
Context Transfer and Q-Transferable Tasks

Amin Mousavi1, Babak Nadjar Araabi1,2, Majid Nili Ahmadabadi1,2
1Robotics and AI Lab, Control and Intelligent Processing Center of Excellence

School of Electrical and Computer Engineering, University of Tehran, Iran.
2School of Cognitive Science, Institute for Research and Fundamental Sciences (IPM), Tehran, Iran.

Abstract

This article discusses the notion of context transfer in
reinforcement learning tasks. Context transfer, as de-
fined in this article, implies knowledge transfer be-
tween tasks that share the same environment’s dynamics
and reward function, but have different state and action
spaces. For example, we have a working mobile robot
in an environment. At some point, we decide to upgrade
its sensors and/or actuators. Any change in these mod-
ules will result in a different description of the agent-
environment model, and the trained knowledge is no
longer applicable. We consider the tasks of the old and
new robots, as the source and target tasks, respectively.
The Markov decision process (MDP) of these tasks, un-
der certain conditions, are called Q-transferable tasks,
and the problem of knowledge transfer between them is
called context transfer. We investigate the relation of the
MDPs of these tasks.

Introduction
Transfer in reinforcement learning is typically framed as
leveraging knowledge learned on a source task to improve
learning on a related, but different, target task. As the source
and target tasks are usually assumed to be heterogeneous,
so, the main challenge of transfer learning is recognizing the
similarities of tasks and using them to accelerate the learning
process. This can be expressed by a mapping which actually
translates the knowledge of the source task to the language
of the target task. This problem is referred to an mapping
problem in Torrey (2009). In some cases, the tasks are using
an identical representation. This representation can be used
as a common basis to translate the knowledge and experi-
ence between task. But, if the tasks use different representa-
tions the mapping problem will become more complex and
challenging. In some approaches, a domain is constructed
that naturally produces a common task representations. Re-
lational learning is an example of such approaches.

In some approaches, the human knowledge of the domain
of the tasks is used to solve the mapping problem. Taylor
et al (2007) use a hand-coded mapping between the states
and actions of the source and target tasks; namely χS and
χA. The mapping χS maps each state variable of the target
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task to the most similar state of the source task. Similarly,
the mapping χA maps each action of the target task to the
most similar action of the source task. This pair of mapping
is called inter-task mapping. They use the inter-task map-
ping to transfer the action-value functions from the source
to the target task, and thus improving the learning of the tar-
get task. In Taylor (2008), the inter-task mapping is used to
transfer the samples from the source to the target task. In
Taylor (2007b), Taylor and Stone use the inter-task mapping
to transfer the source task policy as some rules to the target
task. The transferred rules summarize the source task policy.
The inter-task mapping acts as a translator for the rules to be
used in the target task.

Torrey et al (2007) transfer relational macros among tasks
with different state features and actions. In this approach, re-
lational macros are defined as finite-state machines in which
the transition conditions and the node actions are repre-
sented by first-order logical clauses. The macros character-
izes successful behavior in the source task. The inductive
logic programming is used to learn a macro and then use it
in the early learning stages of the target task.

Ravindran and Barto (2003), Soni and Singh (2006) use
the homomorphism framework to map tasks to a common
abstract level. The options are defined on an abstract MDP,
called relativized options, and their policies are then trans-
formed according to the specific target task. More specifi-
cally, a set of possible transformations is provided and the
goal of transfer is to identify the most suitable transforma-
tion of the relativized options depending on the current tar-
get task.

Konidaris and Barto (2006,2012) define options at a
higher level of abstraction which can be used by the target
task without any explicit mapping between the states and
actions of the tasks. In this approach, the tasks’ similarities
are modeled as agent-space and the tasks’ differences are
modeled as problem-space. The tasks are assumed to share
common features and to be reward-linked; rewards are allo-
cated the same way for the tasks. An agent learns a portable
shaping function from experience in the source tasks in the
agent-space to improve the performance in the target task.
The presented definition of the notion of reward-linked is
mostly qualitative rather than a precise mathematical defini-
tion.

