework to 
discover common behaviors between moving objects. In 
order to improve the accuracy to distinguish different 
behavior patterns, we introduce the staying durations. 
DoSTra mainly consists of three components: semantic 
trajectory pattern mining, semantic pattern similarity and 
similarity-based user clustering. Experimental results show 
that DoSTra is able to effectively and efficiently discover 
common behaviors from semantic trajectories. For future 
work, we plan to design the parallelization technique to 
support massive data. 
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