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Abstract

The leading approach for solving large imperfect-information
games is automated abstraction followed by running an eq-
uilibrium-finding algorithm. We introduce a distributed ver-
sion of the most commonly used equilibrium-finding algo-
rithm, counterfactual regret minimization (CFR), which en-
ables CFR to scale to dramatically larger abstractions and
numbers of cores. The new algorithm begets constraints on
the abstraction so as to make the pieces running on differ-
ent computers disjoint. We introduce an algorithm for gener-
ating such abstractions while capitalizing on state-of-the-art
abstraction ideas such as imperfect recall and earth-mover’s
distance. Our techniques enabled an equilibrium computation
of unprecedented size on a supercomputer with a high inter-
blade memory latency. Prior approaches run slowly on this ar-
chitecture. Our approach also leads to a significant improve-
ment over using the prior best approach on a large shared-
memory server with low memory latency. Finally, we intro-
duce a family of post-processing techniques that outperform
prior ones. We applied these techniques to generate an agent
for two-player no-limit Texas Hold’em that won the 2014
Annual Computer Poker Competition, beating each opponent
with statistical significance.

1 Introduction
The leading approach for creating strong agents for large
imperfect-information games—which is used by all of the
strongest Texas Hold’em (TH) poker agents—is to first cre-
ate a sufficiently small strategic approximation of the full
game, called an abstraction, then to apply an equilibrium-
finding algorithm (Zinkevich et al. 2007; Hoda et al. 2010)
to the abstraction, and finally to apply post-processing tech-
niques (Gilpin, Sandholm, and Sørensen 2008; Schnizlein,
Bowling, and Szafron 2009; Ganzfried, Sandholm, and
Waugh 2012; Ganzfried and Sandholm 2013) to obtain a
strategy in the original game from the approximate equilib-
rium of the abstraction. Initially abstractions were created
manually (Shi and Littman 2002; Billings et al. 2003), while
nowadays they are created by algorithms (Gilpin and Sand-
holm 2006; 2007; Gilpin, Sandholm, and Sørensen 2007;
Waugh et al. 2009; Johanson et al. 2013; Ganzfried and
Sandholm 2014). The equilibrium-finding algorithm used

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by today’s strongest TH agents is a Monte Carlo version
of the counterfactual regret minimization algorithm (MC-
CFR) (Lanctot et al. 2009). That algorithm involves repeat-
edly sampling chance outcomes and actions down the tree,
and updating regret and average strategy values that are
stored at each information set.

On a shared-memory architecture, MCCFR can be paral-
lelized straightforwardly. True shared-memory architectures
typically come with relatively little memory and relatively
few cores, however, and it would be desirable for scalability
to be able to run on architectures that have more memory (in
order to be able to run on larger, more detailed abstractions)
and more cores (for speed). However, on distributed archi-
tectures and supercomputers with high inter-blade1 memory
access latency, straightforward MCCFR parallelization ap-
proaches lead to impractically slow runtimes because when
a core does an update at an information set (extensive-form
games and information sets therein are formally defined in
Appendix C) it needs to read and write memory with high la-
tency. A second issue in MCCFR (even on a shared-memory
architecture) is that different cores working on the same in-
formation set may need to lock memory, wait for each other,
possibly over-write each others’ parallel work, and work on
out-of-sync inputs. Our approach solves the former problem
and also helps mitigate the latter issue.

To obtain these benefits, our algorithm creates an infor-
mation abstraction that allows us to assign different com-
ponents of the game tree to different blades so the tra-
jectory of each sample only accesses information sets lo-
cated on the same blade. At a high level, the first stage of
our hierarchical approach is to cluster public information
at some early point in the game (public flop cards in the
case of poker2), giving a global basis for distributing the
rest of the game into non-overlapping pieces; then our al-
gorithm conducts clustering of private information. A key
contribution is the specific way to cluster the public infor-
mation. As we will detail in Section 2, two prior abstrac-

1Such supercomputers consists of blades, which are themselves
computers that are plugged into racks. A core can access memory
on its blade faster than memory on other blades—seven times faster
on the computer we used. On regular distributed systems, the dif-
ference between local and remote memory access is even greater.

2For rules of Texas Hold’em poker, we refer the reader to Ap-
pendix A.
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tion algorithms motivated by similar considerations have
been developed for poker by others (Waugh et al. 2009;
Jackson 2013), but ours differs in that it does not use hand-
crafted poker features, is applicable to the large, and does
not have the conceptual weaknesses from which they suffer.

We developed an equilibrium-finding algorithm that can
be applied to this abstraction. It is a modified version of
external-sampling MCCFR (Lanctot et al. 2009). Applied to
TH, it samples one pair of preflop (i.e., first betting round)
hands per iteration. For the later betting rounds, each blade
samples public cards from its public cluster and performs
MCCFR within each cluster. Our algorithm weights the sam-
ples to remove bias. Ours is similar to the algorithm of Jack-
son (Jackson 2013). However, we implement MCCFR in-
stead of chance-sampled CFR, and split only based on pub-
lic information (chance actions) rather than players’ actions.
Another related prior approach used vanilla CFR (which
converges significantly slower in practice) and split based
only on players’ actions (which does support nearly as much
parallelization) (Johanson 2007).

The new abstraction and equilibrium-finding algorithms
enabled an equilibrium computation of unprecedented size
on a supercomputer with high inter-blade memory access
latency. Experiments also show that this run outperforms the
strongest prior approach executed on a large shared-memory
server with low memory latency but fewer cores.