This article discusses context transfer in RL, that is, trans-
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ferring knowledge between agents with different state and
action spaces. The goal in this type of transfer problem is
the same: to reduce the time needed to learn the target with
transfer, with respect to learning without transfer. We think
that this is an important problem for the following reasons.
Firstly, there may be different agents with different sen-
sors or actuators in an environment and cooperation between
them may improve the learning process. Secondly, in many
real-world scenarios, one actually does not have access to
a minimized MDP model of the environment, and usually
there is a lot of redundancy in the MDP model. In this case,
there may be an agent that has already been training on a task
with a certain internal representation of the states and actions
but the performance is poor. A different internal representa-
tion could allow the agent to achieve higher performance.
The context transfer enables the agent to use the previous
knowledge to accelerate the learning with new state and ac-
tion spaces. Thirdly, consider a real-world working agent.
At some point, we decide to upgrade its sensor and/or actu-
ator modules. Any change in these modules will result in a
different model of the agent-environment interaction. There-
fore, the learning algorithm and the trained knowledge is no
longer applicable. If experience is expensive in the environ-
ment, it is preferable to leverage the existing knowledge of
the agents to improve the learning with new sensors or actu-
ators. Context transfer can resolve the problem.

Markov Decision Processes and
Homomorphisms

A Markov Decision Process (MDP) is a model of an agent’s
interaction with the environment (Sutton 1998):

Definition 1 A Markov Decision Process (MDP) is a tuple
〈S,A, P, r〉, where S is the set of all states,A is the set of all
actions, P : S×A×S → [0, 1] is the transition probability
function and r : S ×A× S → R is the reward function.

At each time step, t, the agent senses the environment’s
state, st ∈ S, and performs an action, at ∈ A. As a conse-
quence of its action, the agent receives a numerical reward,
rt+1 ∈ R, and finds itself in a new state st+1. The objective
of the agent is to learn a policy for acting, π : S → A, in
order to maximize its cumulative reward.

Temporal-difference methods are based on iteratively up-
dating value functions to predict the rewards earned by ac-
tions. One popular RL technique is Q-learning (Watkins
1989), which involves learning a Q-function. The Q-
function, Q(s, a), estimates the discounted cumulative re-
ward starting in state s and taking action a and following the
current policy thereafter. When the number of states is finite
and small, theQ-function is represented as a table. Given the
optimal Q-function, the optimal policy is to take the action
argmax

a∈A
Q(st, a). The Q-functions are recursively updated

after each step according to the following equation:

Q(st, at)←− (1−α)Q(st, at)+α(rt+γ max
a∈A

Q(st+1, a))

(1)
where γ ∈ [0, 1] and α ∈ (0, 1] are called discount factor
and learning rate, respectively. Under certain conditions, Q-

learning is guaranteed to converge to an accurateQ-function
(Watkins 1992).

An MDP homomorphism from an MDP M to an MDP
M ′ is a mapping that preserves M ’s dynamics, while elim-
inating some of the details of M .The exact definition is as
follows:

Definition 2 An MDP homomorphism h from an MDP
M = 〈S,A, P, r〉 to an MDP M ′ = 〈S′, A′, P ′, r′〉 is a sur-
jection h : Ψ→ Ψ′, Ψ = S ×A and Ψ′ = S′ ×A′, defined
by the tuple of surjections 〈f, {gs|s ∈ S}〉, with h(s, a) =
(f(s), gs(a)), where f : S → S′ and gs : A → A′, such
that:

P ′(f(s), gs(a), f(s′)) =∑
s′′∈[s′]Bh|S

P (s, a, s′′), ∀s, s′ ∈ S, a ∈ A

r′(f(s), gs(a)) = r(s, a) (2)

