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Abstract

Optimization-based heuristics may offer very good estimates.
But, calculating them may be time consuming, especially if
the optimization problem is intractable. This raises the ques-
tion of their applicability. This paper summarizes early work
from the year 2000 on optimization-based heuristics in the
context of PDBs for the Tile-Puzzle. We show that an ad-
missible heuristic based on Vertex-Cover (VC) can be calcu-
lated in reasonable time over a large collection of small PDBs.
When larger PDBs are involved we suggest the idea of using
another lookup table that precalculates and stores all possi-
ble relevant VC values. This table can be later looked up in
a constant time during the search. We discuss the conditions
under which this idea can be generalized. Experimental re-
sults demonstrate the applicability of these two ideas on the
15- and 24-Puzzle. The first idea appeared in (Felner, Korf,
and Hanan 2004) but the second idea is presented here for the
first time.

Introduction and overview
The main difference between informed search and unin-
formed search is the usage of heuristic functions that guide
the search towards the goal while avoiding non-promising
paths. Informed search algorithms such as A* (Hart, Nils-
son, and Raphael 1968) and and its variants are guided by
the cost function f(n) = g(n)+h(n), where g(n) is the cost
of the current path from the start node to node n and h(n)
is a heuristic function estimating the cost from n to a goal
node. If h(n) is admissible (i.e., is always a lower bound)
these algorithms are guaranteed to find optimal paths. More
informed heuristics (i.e., with tighter lower bounds) will find
the goal faster but this imposes a tradeoff between the qual-
ity of the heuristic and CPU time as more informed heuristic
take longer to compute. Thus, when developing a heuristic
one should balance between accuracy of the heuristic and
the running time of its calculation.

One of the topics of this workshop is optimization-based
search heuristics. In the past few years there has been a sig-
nificant thread of papers on such heuristics, mainly in the
area of domain-independent cost-optimal planning. A num-
ber of researchers show that it is feasible and beneficial to
obtain heuristic estimates by using linear programming at
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the nodes seen during the search (Pommerening et al. 2014;
Seipp and Helmert 2014; Pommerening, Röger, and Helmert
2013; Katz and Domshlak 2010; Bonet and van den Briel
2014).1 Constraints are written to guarantee admissibility
and the purpose of the linear program is to find a strong
heuristic that satisfies all the constraints. Linear program-
ming can be solved rather efficiently, but the time overhead
for doing this at every node is still a concern.

This concern is more severe when calculating an admis-
sible heuristic for a node requires solving an optimization
problem which is NP-hard. Even if the obtained heuristic is
very accurate and the number of generated nodes is rather
small, the execution time of the search process might be sig-
nificantly weakened by the large overhead needed to solve
the optimization problem. One way of remedying this is to
relax the optimization problem such that it can be solved in
polynomial time at a tradeoff of a weaker heuristic. For ex-
ample, this was done for the Hitting Set problem (Bonet and
Helmert 2010).

In this paper I would like to show that there are circum-
stances where this undesirable situation of large overhead
due to the optimization problem does not occur. Despite the
fact that an NP-hard problem should be solved at each node,
the time overhead for doing this may be reasonable given the
savings produced by providing a strong heuristic.

For showing this I would like to go back in time to the year
2000. In these early days of working on PDBs, the Sliding-
tile Puzzle (shown in Figure 1) was a dominant research do-
main. This puzzle is very easy to describe and encode but on
the other hand it provides a very large state-space. Thus, it
serves as a great experimental domain for search problems
and heuristics for decades.

The main question on the table was how to compute
an admissible h-value from a number of PDBs. One idea
that emerged in that research was that of disjoint additive
PDBs (Korf and Felner 2002; Felner, Korf, and Hanan 2004)
(referred to here as plain additivity (PA)). We showed that if
the PDBs are disjoint, their values can be admissibly added.
Nevertheless, during that time we tried other ideas for gath-
ering information from PDBs.

In another direction we built PDBs for all possible pairs,
triples and quadruples of tiles. The tiles were transformed

1A survey can be found in (Pommerening et al. 2014).
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Figure 1: The 15- and 24-Puzzles

into vertices of a hypergraph and the PDB values for a
given search node were transformed to weights of hyper-
edges. Then, we solved the Maximal Matching or Minimal
(weighted) Vertex-Cover on this hypergraph to find admis-
sible heuristics. In this paper we denote this method as the
Weighted Vertex Cover method (WVC). It turns out that the
time needed for calculating WVC at every node was not a
limiting factor. In a third direction, we generate a small num-
ber of large but overlapping (non disjoint) PDBs. Here, we
again want to calculate the weighted vertex cover for every
node but doing this was time consuming because the PDBs
were large. We overcame this with the following method.
Similar to PDBs, the WVC for all relevant possibilities of
weights is calculated in a preprocessing phase and stored in
a lookup-table. Then, during the search, WVC values can be
retrieved directly from this table in constant time. We denote
this method as the vertex cover table method (VCT).

The PA idea is simple to grasp and implement and it pro-
vided a tremendous speedup over previous approaches for
optimally solving the puzzle. Thus, it received much atten-
tion and appeared in later publications. The WVC and VCT
methods are more complex and achieved moderate or no
speedup over PA in our experiments. The WVC method was
described in (Felner, Korf, and Hanan 2004) but is less re-
membered. The VCT method was never published except
in my Ph.D dissertation (Felner 2002). Nevertheless, since
there is a great interest now in optimization-based heuris-
tics, this paper summarizes these early directions and in-
troduces VCT for the first time. As we show below, VCT
outperformed both PA and WVC in some cases. More im-
portant, when applicable, the idea of VCT might be used by
others who solve hard or complex optimization problems for
calculating heuristics. Both WVC and VCT show that when
used with caution, NP-hard problems can be fully exploited.