Finally, post-processing techniques have been shown to
be useful to mitigate the issues from overfitting to one’s ab-
straction and approximate equilibrium finding. We introduce
a family of post-processing techniques that outperform prior
ones. Our techniques combine 1) the observation that round-
ing action probabilities mitigates the above-mentioned is-
sues (Ganzfried, Sandholm, and Waugh 2012), 2) the new
observation that similar abstract actions should be bucketed
before such rounding so that fine-grained action discretiza-
tion (aka action abstraction) does not disadvantage those ac-
tions, and 3) the new observation that biasing toward actions
that reduce variance is helpful in a strong agent and our ex-
periments show that this increases expected value as well.

We applied all of the above-mentioned techniques to gen-
erate an agent for two-player no-limit TH (NLTH). It won
the 2014 Annual Computer Poker Competition (ACPC),
beating each opponent with statistical significance.

2 Abstraction Algorithm
The first contribution of this paper is a new hierarchical ab-
straction algorithm. It is domain independent, although in
many places of the description we present it in the context of
poker for concreteness. In order to enable distributed equi-
librium finding, it creates an information abstraction that
assigns disjoint components of the game tree to different
blades so that sampling in each blade will only access in-
formation sets that are located on that blade.

At a high level, the first stage of our hierarchical abstrac-
tion algorithm is to cluster public information at some early
point in the game (public flop boards, i.e., combinations of
public flop cards, in the case of TH), giving a global basis for
distributing the rest of the game into non-overlapping pieces.
Then, as a second stage our algorithm conducts clustering of

information states (that can include both public and private
information) in a way that honors the partition generated in
the first stage.

As an example, suppose that in the first stage we cluster
public flop boards into 60 buckets. Suppose bucket 4 con-
tains only the boards AsKhQd and AsKhJd. Then we cluster
all private hands for each betting round, starting with the
flop, i.e., the second round (we assume the abstraction for
the preflop round has already been computed—the strongest
agents, including ours, use no abstraction preflop). We per-
form abstraction over full (five-card) flop hands separately
for each of the 60 blades. For blade 4, only the hands for
which the public board cards are AsKhQd or AsKhJd are
considered (for example, 5s4s-AsKhQd and QcJc-AsKhJd).
There are 2,352 such hands. If we allowed an abstraction
at the current round with 50 private buckets per blade, we
would then group these 2,352 hands into 50 buckets (using
some abstraction algorithm; we discuss ours in detail later).
We then perform a similar procedure for the third (aka turn)
and fourth (aka river) rounds, ensuring that the hands for
each blade are limited only to the hands that contain a pub-
lic flop board that was assigned to that blade in the first stage
of the algorithm.

A game has perfect recall if, informally, no player ever
forgets information that he knew at an earlier point in the
game. This is a useful concept for several reasons. First, cer-
tain equilibrium-finding algorithms can only be applied to
games with perfect recall (Koller, Megiddo, and von Stengel
1994; Hoda et al. 2010). Second, other equilibrium-finding
algorithms, such as CFR (Zinkevich et al. 2007) and its
sampling variants, have no theoretical guarantees in games
that have imperfect recall, though they can still be applied.
(One notable exception is recent work giving a theoreti-
cal guarantee of the performance of CFR in one class of
imperfect-recall games called well-formed games (Lanctot
et al. 2012).) And third, Nash equilibria are not even guar-
anteed to exist in general in behavioral strategies in games
with imperfect recall.

Despite these limitations, poker agents using abstractions
with imperfect recall have consistently been shown to out-
perform agents that use perfect recall abstractions (Waugh et
al. 2009). Intuitively, perfect-recall abstractions force agents
to distinguish all information at a later round in the tree that
they were able to distinguish at an earlier round, even if such
a distinction is not very significant at the later round. For ex-
ample, if an agent can distinguish between Kh3c and Kh4c
in the preflop round (as is the case in the abstractions of the
best agents), then a perfect-recall abstraction would force
them to be able to distinguish between Kh3c on a KsJd9h
flop, and Kh4c on the same flop, despite the fact that the 3c
vs. 4c distinction is extremely unlikely to play a strategic
role in the hand. On the other hand, with imperfect recall,
agents are not forced to remember all of these distinctions
simply because they knew them at a previous round, and are
free to group any hands together in a given round without
regard to what information was known about them in prior
rounds of the abstraction. The most successful prior abstrac-
tion algorithms use imperfect recall (Johanson et al. 2013;
Ganzfried and Sandholm 2014).
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Unfortunately, running CFR on imperfect-recall abstrac-
tions on a machine with high inter-blade memory access la-
tency can be problematic, since regrets and strategy values at
different buckets along a sample may be located on different
blades. We now describe in detail our new approach that en-
ables us to produce strong abstractions for this setting. Our
approach requires players to remember certain information
throughout the hand (public flop bucket), but does not force
players to distinguish between other pieces of information
that they may have been able to distinguish between pre-
viously (if such distinctions are no longer relevant). Thus,
our approach achieves the benefits of imperfect recall to a
large extent (though not the flexibility of full imperfect re-
call) while achieving partitioning of the game into disjoint
pieces for different blades to work on independently.

2.1 Main Abstraction Algorithm
Our main abstraction algorithm, Algorithm 1, which is do-
main independent, works as follows. Let r̂ be the special
round of the game where we perform the public cluster-
ing. For the initial r̂ − 1 rounds, we compute a (potentially
imperfect-recall) abstraction using an arbitrary algorithmAr
for round r. For example, in poker the strongest agents use
no abstraction in the preflop round (and even if they did use
abstraction for it, it would not require public clustering and
could be performed separately). Next, the public states at
round r̂ are clustered into C buckets. The algorithm for this
public clustering is described in Section 2.2. Once this pub-
lic abstraction has been computed, we compute abstractions
for each round from r̂ to R over all states of private infor-
mation separately for each of the public buckets that have
been previously computed. These abstractions can be com-
puted using any arbitrary approach,Ar. For our poker agent,
we used an abstraction algorithm that had previously been
demonstrated to perform well as the Ar’s (Johanson et al.
2013).