As h is a surjection, it induces a partition on Ψ denoted
by Bh, and [(s1, a1)]Bh

denotes the block of Bh to which
(s1, a1) belongs, such that:

∀(s1, a1), (s2, a2) ∈ S ×A ;

[(s1, a1)]Bh
= [(s2, a2)]Bh

⇔ h(s1, a1) = h(s2, a2)

Bh|S is the projection of Bh on S which is a partition on S
and [s′]Bh|S is the block containing s′; for every s1, s2 ∈ S,
[s1]Bh|S = [s2]Bh|S if and only if every block of Bh con-
taining a pair in which s1(s2) is a component also contains
a pair in which s2(s1) is a component.

We call M ′ the homomorphic image of M under h. From
condition (2), we can see that state-action pairs that have the
same image under h have the same block transition behavior
in M , i.e., the same probability of transiting to any given
block of states with the same image under f . Condition (2)
says that state-action pairs that have the same image under h
have the same expected reward. These conditions mean that
M ′ preserves the dynamics and rewards of M eliminating
some of the details of the original MDP M .

Consider the following Definition and Theorem (Ravin-
dran 2001).

Definition 3 State-action pairs (s1, a1) and (s2, a2) ∈ Ψ
are equivalent if there exist a homomorphism h of M such
that h(s1, a1) = h(s2, a2). States s1 and s2 ∈ S are equiva-
lent if (i) for every action a1 ∈ A, there is an action a2 ∈ A
such that (s1, a1) and (s2, a2) are equivalent, and (ii) for
every action a2 ∈ A, there is an action a1 ∈ A, such that
(s1, a1) and (s2, a2) are equivalent.

The notion of equivalence leads us to the following theo-
rem on optimal value equivalence.
Theorem 1 LetM′ = 〈S′, A′, P ′, r′〉 be the homomorphic
image of the MDP M = 〈S,A, P, r〉 under h. For any
(s, a) ∈ Ψ, Q?(s, a) = Q?(h(s, a)).
where Q? is the optimal action value function. In fact, the
homomorphism hi induces the partition Bhi

on Ψi as ex-
plained before. This partition actually encodes the redun-
dancy in the representations of states and actions of task
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Ti. Theorem 1 states that if (s1, a1), (s2, a2) ∈ Ψi and
hi(s1, a1) = hi(s2, a2), then Q?(s1, a1) = Q?(s2, a2) =
Q?(hi(s1, a1)). It means that the elements of a block of
the partition Bhi

have the same optimal Q-value which is
equal to an optimal Q-value of the task T ′. It concludes that
for every (s, a) ∈ Ψl there exists a (s1, a1) ∈ Ψi where
Q?(s, a) = Q?(s1, a1) and vice versa.

Action-Value Functions and Q-Transferable
Tasks

An action-value function ultimately gives the expected re-
ward of taking a given action in a given state and following
the optimal policy thereafter. This is actually a function on
the set of Ψ = S ×A to the real numbers:

Q : Ψ→ R

The set of Ψ is the domain, and R is the codomain of the
action-value function. The image of a function is the part of
the codomain which consists only of the function’s outputs.
In fact, the image of the function is the minimal subset of the
codomain which can be considered as the minimal range of
the function. We denote the image of the action-value func-
tion of MDP Mi = 〈Si, Ai, Pi, ri〉 by Q?

i ⊆ R, and:

Q : Ψ→ Q?
i

In RL, every task is formulated as an MDP. Consider a
family of MDPs denoted byM = {M1,M2, ...,Ml}, mod-
eling l different tasks. Now, we define the Q-transferable
tasks using the following definition:

Definition 4 Q-transferability is a binary relation on M
denoted by

Q∼, where ∀Mi,Mj ∈ M, we have Mi
Q∼ Mj

if and only if their action-value functions have the same im-
age. In other words:

Mi
Q∼Mj ⇐⇒ Q?

i = Q?
j .

