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Abstract

In this paper we consider a scenario where one or more
robotic bodyguards are protecting an important individ-
ual (VIP) moving in a public space against harassment
or harm from unarmed civilians. In this scenario, the
main objective of the robots is to position themselves
such that at any given moment they provide maximum
physical cover for the VIP. The robots need to follow the
VIP in its movement and take into account the move-
ments of the civilians as well. The environment can also
contain obstacles which present challenges to move-
ment but also provide natural cover. We designed two
algorithms for the movement of the bodyguard robots:
Threat Vector Resolution (TVR) for a single robot and
Quadrant Load Balancing (QLB) for teams of body-
guard robots. We evaluated the proposed approaches
against rigid formations in a simulation study.

Introduction
With the advancements of hardware in robotic technology,
security and military applications in robotics have been
continuously growing due to the demand fueled by pri-
vate and public investments. Recently, demonstrated capa-
bility of mobile robots by research teams such as Mars
rover (Maurette 2003), BigDog (Raibert et al. 2008) have
shown the potential for reducing the need of human presence
for dangerous scenarios such as nuclear plant toxic waste
cleanup, search and rescue missions, border patrolling and
outer space exploration. One application of mobile robots is
providing personal security and protecting the life of highly
important individuals, formally known as close protection
service. The nature of this challenging security task requires
the human agents to identify and assess all threats or risks in
the environment continuously. Additionally, this field com-
prises of various security sub-tasks such as surveillance, pa-
trolling, path planning, formation maintenance and cooper-
ative architecture.

This study is motivated toward the development of a close
protection behavior in simulation. In this paper, we provided
mathematical formulation of collaborative security by mul-
tiple robot bodyguards with implicit communication. Fur-
thermore, we applied effective multi-robot positioning ap-
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proach in order to minimize the potential exposure of the
very important individual (VIP) to open space that any pos-
sible attacker may want to breach to hurt the VIP. By con-
sidering single robot, we propose an approach, which we
named Threat Vector Resolution (TVR), based on the threat
assessments using the threat vectors. For collaborative secu-
rity with multiple robots, we proposed the Quadrant Load
Balancing (QLB) approach, in which we aim to divide the
load using quadrants and minimize the formation time of
multiple robots considering the previous positions of the
robots.

Related Work
Developing artificial close protection involves learning for
various sub-tasks: leader-follow task, crowd interaction, lo-
calization and formation. The experiment related to follow
a human agent while moving through dense crowd has been
approached using machine learning methods such as SVM
and neuro-evolution (Khan, Arif, and Bölöni 2014). Many
studies related to security such as ARMOR (Pita et al. 2008),
IRIS (Tsai et al. 2009), GUARDS (Pita et al. 2011), PRO-
TECT (Shieh et al. 2012), TRUSTS (Yin et al. 2012), and
RaPtoR (Varakantham, Lau, and Yuan 2013) consider place-
ment of checkpoints and deployment of patrol teams to pro-
vide protection against probable attacks by terrorists and
criminals. These studies have been approached the security
problem using Stackelberg’s Security Game theoretic ap-
proach. Most of the applications, which use Stackelberg Se-
curity Game, require generating mixed strategies for a group
of defenders and adversaries over an exponential number
of routes or schedules. This brings expensive computation
costs for the autonomous robots which have limited compu-
tation, communication and power resources.

Another security-related problem which have been stud-
ied widely is multi-robot patrolling ((Agmon, Kaminka,
and Kraus 2011) (Vanek et al. 2010) (Portugal and Rocha
2013) (Fazli, Davoodi, and Mackworth 2013)). Multi-agent
based patrolling requires exponential decision making in or-
der to minimize time lag between two visits of the agents to
the same location or gain advantage over adversary by pro-
tecting a particular geographical area. This problem does not
consider close encounter, escape or involvement strategies
against adversary. Furthermore, this problem does not take
the importance level of the target and impact of joint activi-
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Figure 1: 3D visualization of the scenario with VIP, two hu-
manoid robots displayed as HR-1, HR-2 and civilians dis-
played as CIV-1,2,3,4,5.

ties into consideration. The use of wireless sensor networks
with mobile sinks are proposed for the event coverage prob-
lem, which is defined as providing security to people in large
areas by covering possible incidents ((Solmaz and Turgut
2014) (Solmaz and Turgut 2013)). In this model, multiple
mobile sinks patrol in their allocated regions and position
themselves according to their distances to possible events
and the movement of pedestrians. (Khan et al. 2012) provide
modeling framework involving human-robot interaction for
patrolling task in a cross-cultural environment. This frame-
work captures and analyzes the behavioral perception of the
actions of the soldier and the robot by the local population.