Algorithm 1 Main abstraction algorithm
Inputs: number of rounds R; round where public informa-
tion abstraction is desired r̂; number of public buckets C;
number of desired private buckets per public bucket at round
r, Br; abstraction algorithm used for round r, Ar

for r = 1 to r̂ − 1 do
cluster information states at round r using Ar

cluster public information states at round r̂ intoC buckets
(e.g., using Algorithm 2)
for r = r̂ to R do

for c = 1 to C do
cluster private information states at round r that
have public information in public bucket c intoBr
buckets using abstraction algorithm Ar

2.2 Algorithm for Computing Abstraction of
Public Information

The algorithm used to compute the abstraction of public
information at round r̂ is shown as Algorithm 2. For TH,

this corresponds to computing a bucketing of the public flop
boards. To do this, we need a distance function di,j between
pairs of public states (or, equivalently, a similarity function
si,j that can be transformed into a distance function). We
use this distance function to compute the public abstraction
using the clustering algorithm described in Section 2.3.

Two prior approaches have been applied to abstract pub-
lic flop boards. One uses poker-specific features that have
been constructed manually (Jackson 2013). The second, due
to Waugh et al., uses k-means clustering with L2 distance
over transition tables that were constructed from a small
perfect-recall base abstraction with 10 preflop buckets and
100 flop buckets (Waugh et al. 2009). The entry T [f ][i][j] in
the table gives the probability of transitioning from preflop
bucket i to flop bucket j in the abstraction when the public
flop board is f . In addition to potentially prohibitive com-
putational challenges of scaling that approach to large base
abstractions (such as the one we will use, which has 169 pre-
flop and 5,000 flop buckets), there are also conceptual issues,
as the following example illustrates. Consider the similar
public flop boards AhKs3d and AhKs2d. Suppose the base
abstraction does not perform abstraction preflop and places
4c3s-AhKs3d and 4c2s-AhKs2d into the same flop bucket,
(which we would expect, as they are very similar—both have
bottom pair with a 4 “kicker”), say bucket 12, while it places
4c3s-AhKs2d and 4c2s-AhKs3d into bucket 13 (these hands
are also very similar—the worst possible non-pair hand with
a “gutshot” straight draw). Suppose 4c3s is in bucket 7 pre-
flop and 4c2s is in bucket 8. Then the transition table for
AhKs2d would have value 0 for the probability of transi-
tioning from preflop bucket 7 into flop bucket 12, while it
would have value 1 for transitioning from preflop bucket 8
into flop bucket 12 (and the reverse for AhKs3d). So the
L2 distance metric would maximally penalize the boards for
this component, despite the fact that they should actually be
considered very similar based on this component, since they
map hands that are extremely similar to the same bucket.
Our new approach accounts for this problem by building a
distance function based on how often public boards result in
a given flop bucket in the base abstraction for any private
cards (not necessarily the same exact private cards, as the
prior approach has done).

We have developed an efficient approach that was able to
use the strong 169-5,000-5,000-5,000 imperfect-recall ab-
straction as its base. We refer to this abstraction as A. The
algorithm is game independent, and pseudocode (that is not
specific to poker) is presented in Algorithm 2. As in Waugh’s
approach described above, we first compute a transition ta-
ble T that will be utilized later in the algorithm, though our
table will contain different information than theirs. For con-
creteness, and to demonstrate the implementation used by
our agent so that it can be replicated, we will describe how
the table is contructed in the context of TH poker.

We first construct a helper table called PublicFlopHands.
The entry PublicFlopHands[i][j] for 1 ≤ i ≤ 1, 755, 1 ≤
j ≤ 3 gives the j’th public flop card corresponding to in-
dex i, using a recently developed indexing algorithm that
accounts for all suit isomorphisms (Waugh 2013) (there are
52·51·50

6 = 22, 100 total public flop hands, but only 1,755
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after accounting for all isomorphisms). We specify one such
canonical hand for each index. Next, using this table, we
create the transition table T , where the entry T [i][j] for
1 ≤ i ≤ 1, 755, 1 ≤ j ≤ 5, 000 gives the number of pri-
vate card combinations for which a hand with public flop
i transitions into bucket j of the abstraction A, which has
B = 5, 000 buckets. This is computed by iterating over all
public flop indices, then looking up the canonical hand in
PublicFlopHands, and iterating over the 49·48

2 = 1, 176 pos-
sible private card combinations given that public flop hand.
We then construct the 5-card flop hand by combining the two
private cards with the given public flop hand, look up the in-
dex of this hand (again using Waugh’s indexing algorithm),
and then look up what bucket A places that flop hand index
into. Thus, the creation of the transition table involves iter-
ating over 1, 755 ·1, 176 = 2, 063, 880 combinations, which
can be done quickly.

In poker-independent terms, T [i][j] stores how often pub-
lic state i will lead to bucket j of the base abstraction, ag-
gregated over all possible states of private information. In
contrast, Waugh’s table stores separate transition probabili-
ties for each state of private information.

