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Abstract

We introduce a novel feature set for reinforcement
learning in visual domains (e.g. video games) designed
to capture pairwise, position-invariant, spatial relation-
ships between objects on the screen. The feature set is
simple to implement and computationally practical, but
nevertheless allows for substantial improvement over
existing baselines in a wide variety of Atari 2600 games.
In the most dramatic results the features allow multiple
orders of magnitude improvement in performance.

1 Introduction
Selecting a good representation of state has long been under-
stood to be a key concern for reinforcement learning with
function approximation. While the representation is often
tuned by an agent designer specifically for individual prob-
lems, when the agent must succeed in many problems the
challenge of finding a good representation is even greater.
This paper introduces a new set of features for use in do-
mains where the agent’s observations are images (e.g. video
games). The features encode the fact that the relative po-
sitions of objects to each other is often more important than
their absolute positions. The utility of these features for rein-
forcement learning with linear value function approximation
is demonstrated in over 50 Atari 2600 games using the Ar-
cade Learning Environment (ALE) (Bellemare et al. 2013),
where they exhibit robustly good performance and outper-
form existing baselines in a wide variety of examples.

2 Linear Value Function Approximation
We focus our attention on Markov Decision Processes
(MDP). At each discrete time step t the environment is in
some state st ∈ S . The agent chooses an action at ∈ A,
which causes the environment to enter state st+1 ∼ T (· |
st, at) sampled from a transition probability distribution
conditioned on the current state and action. The agent also
receives a reward rt+1 = R(st, at, st+1). The agent’s goal
is to obtain a policy π : S → A that maximizes the expected
discounted return V π(s) = E

[∑∞
k=1 γ

k−1rt+k | st = s
]

for every state s, where the expectation is over the stochas-
ticity in the environment and γ ∈ (0, 1] is the discount factor.
The function V π is called the state value function for policy
π. The associated state-action value function Qπ(s, a) =

Es′ [R(s, a, s′) + γV π(s′)] represents the expected return
from taking action a in state s and following π forever after.

Many reinforcement learning algorithms learn a policy
from experience by continually updating an estimate of the
state-action value function of the current policy, and then
updating the policy to behave greedily (or nearly greedily)
with respect to that value function. When the state space is
large, it is common to approximate the value function, most
commonly as a linear function. In that case, the state is rep-
resented by some vector of k features generated by the func-
tion φ : S×A → Rk and the value function is parameterized
by a real vector θ. Then Q(s, a) ≈ θ>φ(s, a). For a detailed
introduction to reinforcement learning methods, the reader
is referred to Sutton and Barto (1998); the main issue con-
cerning this paper is that the choice of φ can have a dramatic
impact on learning performance in terms of both the num-
ber of samples needed to achieve good performance and the
asymptotic performance of the learned policy.

3 Features for Atari 2600 Games
Multiple choices for φ have been explored in the ALE en-
vironment. The feature set most relevant to this work is
the Basic feature set (Bellemare et al. 2013). Basic fea-
tures are generated by dividing the 160 × 210 pixel Atari
2600 screen into 10× 15 pixel blocks. Then for every block
(c, r) with c ∈ {0, 15} and r ∈ {0, 13} and NTSC color
k ∈ {0, ..., 127} there is a binary feature φ(c,r),k that is 1 if
any pixel contained in block (c, r) has color k, and 0 other-
wise. Thus there are 16×14×128 = 28, 672 Basic features
(most of which are 0 in a given frame). Basic features try
to exploit the fact that many Atari 2600 games use color to
distinguish object types and that most objects in Atari 2600
games are larger than a single pixel to give a crude idea of
the location and type of each object in the game. Bellemare
et al. (2013) made the Basic feature vector more sparse by
extracting a background image for each game offline and
subtracting it from each frame before encoding.

Closely related to Basic is the BASS feature set (Belle-
mare et al. 2013). The BASS feature set includes the Ba-
sic features, and also every pairwise product of the Ba-
sic features. BASS features try to capture the fact that not
only is the position of each individual object important, but
so are the spatial relationships between objects. Note that
if the full NTSC color palette were used there would be
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28, 6722 = 822, 083, 584 pairwise features. Even though
the feature vector is quite sparse, it can be impractical to
work with nearly a billion features. So the smaller SECAM
palette, which has only 8 colors was used, yielding 1,792
Basic features and 3,211,264 pairwise features.