Current literature in the field of swarm robotics mostly fo-
cus on the cooperation and the collectivity of large number
of robots as a group. The cooperation strategies (Cao, Fuku-
naga, and Kahng 1997) include formation control, foraging,
docking, and flocking behavior. The approaches proposed
in these studies focus on simple homogeneous behaviors of
robots in a robot group rather than implementing an individ-
ual robot with a control mechanism to solve a complex task
on its own.

Background on CPO Domain
The close protection operatives (CPOs) are team of individ-
uals who are trained in close protection skills. Their skills
involve protecting a person from both identified or uniden-
tified threats and vital risks. In real world, it is impossible
to keep risk free environment for a principal which is VIP
at all times. Therefore, CPOs need to identify and assess
all threats or risks in the environment continuously. At the
same time, CPOs have to take any preventive measures to
deviate or avoid any life threatening situation. The field of
close protection is composed of different security aspects
such as protective team formation, personal escort section,
security advance party, residence security team, venue pro-
tection, protection principles and techniques, and counter ac-
tion teams (Schneider 2009).

This paper deals with the modeling of robotic agents,
which can be seen as bodyguards or individual team mem-
ber of the personal escort section (PES) teams. The body-
guards are the members whose tasks can be listed as protect-
ing the principal by shielding him or her, diverting potential
targets, rescuing the principal from immediate vicinity of an
incident, and neutralizing attacker by means of combat tech-
niques. The bodyguards take necessary actions regarding to
the aforementioned tasks while they are escorting the princi-
pal who goes from one place to another either in a vehicle or
on foot. The PES team comprise of individuals with different
roles depending on the requirement and threat assessment of
the client. These roles include team leader, bodyguard, point
man, left flank, right flank, tail, and rear.

Bodyguard Positioning
Before describing the two algorithms for bodyguard posi-
tioning, let us first describe the assessments of threats for
different scenarios. In order to assess the risks in a particular
configuration, we define the metric ThreatLevel. ThreatLevel
is a normalized metric, having values between 0 and 1 inclu-
sive. For a given configuration of a scenario, 0 means that the
environment is a safe heaven while 1 means that the environ-
ment is a death trap for the VIP. A value in-between suggests
the intensity of the physical harm from civilians to the VIP.
The assessment of the threat level can either be done by the
robotic bodyguards or a human operator with the perspective
of a third person.

There are various parameters involved in the assessment
of ThreatLevel. These parameters are associated with per-
son’s perception of the environment. We consider the per-
ception of robotic bodyguard. The major goal of the robotic
bodyguard is to have 360-degree situation awareness and the
ability to observe and describe a suspect in a useful amount
of details. This assessment for immediate response in the un-
known crowd depends on various physical and physiologi-
cal attributes learned by human operatives over the period
of training and experience in real life. We are performing
ThreatLevel assessment according to distances of the civil-
ians in the crowd from the VIP.

In the scenario we are considering that a very important
person (VIP) is protected by a group of bodyguard robots
R = {r1, r2, . . . , rp}. In the environment, we have a num-
ber of civilians G = {g1, g2, . . . , gk}, each of which can
be considered as a potential threat. The robotic bodyguards
aim to minimize the risk of physical harm to the VIP by pro-
viding effective physical cover at any moment by placing
themselves in the strategically optimal positions and prevent
attackers to reach their target.

We first propose an approach for the single robotic body-
guard positioning based on Threat Vector Resolution (TVR)
algorithm. Later, we expand our approach considering mul-
tiple robot bodyguards using Quadrant Load Balancing
(QLB) algorithm. We assume that all agents in the environ-
ment are moving in two dimensional space. In other words,
we do not consider aerial attacks or threat appearances from
higher elevations in our approach. Moreover, in two dimen-
sional space we assume that agents cannot see each other
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when there exist an obstacle, agent or a human in their line
of sight (LoS).
Definition 1. The function LoS(x, y) ∈ {0, 1} specifies
whether the agent x can observe the other agent y or not.
This function is commutative.

Definition 1 provides the condition for the two agents to
observe each other, i.e. as long as there is no obstacle in
between them they can see each other. LoS is dependent on
the vision capability of the agent. An assumption has been
made here that observer can see the object at the horizon if
there is no obstacle in between.