We would like our distance function to assign a small
value between public states that are frequently grouped into
the same bucket by A, since we already know A to be a
very strong abstraction. We compute distances by iterating
over the B (private) buckets in round r̂ of A. We initialize
a variable si,j which corresponds to the similarity between
i and j to be zero. For each bucket b, let ci denote the num-
ber of private states with public state i that are mapped to b
underA (and similarly for cj). For example, suppose i corre-
sponds to the public flop board of AsQd6h and b = 7. Then
ci would denote the number of private preflop card combi-
nations (x,y), such that the flop hand xy-AsQd6h is placed
in bucket 7 under A. We then increment si,j by the mini-
mum of ci and cj . For example, if ci = 4 and cj = 12,
this would mean that i and j are both placed into the cur-
rent bucket b four times. Then the distance di,j is defined as
V−si,j
V , which corresponds to the fraction of private states

that are not mapped to the same bucket of A when paired
with public information i and j.3

For our application of Algorithm 2 to poker, the number
of public buckets we used is C = 60, the total number
of private states for each public state is V = 1, 176, and
B = 5, 000 as described above. The full number of pub-
lic flop boards after accounting for all suit isomorphisms is
M = 1, 755. Thus, to compute all of the distances we must
iterate over BN(N−1)

2 = 7.7 billion triples. This can be per-
3Note that d is not a distance metric. It is possible to have di,j =

0 for boards that are different, if the boards send the same number
of preflop hands into each flop bucket in A. It also fails the triangle
inequality. For example, suppose public state i is always mapped to
bucket 1 under A, state j is always mapped to bucket 2, and state k
is mapped with bucket 1 with probability 0.2, mapped to bucket 2
with probability 0.2, and mapped to bucket 3 with probability 0.6.
Then di,j = 1, di,k = 0.2, and dj,k = 0.2. Thus, we view d as
an arbitrary matrix of distances rather than viewing the space as a
metric space. This will affect selection of the clustering algorithm,
which is described in Section 2.3.

Algorithm 2 Algorithm for computing abstraction of public
information
Inputs: number of public bucketsC; number of public states
M ; number of private information sets per public state V ;
prior abstraction A with B buckets; transition table T for
public states into buckets of A; clustering algorithm L

for i = 1 to M − 1 do
for j = i+ 1 to M do

si,j ← 0
for b = 1 to B do

ci ← T [i][b], cj ← T [j][b], si,j += min(ci, cj)
di,j ← V−si,j

V

Cluster the M public states into C clusters using L with
distance function d

formed quickly in practice, since for each item we only need
to perform lookups in the precomputed transition table.

2.3 Public Abstraction Clustering Algorithm
Given the distance function we have computed, we next per-
form the clustering of the public states intoC public clusters,
using the procedure shown in Algorithm 3. The initial clus-
ters c0 are computed by applying k-means++ (Arthur and
Vassilvitskii 2007), using the pairwise point distance func-
tion di,j , which is taken as an input. The k-means++ initial-
ization procedure only requires knowing distances between
data points, not distances from a point to a non-data-point.
Next, for each iteration t, we iterate over all points i. We
initialize clusterDistances to be an array of size K of all
zeroes, which will denote the distance between point i and
each of the current clusters. We then iterate over all other
points j 6= i, and increment clusterDistances[ct−1[j]] by
di,j . Once we have iterated over all values of j, we let ct[i]
denote the cluster with smallest distance from i. If no clus-
ters changed from the clustering at the previous iteration, we
are done. Otherwise, we continue this procedure until T iter-
ations have been performed, at which point we output cT [i]
as the final abstraction.

Algorithm 3 Clustering algorithm for public abstraction
Inputs: Number of public states to cluster M ; desired num-
ber of clustersK; distances di,j between each pair of points;
number of iterations to run T

Compute initial clusters c0 (e.g., using k-means++)
for t = 1 to T do

for i = 1 to M do
clusterDistances← array of size K of zeroes
for j = 1 to M , j 6= i do

clusterDistances[ct−1[j]] += di,j
ct[i]← cluster with smallest distance

if no clusters were changed from previous iteration
then

break

This algorithm only takes into account distances between
pairs of data points, and not distances between points in the
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space that are not data points (such as means). Clustering
algorithms that are designed for metric spaces, such as k-
means, are not applicable to this setting.4

3 Equilibrium-Finding Algorithm
To solve the abstract game, one needs an algorithm that con-
verges to a Nash equilibrium. The most commonly used
equilibrium-finding algorithm for large imperfect-informa-
tion extensive-form games is counterfactual regret mini-
mization (CFR) and its extensions. We review CFR and the
formal notation of extensive-form games in the appendix.

There is a large benefit to not needing to sample all ac-
tions at every iteration of CFR, and the variants that selec-
tively sample more promising actions more often are Monte
Carlo CFR and Pure CFR. The external sampling variant
of Monte Carlo CFR (MCCFR) converges faster than Pure
CFR in practice but requires twice as much memory (Gibson
2014). We build our equilibrium-finding algorithm starting
from MCCFR because it converges faster and given that we
are able to run on distributed architectures, we are no longer
memory constrained.

MCCFR works by sampling opponent actions and chance
nodes down the game tree (while exploring all our actions),
and updating regret and average strategy for each informa-
tion set, using regret minimization (Lanctot et al. 2009). This
is problematic on a machine with high inter-blade memory
access latency because the information sets traversed on a
single sample (aka iteration) of play can be located on differ-
ent blades. On the supercomputer we used, for example, ac-
cessing memory on the same blade takes 130 nanoseconds,
while accessing memory on different blades takes about one
microsecond.

As discussed in the previous section, our new abstraction
addresses this issue by ensuring that (for the flop through
river rounds in the case of TH) all information sets encoun-
tered in the current MCCFR iteration are stored on the same
blade (i.e., the blade that the public flop was assigned to in
the first stage of the abstraction algorithm).