Other more sophisticated techniques have been proposed
as well. Bellemare et al. (2013) also presented results using
Local Sensitivity Hashing (hashing a bit vector representing
the image down to a smaller number of features) and the
DISCO features which used basic computer vision to detect
moving “blobs” of color, categorize the blobs into object
types, and finally perform tile-coding over blob positions,
pairwise relative positions, and velocities. Bellemare, Ve-
ness, and Bowling (2012a) used a learned predictive model
in conjunction with a Bayesian filter to determine the por-
tion(s) of the screen directly under control of the player
(called contingent regions). The location of the contingent
regions were discretized and the product of the resulting bi-
nary features and the Basic feature set was used for learn-
ing. Bellemare, Veness, and Bowling (2012b) later extended
this idea to consider patches of color of various size within
Basic blocks, rather than only single pixels. This allows the
features to capture features of shape as well as color, but cre-
ates a prohibitively large feature vector, which was hashed
down to a more manageable feature set.

More recently Mnih et al. (2013) took a very different ap-
proach, approximating the value function using a deep con-
volutional neural network. They call their algorithm Deep
Q-Networks (DQN). The raw input to the network was a se-
quence of 4 downsampled frames, converted to greyscale.
The hidden layers of the network learned a more abstract
representation over this input. DQN was not evaluated on the
entire suite of Atari 2600 games, but on the 7 games reported
it substantially outperformed all previous approaches.

4 Basic Pairwise Relative Offset Features
Note that several of the above discussed representations
share some common themes. Many acknowledge the im-
portance of pairwise spatial relationships between objects.
Some also attempt to capture a sense of spatial invariance –
often the relative positions of objects to each other are more
important than their absolute positions (e.g. it is more impor-
tant to know that an enemy is near the player’s avatar than
the position of the enemy on the screen). That said, several
of the existing attempts to capitalize on these observations
are complicated to implement and computationally demand-
ing. Basic Pairwise Relative Offset (B-PRO) features, the
subject of this paper, aim to encode these observations in a
simple, computationally light-weight feature set in the spirit
of Basic or BASS features.

The B-PRO feature set includes the Basic features. It
also includes a binary feature that indicates whether any
pair of Basic features are on at some particular offset from
each other. More specifically, for every offset (i, j) with
i ∈ {−15, . . . , 15} and j ∈ {−13, . . . , 13} and every pair
of NTSC colors k1, k2 ∈ {0, . . . , 127} there is a B-PRO
feature φ(i,j),k1,k2 which is 1 if there exists any block (c, r)
such that a pixel of color k1 is contained within the block and
a pixel of color k2 is contained within the block (c+i, r+j).
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Figure 1: Inter-algorithm score distributions: the y-axis
shows the fraction of games in which each method achieved
the corresponding inter-algorithm score or better.

Note that the B-PRO features can be viewed as a specific
form of max-pooling over the BASS features (pooling over
absolute position). As such, the complexity of computing
the B-PRO feature set is similar to that of BASS. However,
there are ultimately many fewer B-PRO features than BASS
features over the same palette. This makes it practical to use
the full NTSC palette with B-PRO features, resulting in 31×
27× 1282 = 13, 713, 408 offset features.

B-PRO features are simple and computationally manage-
able. The experiments in the next section will demonstrate
that they also capture state information that is important to
success in many Atari 2600 games.

5 Experiments
B-PRO features were combined with the SARSA(λ) agent
tested by Bellemare et al. (2013), using the same experi-
mental setup for comparison’s sake. Specifically, for each
game, in 30 independent trials the agent was trained for 5000
episodes, after which the learned policy was evaluated in
500 test episodes. The average score over all test episodes
and trials is reported. As in those experiments, γ = 0.999
and the agent used an ε-greedy policy with ε = 0.05 (for
both training and test episodes). The learning rate α and the
eligibility trace decay rate λ were selected via a parameter
sweep using 5 “training games” (ASTERIX, BEAM RIDER,
FREEWAY, SEAQUEST, and SPACE INVADERS) 1.

SARSA with B-PRO features was compared to the
SARSA results reported by Bellemare et al. (2013) for Ba-
sic, BASS, DISCO, and LSH features. For each game, the
inter-algorithm scores (Bellemare et al. 2013) were com-
puted: if si is the score for method i, the inter-algorithm
score ai =

si−minj sj
maxj sj−minj sj

. Figure 1 compares the inter-
algorithm score distributions of the 5 feature sets. Note
that B-PRO obtained the maximum score in the majority of
games. Also note that B-PRO’s curve remains higher than
those of the other methods indicating that it tends to perform
comparably to the best performer and rarely did the worst.

Table 1 reports the raw scores obtained by SARSA with
B-PRO features as well as the results reported by for Basic,
BASS, DISCO, and LSH features by Bellemare et al. (2013).
B-PRO often substantially outperforms the other baselines.