The probability of successful protection of the VIP de-
pends on the position of the robotic bodyguard. We de-
fine the circle with radius rr as the protection circle of a
robotic bodyguard r. Each robotic bodyguard can prevent
an attack on VIP within its protection circle. Therefore, all
robot bodyguards whose protection circle can cover VIP are
able protect him. As the distance outside protection circle in-
creases, strength of the protection defined as Dr decreases.
Definition 2. Let DG ∈ [0, 1] be the probability that a set
of bodyguards can intercept the threat. Then DG1

≤ DG2
if

|G1| ≤ |G2| i.e. more bodyguards provide better protection.
DG given at time instant t as

DG(t) =
∏
w

D(Gw, t) (1)

Definition 3. The maximum threat distance, MaxDist, is
defined such that ifDist(V IP, gi) ≥MaxDist then crowd
member gi can not harm the VIP.

The maximum threat distance assumes that the robotic
bodyguard would be able to provide safety cover to the VIP
from attacker if it starts outside the MaxDist. When mov-
ing through the crowd, any civilian closer than MaxDist
have certain probability of harming the VIP that will be con-
sidered for the threat level metric.

ThreatLevel(gi, V IP ) =
LoS(gi, V IP ) · Φ · e−M ·(Dist(gi,V IP ))

if Dist(gi, V IP ) < MaxDist

0 if Dist(gi, V IP ) ≥MaxDist

(2)

where Dist(gi, V IP ) is the distance between the civilian
and VIP. Φ and M are the constants which define the slope
and the magnitude of the risk curve respectively.

Threat Vector Resolution The goal of TVR is to find
the best possible location for a robotic bodyguard to shield
VIP against those civilian who have the highest threats
value in the configuration. Each robotic bodyguard performs
this computation independently without any communication
with another robotic bodyguard. We made the assumption
that all robotic bodyguards are aware of each others loca-
tion. In Algorithm 1, TVR takes the set of civilians S =
{S1, ..., Sn} as candidates to evaluate the best available lo-
cation for a robotic bodyguard to position. The weight of the
vector is decided by α which defines the chance of attack by

VIP

HR-1

CIV-4

CIV-3

CIV-1

CIV-2

V1

V4

V3

V2

VSUM

Figure 2: Positioning of a single robot with TVR.

an agent Si. α is calculated using ThreatLevel metric. PV IP

represents the current location of the VIP. The resultant vec-
tor for avoiding maximum threat in the configuration which
provides the suitable location can be found by equation:

Pr ← PV IP + ~V ·MaxDist, (3)

where Pr is the new location of the single robotic bodyguard
r.

Fig. 2 illustrates the use of TVR for an example configu-
ration. In this configuration, four civilian located at different
distances from VIP and a single robotic bodyguard. CIV-1
and CIV-2 are closer to VIP compared to the other two civil-
ians. However, the threat vectors ~V1 and ~V2 have smaller
magnitudes, since the threat assessments are based on the
ThreatLevel metric. The robotic bodyguard HR-1 computes
the sum vector ~Vsum which is directed between ~V3 and ~V4.
~Vsum is used for the positioning of the robot.

Algorithm 1 Threat Vector Resolution (TVR)
procedure THREATVECTORRESOLUTION(S, PV IP )

~V = (0, 0)
αi = 0
for all Si ∈ S do

if LoS(Si, PV IP ) == 1 then
αi ← ThreatLevel(Si, PV IP )

~V ← ~V +
~V (Si,PV IP )

||~V (Si,PV IP )|| · αi

else
continue

end if
end for
return Threat vector ~V

end procedure

Quadrant Load Balancing We propose an approach,
which we named Quadrant Load Balancing (QLB), for bal-
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Figure 3: Assigning the closest robot to the quadrant q2 with
highest load.

ancing the load of the threats from civilians by deploying
multiple robotic bodyguards. In this approach, the protec-
tion circle of a VIP is divided into quadrants and the load
of the quadrants shared among the robotic bodyguards. The
computation of load of the quadrants is based on the threat
vectors, as shown in Algorithm 1 given S as the set of civil-
ians and PV IP as the current location of VIP.