We developed a modification of MCCFR specifically for
architectures with high inter-blade memory access latency.
It designates one blade as the “head” blade, which is used
to store the regrets and average strategies for the top part
of the game tree (preflop round in TH). The algorithm be-
gins by sampling private information and conducting MC-
CFR on the head blade. When an action sequence is reached
that transitions outside the top of the game tree (to the flop
in TH), the algorithm will send the current state to each of
the C child blades. Each child blade then samples public in-
formation from its public bucket, and continues the iteration

4We could have used the k-medoid algorithm (though it has
a significant computational overhead over our approach, both in
terms of running time and memory), or used the objective of min-
imizing the average distance of each point from the points in a
cluster (rather than the sum). It would be interesting to explore
the effect of using different choices for the clustering objective on
abstraction quality. We chose the sum objective because it is com-
putationally feasible and gives a clustering with clusters of more
balanced sizes than the average objective.

of MCCFR. Once all the child blades complete their part
of the iteration, their calculated values are returned to the
head blade. The head blade calculates a weighted average
of these values, weighing them by the number of choices of
public information (possible flops in TH) that they sampled
from. This ensures that the expected value is unbiased. The
head node then continues its iteration of MCCFR, repeating
the process whenever the sample exits the top part (a flop se-
quence is encountered), until the iteration is complete. Pseu-
docode of the detailed algorithm appears in Algorithm 4.

In practice, rather than communicating with the child
nodes every time sampling passes beyond the top part of
the tree (i.e., a flop sequence is encountered in TH), we in-
stead use a two-pass approach. On the first pass, we only
record which continuation (flop) sequences were encoun-
tered. These sequences are then sent to the child blades,
so they can calculate values for those sequences; the child
blades work in parallel, but within each child blade the con-
tinuation sequences assigned to that blade are handled one
after another. The head blade then does a second pass that
is identical to the first, except that values returned from the
child blades are used whenever a the sample gets beyond the
top part of the tree (i.e., the flop is reached in TH).

Our algorithm encounters the inter-blade latency when-
ever the head node sends data to the cluster blades, and
again when receiving the responses. This only amounts to
less than a millisecond per MCCFR iteration. Each iteration
takes about 15 milliseconds, so this latency overhead is neg-
ligible. In settings where this overhead were significant, one
can easily make it negligible by having the child blades take
more samples on each iteration, thereby increasing the ratio
of time spent sampling to time spent on latency.

Since the head node can only proceed after receiving a
response from all the cluster blades, some clusters may be
idle for a significant amount of time if their MCCFR iter-
ations complete faster than other blades’. This happens de-
spite the fact that our abstraction algorithm evenly divides
the game tree among the child blades: on some blades the
current strategies computed by MCCFR are such that the
path of play ends sooner (e.g., by folding in poker).

In more detail, the algorithm begins by sampling pri-
vate information and conducting MCCFR on the head blade.
When an action sequence is reached that transitions beyond
the top part of the tree (i.e., transitions to the flop in Texas
Hold’em), the algorithm sends the current state to each of
theK child bladesC1, C2, ..., CK . Each child bladeCk then
samples public information from its public bucket (i.e., a
flop from the valid flops Fk assigned to it), and continues
the iteration of MCCFR. Once all the children blades com-
plete their part of the iteration, their calculated values ~uk
are returned to the head blade. The head blade calculates
a weighted average of these values, weighing them by the
number of choices of public information (possible flops in
Texas Hold’em) that they sampled from:

~u =

∑K
k=1 Fk~uk∑K
k=1 Fk

This ensures that the expected value is unbiased, that is, in
expectation each flop is weighed equally. The head node
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Algorithm 4 Our equilibrium-finding algorithm
for all histories h at the end of the first part of the tree do
// combinations of the players’ preflop hands

for all clusters Cn, n 6= 0 do // public (flop) clusters
|Fn,h| ← number of public samples in Cn given h

for all information sets I and actions a do
regret rI [a]← 0
cumulative strategy sI [a]← 0

loop // Keep iterating
for all p ∈ N, p 6= c do // Players other than chance

Iter(∅, p, C0)

function ITER(History h, Player p, Cluster C)
if h ∈ Z then // Terminal state

return u(h)
else if P (h) = c then // Chance node

Draw action a ∈ A(h) according to fc(·|h)
if C = C0 and (h, a) 6∈ TopOfTree then

~u← 0
for all Cn ∈ Clusters do

~u← ~u+ |Fn,h| · Iter((h, a), p, Cn)

~u← ~u/
∑
n |Fn,h| // Remove bias

else
~u← Iter((h, a), p, C)

else if P (h) = p then
for all a ∈ A(h) do // Traverse all actions

Pr(a)← max{rI [a],0}∑
a′ max{rI [a′],0} // Regret matching

if C = C0 and (h, a) 6∈ TopOfTree then
~u′[a]← 0
for all Cn ∈ ChildClusters do
~u′[a]← ~u′[a]+|Fn,h|·Iter((h, a), p, Cn)
~u′[a]← ~u′[a]/

∑
n |Fn,h| // Remove bias

else
~u′[a]← Iter((h, a), p, C)

~u← ~u+ Pr(a) · ~u′[a]

for all a ∈ A(h) do
rI [a]← rI [a] + u′p[a]− up // Update regret

else// Sample an action
~σI ← max{~rI ,0}∑

a′ max{~rI ,0}
~sI ← ~sI + ~σI // Update cumulative strategy
Draw action a ∈ A(h) from ~σI
if C = C0 and (h, a) 6∈ TopOfTree then

~u← 0
for all Cn ∈ Clusters do

~u← ~u+ |Fn,h| · Iter((h, a), p, Cn)

~u← ~u/
∑
n |Fn,h| // Remove bias

else
~u← Iter((h, a), p, C)

return ~u

then continues its iteration of MCCFR, repeating the pro-
cess whenever the sample exits the top part (a flop sequence
is encountered), until the iteration is complete.

In practice (unlike shown in the pseudocode), rather than

communicating with the child nodes every time sampling
passes beyond the top part of the tree (i.e., a flop sequence is
encountered in Texas Hold’em), we instead use a two-pass
approach. On the first pass, we only record which continu-
ation (flop) sequences were encountered. These sequences
are then sent to the child blades, so they can calculate values
for those sequences; the child blades work in parallel, but
within each child blade the continuation sequences assigned
to that blade are handled one after another. The head blade
then does a second pass that is identical to the first, except
that values returned from the child blades are used whenever
a the sample gets beyond the top part of the tree (i.e., the flop
is reached in Texas Hold’em).