1Parameter values α = 0.5 and λ = 0.9 performed best from
ranges α ∈ {0.001, 0.01, 0.1, 0.5} and λ ∈ {0, 0.1, 0.5, 0.9}.
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Game Basic BASS DISCO LSH B-PRO (std. dev.) CAF DQN
ASTERIX 862.3 859.8 754.6 987.3 2641.0 (568.9) 1332.0

BEAM RIDER 929.4 872.7 563.0 793.6 1501.0 (391.1) 1742.7 4092
FREEWAY 11.3 16.4 12.8 15.4 18.0 (1.4) 19.97

SEAQUEST 579.0 664.8 421.9 508.5 715.0 (98.8) 722.89 1705
SPACE INVADERS 203.6 250.1 239.1 222.2 284.0 (48.9) 267.93 581

ALIEN 939.2 893.4 623.6 510.2 788.0 (304.7)
AMIDAR 64.9 103.4 67.9 45.1 125.0 (33.1)

ASSAULT 465.8 378.4 371.7 628.0 478.0 (151.5)
ASTEROIDS 829.7 800.3 744.5 590.7 991.0 (106.6)

ATLANTIS 62687.0 25375.0 20857.3 17593.9 31367.0 (4959.7)
BANK HEIST 98.8 71.1 51.4 64.6 116.0 (45.4)

BATTLE ZONE 15534.3 12750.8 0.0 14548.1 13221.0 (4819.8)
BERZERK 329.2 491.3 329.0 441.0 543.0 (105.2)
BOWLING 28.5 43.9 35.2 26.1 39.0 (15.4)

BOXING -2.8 15.5 12.4 10.5 3.0 (5.1)
BREAKOUT 3.3 5.2 3.9 2.5 6.0 (1.4) 168
CARNIVAL 2323.9 1574.2 1646.3 1147.2 2838.0 (1053.5)

CENTIPEDE 7725.5 8803.8 6210.6 6161.6 9466.0 (1918.4)
CHOPPER COMMAND 1191.4 1581.5 1349.0 943.0 2760.0 (1118.2)

CRAZY CLIMBER 6303.1 7455.6 4552.9 20453.7 14612.0 (5195.4)
DEMON ATTACK 520.5 318.5 208.8 355.8 420.0 (282.4)
DOUBLE DUNK -15.8 -13.1 -23.2 -21.6 -10.0 (8.1)

ELEVATOR ACTION 3025.2 2377.6 4.6 3220.6 7402.0 (2959.1)
ENDURO 111.8 129.1 0.0 95.8 147.0 (32.2) 470

FISHING DERBY -92.6 -92.1 -89.5 -93.2 -96.0 (5.3)
FROSTBITE 161.0 161.1 176.6 216.9 176.0 (26.0)

GOPHER 545.8 1288.3 295.7 941.8 2412.0 (889.9)
GRAVITAR 185.3 251.1 197.4 105.9 413.0 (68.8)
H.E.R.O. 6053.1 6458.8 2719.8 3835.8 5868.0 (2012.1)

ICE HOCKEY -13.9 -14.8 -18.9 -15.1 -3.0 (2.0)
JAMES BOND 197.3 202.8 17.3 77.1 323.0 (96.5)

JOURNEY ESCAPE -8441.0 -14730.7 -9392.2 -13898.9 -6329.0 (2696.4)
KANGAROO 962.4 1622.1 457.9 256.4 2175.0 (1643.3)

KRULL 2823.3 3371.5 2350.9 2798.1 4012.0 (546.6)
KUNG-FU MASTER 16416.2 19544.0 3207.0 8715.6 23423.0 (5838.5)

MONTEZUMAS REVENGE 10.7 0.1 0.0 0.1 185.0 (167.6)
MS. PAC-MAN 1537.2 1691.8 999.6 1070.8 1913.0 (380.7)

NAME THIS GAME 1818.9 2386.8 1951.0 2029.8 3397.0 (484.9)
PONG -19.2 -19.0 -19.6 -19.9 -23.0 (0.0) 20

POOYAN 800.3 1018.9 402.7 1225.3 1098.0 (110.9)
PRIVATE EYE 81.9 100.7 -23.0 684.3 105.0 (21.7)

Q*BERT 613.5 497.2 326.3 529.1 585.0 (139.6) 1952
RIVER RAID 1708.9 1438.0 0.0 1904.3 2079.0 (576.3)

ROAD RUNNER 67.7 65.2 21.4 42.0 10992.0 (3804.5)
ROBOTANK 12.8 10.1 9.3 10.8 12.0 (2.4)

STAR GUNNER 850.2 1069.5 1002.2 722.9 928.0 (125.5)
TENNIS -0.2 -0.1 -0.1 -0.1 -1.0 (0.0)

TIME PILOT 1728.2 2299.5 0.0 2429.2 2159.0 (901.0)
TUTANKHAM 40.7 52.6 0.0 85.2 100.0 (30.8)

UP AND DOWN 3532.7 3351.0 2473.4 2475.1 4087.0 (1071.5)
VENTURE 0.0 66.0 0.0 0.0 62.0 (235.0)

VIDEO PINBALL 15046.8 12574.2 10779.5 9813.9 18366.0 (3072.4)
WIZARD OF WOR 1768.8 1981.3 935.6 945.5 2417.0 (799.6)

ZAXXON 1392.0 2069.1 69.8 3365.1 2909.0 (1172.9)
Times Best 6 6.33 1.33 7.33 33

Table 1: Control performance of in Atari 2600 games. Bold indicates the best mean score in the first five columns.