Algorithm 2 handles the assignment of the robotic body-
guards to the quadrants and load balancing. In this algo-
rithm, Q = {q1, q2, q3, q4} is the set of quadrants, where
Sqi is the set of civilians in respective quadrant qi. R =
{r1, r2, . . . , rk} represents the set of unassigned robots,
where k is initially equal to the total number of robotic body-
guards. ~Lq is the vector sum of the threat vectors of the civil-
ians in a quadrant (Sq). The algorithm iteratively assigns
robotic bodyguards and updates the loads of the quadrants
after each assignment. Workload function represents the
workload which can be handled by a single robotic body-
guard r and Dist(a, b) represents the distance between two
points.

Definition 4. For a given quadrant q and any robot r,
LOA(~Lq) = Pr specifies the location of the robot Pr =
(x, y) on the quadrant q.

LOA(~Lq) is the Location on Arc Function which is esti-
mated for the quadrant q. The current load ~Lq is the sum of
the threats in the quadrant computed by Algorithm 1. LOA
defines the location at which the robotic bodyguard is placed
as follows.

LOA(~Lq) =

{
PV IP + ~Lq ·MaxDist if unoccupied
LOA(~L′q) otherwise

(4)
where

~L′q =
(
~Lq.x · cos(θ), ~Lq.y · sin(θ)

)
, (5)

such that θ is the minimum angle which produces an
unoccupied location in any one of the two directions for
LOA(~L′q). We define a location as occupied if there exists
another robotic bodyguard or an obstacle on it. Hence, LOA
function produces an unoccupied location having the same
distance from PV IP and being closest to the ideal case of
PV IP + ~Lq ·MaxDist.

At each iteration of the while loop in Algorithm 2,
the quadrant which currently has the most load (qmax)
is assigned to one of the unassigned robotic bodyguards.
The selected robotic bodyguard has the minimum distance
(rclosest) to the location which the robot will take place on
the quadrant if it is assigned, while this location in the quad-
rant is found by LOA, which provides closest available po-
sition. After the robot rclosest is assigned to qmax, it is re-
moved from the set of unassigned robotic bodyguards and
the load of the quadrant Lqmax is decreased according to the
Workload(rclosest).

Fig. 3 illustrates an example case of QLB. In this figure,
the quadrants q3 and q4 have no civilians (Lq3 = Lq4 =
(0, 0)) and qmax = q1. Among the two unassigned robot
bodyguards, HR-1 is assigned due to its closeness to the
LOA. In the second iteration, the load of q1 will be updated
and HR-2 will be assigned to the quadrant with maximum
load, among the loads Lq2 and Lq1 (the remaining load of
q1).

Simulation Study
Simulation Setup

Figure 4: Security scenario displaying robotic bodyguard as
HR-1 protecting VIP. CIV-1,2,3 stand for civilians in the
simulation.
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Algorithm 2 Quadrant Load Balancing (QLB)
procedure QUADRANTLOADBALANCING(S, PV IP )

Q = {q1, q2, q3, q4}
S = Sq1 ∪ Sq2 ∪ Sq3 ∪ Sq4
R = {r1, r2, . . . , rk}
for all q ∈ Q do

~Lq ← ThreatV ectorResolution(Sq, PV IP )

L← L ∪ ~Lq

end for
c = 0
while c < k do

qmax ← null
Lqmax = 0

for all ~Lq ∈ L do
if
∣∣∣∣∣∣~Lq

∣∣∣∣∣∣ > ||Lqmax
|| then

Lqmax
← ~Lq

qmax ← q
end if

end for
rclosest ← null
Distmin =∞
for all r ∈ R do

if Dist(r, qmax) < Distmin then
Distmin = Dist

(
r, LOA(~Lqmax)

)
rclosest ← r

end if
end for
Prclosest(x, y)← LOA(~Lqmax

)
R← R− rclosest
if Workload(rclosest) < ||Lqmax

|| then
~Lqmax

← ~Lqmax
· ||Lqmax ||−Workload(rclosest)

||Lqmax ||
else

~Lqmax
← (0, 0)

end if
c = c+ 1

end while
end procedure

We carried out simulation experiments using Yaes Sim-
ulator (Bölöni and Turgut 2005), which is developed by
our research group. Moreover, three dimensional visualiza-
tions of the scenarios are created using V-REP 3D simula-
tor (Freese et al. 2010) as shown in Fig. 1.