Within each child blade—i.e., each child cluster—we ac-
tually have, and use, multiple cores (not shown in the pseu-
docode for simplicity). Whenever a child cluster is reached,
each core is given the same inputs but uses a different ran-
dom number seed to select which public sample (public flop
in Texas Hold’em) from within the cluster to work on, and
how to randomly sample actions thereunder according to
MCCFR. Given the nature of the game, the cores will do
redundant work with very low probability, and iterates in
different parts of the cluster will be stale by at most one it-
eration. (Another choice would be to lock parts of the tree
within the cluster to prevent cores from working on the same
information sets, but that would introduce overhead, and
does not seem warranted at least in Texas Hold’em.)

4 New Family of Post-Processing Techniques
Post-processing is important in solving imperfect-informa-
tion games. In games where the action spaces are very large,
action abstraction is typically used to select only some ac-
tions (e.g., bet sizes in poker) to include in the abstrac-
tion. However, the opponent may use actions that are not
part of the abstraction. This begets the need to map the
opponent’s actions back into the abstract game. Through-
out our experiments we used the leading reverse mapping
approach, the pseudo-Harmonic mapping (Ganzfried and
Sandholm 2013), which has been adopted broadly among
the top NLTH agents over the last two years.

Post-processing techniques have also been shown to be
useful for mitigating the issue of overfitting the equilibrium
to one’s abstraction and the issue that approximate equilib-
rium finding may end up placing positive probability on poor
actions.5 Two approaches have been studied, thresholding
and purification (Ganzfried, Sandholm, and Waugh 2012).
In thresholding, action probabilities below some threshold
are set to zero and then the remaining probabilities are
renormalized. Purification is the special case of threshold-
ing where the action with the highest probability is played
with probability 1 (ties are broken uniformly at random).

5It is easy to see that each of the post-processing techniques
discussed in this section can increase the exploitability of the
agent. However, opponents may have a hard time determining how
to exploit the agent, especially in complex imperfect-information
games. In the ACPC, post-processing has been shown to be benefi-
cial in practice (Ganzfried, Sandholm, and Waugh 2012).
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We observe that combining reverse mapping and thresh-
olding leads to the issue that discretizing actions finely in
some area of the action space disfavors those actions be-
cause the probability mass from the equilibrium finding gets
diluted among them. To mitigate this problem, we propose
to bucket abstract actions into similarity classes for the pur-
poses of thresholding (but not after thresholding). For ex-
ample, in no-limit poker any bet size is allowed up to the
number of chips a player has left. In a given situation our
betting abstraction may allow the agent to fold, call, bet 0.5
pot, 0.75 pot, pot, 1.5 pot, 2 pot, 5 pot, and all-in. If the ac-
tion probabilities are (0.1, 0.25, 0.15, 0.15, 0.2, 0.15,0,0,0),
then purification would select the call action, while the vast
majority of the mass (0.65) is on betting actions. In this ex-
ample, our approach—detailed below—would make a pot-
sized bet (the highest-probability bet action).

Finally, we observe that biasing toward conservative ac-
tions that reduce variance (e.g., the fold action in poker) is
helpful in a strong agent (variance increases the probability
that the weaker opponent will win). Our experiments will
show that preferring the conservative “fold” action in TH in-
creases expected value as well. One reason may be that if an
agent is uncertain about what should be done in a given sit-
uation (the equilibrium action probabilities are mixed), the
agent will likely be uncertain also later down that path and
it may be better to end the game here instead of continuing
to play into a part of the game where the agent is weak.

Our new post-processing technique combines all the ideas
listed above. It first separates the available actions into three
categories: fold, call, and bet. If the probability of folding
exceeds a threshold parameter, we fold with probability 1.
Otherwise, we follow purification between the three options
of fold, call, and the “meta-action” of bet. If bet is selected,
then we follow purification within the specific bet actions.

Clearly, there are many variations of this technique—so it
begets a family—depending on what threshold for definitely
using the conservative action (fold) is used, how the actions
are bucketed for thresholding, what thresholding value is
used among the buckets, and what thresholding value is used
within (each of possibly multiple) meta-actions.

5 Experiments
We experimented on the version of two-player no-limit
Texas Hold’em (NLTH) used in the ACPC, which has 10165

nodes (Johanson 2013) in its game tree.
We used our new abstraction algorithm to create an in-

formation abstraction with 169 preflop buckets, 60 public
flop buckets, and 500 private buckets for the flop, turn, and
river for each of the public flop buckets, that is, 30,000 total
private buckets for each of the three postflop rounds. Our ac-
tion abstraction had 6,104,546 nodes (including leaves). In
total, our abstract game then had 5.49 · 1015 nodes (includ-
ing leaves), 6.6·1010 information sets (not including leaves),
and 1.8 · 1011 infoset actions (a new measure of game size
that is directly proportional to the amount of memory that
CFR uses (Johanson 2013)). This is six times larger than
the largest abstractions used by prior NLTH agents—and, to
our knowledge, the largest imperfect-information game ever

tackled by an equilibrium-finding algorithm. This scale was
enabled by our new, distributed approach.

We ran our equilibrium-finding algorithm for 1,200 hours
on a supercomputer (Blacklight) with a high inter-blade
memory access latency using 961 cores (60 blades of 16
cores each, plus one core for the head blade), for a total of
1,153,200 core hours. Each blade had 128 GB RAM.