The most dramatic individual comparison is in the game
ROAD RUNNER in which B-PRO features yield an average
10,992 points and the second best result is 67.7 points. A no-
table failure of B-PRO is in PONG where it actually achieves
the worst performance, despite the fact that the most impor-
tant feature on the screen is the offset between the agent’s
paddle and the ball. In this game the score display matches
the colors of the two paddles. Since B-PRO ignores absolute
position, it may be that color confusion between the score
and the paddle is enough to prevent effective learning.

Finally, the reported results for Contingency Aware Fea-

tures (CAF) (Bellemare, Veness, and Bowling 2012a) and
DQN (Mnih et al. 2013) are included for reference. Note that
results for CAF and DQN were not reported for all games
and were generated under different experimental protocols
and are therefore not directly comparable to the B-PRO re-
sults. Nevertheless, it can be noted that, even though CAF
was given more training data per trial (10,000 episodes as
opposed to 5,000), SARSA with the B-PRO features per-
forms comparably or better in all 5 training games.

The B-PRO results do not reach the levels of performance
obtained using DQN. However, note that B-PRO features are
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far simpler to implement and far less computationally ex-
pensive than the deep network. Also, because DQN learns
its own representation, it is not clear what representational
insights were key to its success. Though clearly DQN is
capturing other important state information, it may be that
features similar to B-PRO account for part of its success.

5.1 Unpromising Extensions
Given the positive results observed using B-PRO features,
we investigated several variations on the features. Each of
the following feature sets was progressively added to the
feature vector and evaluated in the 5 training games using
the same experimental set up as above.
• Row offsets: max-pooling over column offsets. For each

pair of colors and each row offset, there is a feature that
indicates if any B-PRO feature with that pair of colors and
that row offset is on, regardless of its column offset.

• Column offsets: the same as above but with columns.
• Sign offsets: max-pooling over offset magnitudes. For

each pair of colors there are four binary features, one for
each setting of the signs for the row and column offsets.

• Direction offsets: like sign offsets, but signs are treated
independently. For each color pair there are four binary
features indicating “above”, “below”, “left” and “right.”
Additionally, all of these variations were evaluated with

a higher resolution Basic grid (each block was 5 × 10 in-
stead of 10 × 15). None of these variations were found to
significantly improve performance in the training games.

6 Conclusions and Discussion
We introduced the B-PRO feature set for Atari 2600 games
that captures pairwise, position-invariant, spatial relation-
ships between objects on the screen. Empirically, these fea-
tures allow better performance than existing baselines in the
literature in a wide variety of games while retaining their
simplicity and computational practicality.

One of the main lessons from these results is that there are
still simple, game-independent representation ideas that can
make a substantial impact on performance in Atari. B-PRO
features performed better or at least comparably to other rep-
resentations that use far more complicated methods to ex-
tract relative positions of objects (e.g. DISCO and CAF).
This feature set is easy to implement and computationally
cheap to use – we believe it would make sense for B-PRO to
supplant Basic/BASS as the go-to “simple baseline” feature
set for comparison or augmentation.

The impressive results obtained using DQN may tempt
one to conclude that hand-coded features are no longer
necessary. Certainly adaptive representations like DQN are
likely to play an important role in achieving general compe-
tence in video games or other domains. However, we argue
that it is still valuable to study simple, interpretable repre-
sentation schemes, as doing so may give insight into which
issues are key to success. Furthermore, using such insights it
may be eventually be possible to achieve DQN-like results,
or better, using a more light-weight architecture, or to seed
something like DQN with a better base representation.

It is clear that the B-PRO features do have weaknesses
and they did behave poorly in some games where they were
expected to perform well (e.g. PONG). The preliminary find-
ings regarding variations on B-PRO features suggest that ad-
ditional max-pooling over B-PRO features or refining the
resolution of the Basic features upon which they are built
will not likely yield improvements on these results. Other
possible directions for augmenting these features include
generating features from more than one recent frame (e.g.
to represent velocities), using shape in addition to color to
detect important objects on the screen, or representing spa-
tial relationships between 3 or more objects.
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