Fig. 4 shows the simulation of providing security to VIP
by single robotic bodyguard, whereas Fig. 5 shows the sim-
ulation of multiple robotic bodyguards protecting VIP. Gray
colored regions in the simulation represents the obstacles
and the boundaries (walls). Civilians (threats) are repre-
sented with prefix CIV-. VIP is surrounded by autonomous
humanoid robotic bodyguards with prefix HR-. Gray circle
represents the personal zone of the agents inside which at-
tack by a civilian can be considered undesirable. Gray out-
ward cone represents the movement and vision direction of
the agent. All the civilians and VIP in the simulation can
be manually controlled using keyboard or game controller

Figure 5: Security scenario displaying robotic bodyguards as
HR-1, HR-2 protecting VIP. CIV-1,2,3,4,5 stand for civilians
in the simulation.
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Figure 6: ThreatLevel comparison of fixed robotic body-
guard orientation vs TVR in the single robotic bodyguard
simulation.

by human testers while robotic bodyguard agents are au-
tonomous. The simulation can be controlled in two modes:
Run the simulation by controlling an agent one step at a time
or the simulation continues for predefined configuration.
These controls provide us ability to control and evaluate dif-
ferent configurations as well as possible sudden changes in
configurations.

Performance Results
In swarm robotics, algorithms focus on maintaining fixed
swarm formations while performing path planning. We com-
pared our approaches against the fixed formation in or-
der to assess decrease in ThreatLevel of the configura-
tion. Fig. 6 shows the ThreatLevel comparison of a fixed
robotic bodyguard movement (left or right flank), against
the TVR approach in a single robot bodyguard simula-
tion. Moreover, Fig. 7 shows the mitigated ThreatLevel of
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Figure 7: Comparison of Actual ThreatLevel vs Neutralized
ThreatLevel in the single robotic bodyguard simulation.
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Figure 8: ThreatLevel comparison of fixed robotic body-
guard orientation vs QLB in the multiple robotic bodyguards
simulation.

the scenario in the absence and presence of single robotic
bodyguard. This graph demonstrate the overall reduction in
ThreatLevel called as ‘Neutralized’ ThreatLevel against ‘Ac-
tual’ ThreatLevel when the VIP is not accompanied by a
robotic bodyguard.

For the multiple robot bodyguards scenario, Fig. 8 shows
the ThreatLevel comparison of fixed multiple robot body-
guards movement (left and right flank), against the QLB ap-
proach. In the fixed strategy, both robotic bodyguards ac-
quire either left behind or right behind position and follow
VIP while avoiding obstacles during the walk. Fixed strat-
egy is not appropriate for providing security in this problem
as shown in the graph. ‘Neutralized’ ThreatLevel provided
by ‘2 bodyguards (Fixed)’ is as good as ‘No bodyguard’ in
the scenario where as ‘2 bodyguards (QLB)’ worked in col-
laboration to bring down average value of ThreatLevel to 1.5
by providing sufficient cover using QLB algorithm.

The comparison of the level of security by variable team
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Figure 9: Comparison of Neutralized ThreatLevel of No
bodyguard, 1 bodyguard running TVR, 2 and 3 bodyguards
running QLB.

sizes of robotic bodyguards is made in Fig. 9. This simula-
tion consists of six civilians occupying different locations on
the map. ‘1 bodyguard’ manages to provide sufficient body
cover using TVR algorithm most of the time, but it is still
unable to protect VIP at time steps 10, 25 and 48 where it
equates to Neutralized ThreatLevel of ‘No bodyguard’. Mul-
tiple robotic bodyguard teams using QLB algorithm demon-
strate very close performance in providing security as shown
by ‘2 bodyguards’ and ‘3 bodyguards’. Moreover, more
number of bodyguards provides better protection as shown
around time step 30 where ‘3 bodyguards’ provides better
protection to VIP compared to ‘2 bodyguards’ for the same
instants.

Conclusions
In this paper, we focused on the positioning of multiple
robotic bodyguards during their movements to protect VIP
in the scenario. We proposed Threat Vector Resolution ap-
proach for single robot bodyguard positioning and Quadrant
Load Balancing for collaborative security using multiple
robot bodyguards. We evaluated the proposed approaches
against rigid formation of robotic bodyguards by the sim-
ulation experiments.

As a future work, we intend to expand our simulation
to include more realistic scenarios for the current behav-
ior. Moreover, we want to consider explicit communication
among robotic bodyguards as well as among human and
robotic bodyguards. This feature can be implemented us-
ing an auction-based bidding approach with respect to cur-
rent scenario. While the proposed approaches in this paper
are formulated by the definitions, we plan to expand them
with automated learning algorithms for real behavior learn-
ing based on imitation.
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