The results from the 2014 ACPC against all (anonymized)
opponents are shown in Table 1. The units are milli big
blinds per hand (mbb/h), and the ± indicates 95% confi-
dence intervals. Our agent beat each opponent with statis-
tical significance, with an average win rate of 479 mbb/h.

We also compared our algorithm’s performance to using
the prior best approach on a low-latency shared-memory
server with 64 cores and 512 GB RAM. This is at the
upper end of shared-memory hardware commonly avail-
able today. The algorithm run on the server used exter-
nal sampling MCCFR on a 169-5,000-5,000-5,000-bucket
imperfect-recall card abstraction (this size was selected be-
cause it is slightly under the capacity of 512 GB RAM).
We computed that information abstraction using the state-of-
the-art non-distributed abstraction algorithm (Ganzfried and
Sandholm 2014). We used the same action abstraction as for
the distributed case. The abstract game then had 1.5 · 1014

nodes (including leaves), 1.1 · 1010 information sets (not in-
cluding leaves), and 3.1 · 1010 infoset actions.

We benchmarked both against the two strongest agents
from the 2013 competition, Figure 1.6 The new approach
outperformed the old against both agents for all timestamps
tested. So, it is able to effectively take advantage of the ad-
ditional distributed cores and RAM.

Figure 1: Win rates over time against the two strongest
agents from the 2013 poker competition.

We also studied the effect of using our new post-proc-
essing techniques on the final strategies computed by our
distributed equilibrium computation. We compared using no
threshold, purification, a threshold of 0.15,7 and using the

6Both our distributed and parallel algorithms were evaluated in
play with purification (except no post-processing of the first ac-
tion), which had been shown to perform best among prior tech-
niques. This is also one of the benchmarks we evaluate in the ex-
periments presented in Table 2.

7This value was a prior benchmark (Ganzfried, Sandholm, and
Waugh 2012). Our exploratory data analysis concurred that it is a
good choice.

16



O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13
261± 47 121± 38 21± 16 33± 16 20± 16 125± 44 499± 68 141± 45 214± 57 516± 61 980± 34 1474± 180 1819± 111

Table 1: Win rate (in mbb/h) of our agent in the 2014 Computer Poker Competition against opposing agents.

new technique with a threshold of 0.2.8 We tested against
the same two strongest agents from the 2013 competition.
Results are shown in Table 2. The new post-processor out-
performed the prior ones both on average performance and
on worst observed performance.

O1 O2 Avg Min
No Threshold +30± 32 +10± 27 +20 +10
Purification +55± 27 +19± 22 +37 +19

Thresholding-0.15 +35± 30 +19± 25 +27 +19
New-0.2 +39± 26 +103± 21 +71 +39

Table 2: Win rate (in mbb/h) of several post-processing tech-
niques against strongest 2013 agents.

6 Conclusion
We introduced a distributed version of the most common-
ly used algorithm for large-scale equilibrium computation,
counterfactual regret minimization (CFR), which enables
CFR to scale to dramatically larger abstractions and num-
bers of cores. Specifically, we based our algorithm on
external-sampling Monte Carlo CFR. The new algorithm
begets constraints on the abstraction so as to make the pieces
running on different computers disjoint. We introduced an
algorithm for generating such abstractions while capital-
izing on state-of-the-art abstraction ideas such as imper-
fect recall and the earth-mover’s-distance similarity metric.
Our techniques enabled an equilibrium computation of un-
precedented size on a supercomputer with a high inter-blade
memory latency. Prior approaches run slowly on this archi-
tecture. Our approach also leads to a significant improve-
ment over using the prior best approach on a large shared-
memory server with low memory latency. Finally, we in-
troduced a family of post-processing techniques that out-
perform prior ones. We applied these techniques to gener-
ate an agent for two-player no-limit Texas Hold’em. It won
the 2014 Annual Computer Poker Competition, beating each
opponent with statistical significance.

The techniques are game independent. While we pre-
sented them for a setting that does not require abstraction
before the public information arrives, and there is only one
round of public information, they can be extended to settings
with any sequence of interleaved public and private informa-
tion delivery—while keeping the information sets on differ-
ent blades disjoint. Also, while we presented techniques for
two levels in the distribution tree (one blade to handle the
top part and the rest split disjointly among the other blades),
it is easy to see how the same idea can be directly extended
to trees with more than two levels of blades.

8This was a good choice based on exploratory analysis, and it
performed clearly better than 0.1 against both opponents.
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A Rules of No-Limit Texas Hold’em Poker
Initially two players each have a stack of chips (worth
$20,000 in the computer poker competition). One player,

called the small blind, initially puts $50 worth of chips in
the middle, while the other player, called the big blind, puts
$100 worth of chips in the middle. The chips in the middle
are known as the pot, and will go to the winner of the hand.

Next, there is an initial round of betting. The player whose
turn it is can choose from three available options:
• Fold: Give up on the hand, surrendering the pot to the

opponent.
• Call: Put in the minimum number of chips needed to

match the number of chips put into the pot by the oppo-
nent. For example, if the opponent has put in $1000 and
we have put in $400, a call would require putting in $600
more. A call of zero chips is also known as a check.
• Bet: Put in additional chips beyond what is needed to call.

A bet can be of any size up to the number of chips a player
has left in his stack. If the opponent has just bet, then our
additional bet is also called a raise.
The initial round of betting ends if a player has folded,

if there has been a bet and a call, or if both players have
checked. If the round ends without a player folding, then
three public cards are revealed face-up on the table (called
the flop) and a second round of betting occurs. Then one
more public card is dealt (called the turn) and a third round
of betting, followed by a fifth public card (called the river)
and a final round of betting. If a player ever folds, the other
player wins all the chips in the pot. If the final betting round
is completed without a player folding, then both players re-
veal their private cards, and the player with the best hand
wins the pot (it is divided equally if there is a tie).