The tasks Mi and Mj are called Q-transferable tasks. We
have the following theorem.

Theorem 2 The Q-transferability is an equivalence rela-
tion.

Proof The Q-transferability relation is reflexive, symmetric
and transitive, so, it is an equivalence relation.

The equivalence relation
Q∼ induces a partition on the

set of tasks. Every block of this partition contains Q-
transferable tasks. We define the problem of context transfer,
as follows:

Definition 5 The problem of knowledge transfer between

the tasks of a block of Q-transferability partition (
Q∼), is

called context transfer.

Homomorphisms and Q-transferability
In this section, we discuss the relation of homomorphisms
and Q-transferability of different tasks. Firstly, we define
homomorphism graph, as follows:

Definition 6 Let M = {M1,M2, ...,Ml} be the family of
tasks. The pair G = (M,H), called homomorphism graph,
is a directed graph whereM is the node set,H ⊆M×M
is the edge set, and (Mi,Mj) ∈ H if and only if there is a
homomorphism h from Mi to Mj .

To explain the relation between homomorphisms and Q-
transferability, consider the following theorem:
Lemma 1 Two tasks Mi,Mj ∈ M are Q-transferable if
they are weakly connected in homomorphism graph G.
Explaining that two nodes Mi and Mj are connected if G
contains a path from Mi to Mj . These nodes are called
weakly connected if there is a path in G when replacing all
directed edges with undirected edges. Consider the follow-
ing definitions:
Definition 7 Undirected homomorphism graph, denoted by
Gu is a homomorphism graphG where all its directed edges
are replaced by undirected edges.

Definition 8 A connected component of an undirected
graph is a subgraph in which any two nodes are connected
to each other by paths.

The following lemma explains the relation of partition of
Q-transferability and the homomorphism graph.
Lemma 2 The nodes of a connected component of Gu be-
longs to a block of Q-transferability partition.

An alternative way to explain the relation of homomor-
phisms and Q-transferability is to use the reachability rela-
tion in graph theory:
Definition 9 Node Mi is reachable from Mj if there is a
path from Mi to Mj in undirected graph Gu.

Lemma 3 The reachability is an equivalence relation and
induces a partition on the nodes of the graph. The Q-
transferability is coarser than the reachability partition, that
is, every block of reachability is a subset of a block of Q-
transferability.

In other words, every pair of reachable tasks in Gu, is Q-
transferable, and the problem of knowledge transfer between
them is context transfer.

Agents with Different Sensors and Actuators
Consider a Markov environment. There is a minimized MDP
model of the environment, denoted by Mmin. There are
some agents learning the same task in this environment.
The agents are using different sensors and actuators. Each
agent estimates the state of the environment using its sensors
and makes an action by its actuators. An agent usually does
not have access to the minimal model of the environment
(Mmin). As the sensors and actuators of the agents are dif-
ferent, therefore, they see and model the environment, differ-
ently, described by different MDPs: M1,M2, ...,Ml. Each
MDP, Mi, is, actually, a redundant estimation of Mmin. In
other words, the minimized MDP is a homomorphic im-
age of Mi. The homomorphism graph of the MDPs of these
agents is shown in Fig. 1.

The homomorphism graph of these MDPs is a connected
component, and the problem of knowledge transfer between
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Figure 1: The homomorphism graph of the agents perform-
ing the same task using different sensors and actuators. Mi

is the MDP of the ith agent, and Mmin is the minimized
MDP model of the environment

them is context transfer. Following example clarifies the
problem.

Example 1 Consider a 10 × 10 grid with some obstacles
and a goal place (Fig. 2). There are three robots that are
trying to reach the goal without hitting the obstacles. The
robots are using different sensors to locate their position in
the environment. The first robot is using global positioning
system (GPS), and its position is given by a pair of num-
ber indicating its latitude and longitude positions. The sec-
ond robot is using beam’s distance indicator sensors which
gives two numbers as the distance’s to two pre-located beam
sources. The third robot is using a proximity and a compass
sensor to detect the obstacles around the robot and estimate
its location. The robots are using different actuators, as ex-
plained in Fig. 2.