B Regret Matching
In regret-minimization algorithms, a strategy is determined
through an iterative process. While there are a number of
such algorithms (e.g., (Greenwald, Li, and Marks 2006;
Gordon 2007)), this paper will focus on a typical one called
regret matching (specifically, the polynomially weighted av-
erage forecaster with polynomial degree 2). We will now re-
view how regret matching works, as well as the necessary
tools to analyze it.

A normal-form (aka bimatrix) game is defined as follows.
The game has a finite set N of players, and for each player
i ∈ N a set Ai of available actions. The game also has:
• For each player i ∈ N a payoff function ui : Ai×A−i →
<, where A−i is the space of action vectors of the other
agents except i. Define
∆i = max〈ai,a−i〉 ui(ai, a−i) − min〈ai,a−i〉 ui(ai, a−i)
and define ∆ = maxi ∆i.

• For each player i, a strategy σi is a probability distribu-
tion over his actions. The vector of strategies of play-
ers N \ {i} is denoted by σ−i. We define ui(σi, σ−i) =∑
a,a−i

pσi(a)pσ−i(a−i)ui(a, a−i). We call the vector of
strategies of all players a strategy profile and denote it by
σ = 〈σi, σ−i〉. Moreover, the value of σ to player i is
defined as vi(σ) = ui(σi, σ−i).
Let σti be the strategy used by player i on iteration t. The

instantaneous regret of player i on iteration t for action a is
rt,i(a) = ui(a, σ

t
−i)− ui(σt, σt−i) (1)
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The regret, for player i on iteration T for action a is

RT,i(a) =
1

T

T∑
t=1

rt,i(a) (2)

Also, RT,i = maxa{RT,i(a)}.
In the regret-matching algorithm, a player simply picks

an action in proportion to his positive regret on that action,
where positive regret is Rt,i(a)+ = max{Rt,i(a), 0}. For-
mally, at each iteration t+ 1, player i selects actions a ∈ Ai
according to probabilities

pt+1(a) =

{
Rt,i(a)+∑

a′∈Ai
Rt,i(a′)+

, if
∑
a′∈Ai

Rt,i(a
′)+ > 0

1
|A| , otherwise

(3)
As shown in (Cesa-Bianchi and Lugosi 2006, p. 10), one

can bound regret as

RT,i ≤ RT,i+ ≤
∆i

√
|Ai|√
T

(4)

Thus, as T →∞, RT,i+ → 0.

C Extensive-Form Games
An extensive form game is defined as follows (Osborne and
Rubinstein 1994).

• A finite set N of players.

• A finite set H of sequences, the possible histories of ac-
tions, such that the empty sequence is inH and every pre-
fix of a sequence in H is also in H . Z ⊆ H are the ter-
minal histories (those which are not a prefix of any other
sequences). A(h) = a : (h, a) ∈ H are the actions avail-
able after a nonterminal history h ∈ H .

• A function P that assigns to each nonterminal history
(each member of H \ Z) a member of N ∪ c. P is the
player function. P (h) is the player who takes an action
after the history h. If P (h) = c then chance determines
the action taken after history h.

• A function fc that associates with every history h for
which P (h) = c a probability measure fc(·|h) on A(h)
(fc(a|h) is the probability that a occurs given h), where
all pairs of measures are independent.

• For each player i ∈ N a partition Ii of {h ∈ H : P (h) =
i} with the property that A(h) = A(h′) whenever h and
h′ are in the same member of the partition. For Ii ∈ Ii
we denote by A(Ii) the set A(h) and by P (Ii) the player
P (h) for any h ∈ Ii. We define |Ai| = maxIi |A(Ii)| and
|A| = maxi |Ai|. Ii is the information partition of player
i; a set Ii ∈ Ii is an information set of player i. We denote
by |Ii| the number of information sets belonging to player
i in the game and |I| = maxi |Ii|.

• For each player i ∈ N a payoff function ui from Z to
the reals. If N = 1, 2 and u1 = −u2, it is a zero-sum
extensive game. Define ∆i = maxz ui(z) − minz ui(z)
to be the range of payoffs to player i.

D Counterfactual Regret Minimization
(CFR)

Regret matching, described in Appendix B, is for normal-
form games. However, it can be efficiently generalized to
extensive-form games by using the counterfactual regret
minimization (CFR) algorithm. CFR and its extensions are
widely used in solving large imperfect-information games.

In CFR (Zinkevich et al. 2007), ui(σ, h) is defined as the
expected utility to player i given that history h has occurred,
assuming all players then play according to σ. Next, coun-
terfactual utility is defined as the expected utility given that
information set I is reached and all players play according
to σ except that player i plays to reach I . Formally, if πσ(h)
is the probability of reaching history h according to σ, and
πσ(h, h′) is the probability of going from history h to his-
tory h′, then

ui(σ, I) =
Σh∈I,h′∈Zπ

σ
−i(h)πσ(h, h′)ui(h

′)

πσ−i(I)

Further, for all a ∈ A(I), σ|I→a is defined to be a strategy
profile identical to σ except that player i always chooses ac-
tion a when in information set I . Immediate counterfactual
regret for an action is defined as

RTi,imm(I, a) =
1

T

T∑
t=1

πσ
t

−i(I)(ui(σ
t|I→a, I)− ui(σt, I))

and for an information set as

RTi,imm(I) = max
a∈A(I)

RTi,imm(I, a)

In CFR, on iteration T + 1 a player at an information set
selects among actions a ∈ A(I) by

pT+1(a) =


R

T,+
i (I,a)∑

a∈A(I) R
T,+
i (I,a)

, if
∑

a∈A(I) R
T,+
i (I, a) > 0

1
|A(I)| , otherwise

Using CFR, one can bound regret in extensive-form games.
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