One can easily check that there is a minimized MDP of
the environment consisting of 100 states corresponding to
the grids, and five actions as:

S = {(1, 1), (1, 2), ..., (10, 10)}

A = {N,S,E,W, 0}

There are homomorphisms h1, h2 and h3 from the MDPs of
robots 1, 2 and 3 to the minimized MDP as shown in Fig.
3. As a matter of fact, the representation of robots 1,2 and
3 are redundant representations of the minimized MDP. For
instance, we have:

h1((3, 4, N), F ) = ((3, 4), N),

h1((2, 1,W ), RF ) = ((2, 1), S),

h2((5, 10), 0) = ((3, 9), 0),

h2((6, 15), E) = ((1, 6), E)

h3((4, 4, 2, 4, N), F ) = ((7, 6, ), F ),

h3((9, 0, 0, 7, E), LF ) = ((1, 1), N).

The homomorphism graph is depicted in Fig. 3. Therefore,
the MDPs of these robots are Q-transferable, and the prob-
lem of knowledge transfer between them is context transfer.

Figure 2: A 10×10 grid with some obstacles and three robots
with different sensors and actuators

Figure 3: The homomorphism graph of the MDPs of robots
1, 2 and 3 as explained in Example 1

Feature Space as a Translator between Tasks
In (Konidaris 2012), the notion of shared features is used
for knowledge transfer among tasks. The shared features are
used by an agent to learn a portable shaping function in a
sequence of tasks to significantly improve performance in a
later related task. In this article, we follow the same idea of
using shared features as a tool of knowledge transfer. Based
on shared features, we obtain a partial mapping between the
state-action spaces of different tasks. Consider the robots
of Example 1; both robots 1 and 3 have a compass sensor,
and both robots 2 and 3 have the same set of actions. These
shared features defines a partial mapping between the state-
action spaces of different robots. The partial mappings de-
fines a set of possible Q-values for every state-action pair of
the target task. We use a simple averaging method on these
possible Q-values to transfer the knowledge between tasks.

A Case Study and Results
Consider the robots of Example 1; let the robots 1 and 2 be
the source and robot 3 be the target agent. Suppose that the
world is a 50 × 50 grid with some randomly located obsta-
cles. The reward function is as follows:
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Figure 4: The comparison of average reward of learning
for the four cases of transfer: without transfer, with transfer
from robot 1, with transfer from robot 2, and with transfer
from both robots

Reward=

{ −1 Taking an action except the following
−10 Hitting an obstacle
100 Reaching the goal

The source agents (robots 1 and 2) have learned their task
for 1000 episodes. To examine the algorithm, the learning
process of the target task is run four times; first without any
transfer, second with transfer from robot 1, third with trans-
fer from robot 2, and forth with transfer from both robots 1
and 2 after knowledge fusion.

The learning is repeated for 500 episodes. and the whole
learning is initialized for 50 epochs. The action selection
policy is softmax, and the learning parameters are as fol-
lows; the learning rate (α) is 0.1, the discount factor (γ) is
set to 0.9 and the temperature (τ ) decreases by the exponen-
tial function (τ = e−0.1n + 0.5) where n is the number of
episodes.

The final learning curves are averages of 50 independent
learning curves. The average reward and regret function of
the learning are shown in Figs. 4 and 5, respectively. The re-
gret is the expected decrease in reward because of executing
the algorithm instead of acting optimally from the begin-
ning (Berry 1985). The results show the increase of average
reward and decrease of regret at the beginning episodes of
the learning. The knowledge fusion of robots 1 and 2, sig-
nificantly, improves the learning.
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