A paper very related to WVC is titled: ”Getting the Most
Out of Pattern Databases for Classical Planning” (Pom-
merening, Röger, and Helmert 2013). Both papers share a
number of core ideas but the later paper describes them in a
general way that may fit domain independent planning.

We now turn describe our three directions (PA, WVC and
VCT). Some parts of the text were modified from (Felner,
Korf, and Hanan 2004; Felner 2002). All the experiments
reported here were performed during the year 2000.

Direction 1: Plain additive PDBs
Plain additive PDBs (PA or PA-PDBs) were called
statically-partitioned additive pattern databases or disjoint
pattern databases and were introduced in (Korf and Felner
2002). To construct a PA-PDB for the Tile Puzzle, we par-
tition the tiles into disjoint groups. For each group we pre-

compute the minimum number of moves that are required to
get the tiles in the group from all possible locations to their
goal locations. This information is stored in a lookup table -
the PDB. Then, given a node s in the search, for each group
of tiles, we use the locations of those tiles to compute an
index into the corresponding PDB and retrieve the number
of moves required to solve the tiles in that group. Since the
groups are disjoint and every operator only moves a single
tile we can then add together the values from the different
groups, to compute an admissible heuristic for s. This value
will be larger than or equal to the Manhattan Distance (MD)
of the state since it also accounts for interactions between
tiles in the same group.

MD can be easily computed for every node. Thus, for sim-
plicity and efficiency, PA-PDBs may only store additions
above MD and MD can be added to the heuristic on the
fly. We use such PDBs in the rest of this paper. If the puz-
zle is reflected about the main diagonal then we get a sym-
metric puzzle. We showed that given a set of disjoint PDBs,
the same PDBs can be used for the reflected partition at no
additional memory cost. Thus, the maximum between the
regular and the reflected PDBs can be taken as an admis-
sible heuristic. The 7-8 partition of the 15-Puzzle and the
6-6-6-6 partition of the 24-Puzzle (both shown in figure 3)
received most of the attention in (Korf and Felner 2002;
Felner, Korf, and Hanan 2004) and in later papers.

Direction 2: Maximal-Matching and
Minimum-Vertex-Cover PDBs

The main limitation of PA-PDBs is that they fail to capture
interactions between tiles in different groups of the partition.
This can be remedied by a different approach described next.
First, we store PDBs for all groups of size up to k (e.g.,
pairs, triples and quadruples). Then we need to extract ad-
missible information from these PDBs. We have two ways
to do this. The first one is a general approach and was called
dynamically-partitioned PDBs in (Felner, Korf, and Hanan
2004). The exact partition is chosen dynamically during the
search by solving a maximal matching problem (MM). The
second direction is specific for the tile puzzle. In this puzzle
we can do better than MM by solving a variant of the vertex-
cover problem (VC). We cover both these methods next.

Maximum matching for pairs
Consider a set of 2-tile PDBs which contain for each pair of
tiles, and each pair of positions they could occupy, the num-
ber of moves required by those two tiles to move to their
goal positions. We call these values the pairwise distances.
For most pairs of tiles in most positions, the pairwise dis-
tance will equal their MD. For some tiles in some positions,
such as two tiles in a linear conflict, their pairwise distance
will exceed their MD. Given n tiles, there are O(n4) entries
in the complete set of 2-tile PDBs, but only those pairwise
distances that exceed the MD of the two tiles need be stored.
For example, out of (24 · 23/2) · 25 · 24 = 165, 600 entries
of pairs for the 24-Puzzle, only about 3000 of these exceed
their MD and are stored.
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Figure 2: Mutual cost graph for 3-way linear conflict

To get an admissible heuristic for a particular node of
the puzzle we partition the n tiles into n/2 non-overlapping
pairs, and then sum the pairwise distances for each of the
chosen pairs. To get the most accurate admissible heuristic,
we want a partition that maximizes the sum of the pairwise
distances. For each node of the search, this maximizing par-
tition may be different, requiring the partitioning to be per-
formed again for each heuristic evaluation.

To compute this heuristic for a node s, define a graph
where each tile is represented by a vertex, and there is an
edge between each pair of vertices, labeled with the pairwise
distance of the corresponding pair of tiles in s. We call this
graph the mutual-cost graph (MCG). The task is to choose a
set of edges from this graph so that no two chosen edges are
incident to the same vertex, such that the sum of the labels
of the chosen edges is maximized. This is called the maxi-
mum weighted matching problem (MM), and can be solved
in O(n3) time (Papadimitriou and Steiglitz 1982), where n
is the number of vertices, or tiles in this case.2

For example, consider the state shown in Figure 2 where
tiles 1, 2, and 3 are in their goal row, but in reversed order.
Each pair of these tiles is in a linear conflict. Tile 4 is in its
goal position and has no conflicts. The MCG for this 3-way
linear conflict is also shown in Figure 2 where the weight
of each edge is two moves to resolve the linear conflict (the
MD is omitted and will be added on the fly). All edges con-
necting Tile 4 have weight of 0 because there is nothing to
add over MD for such pairs. Thus, Tile 4 and its connect-
ing edges can be deleted from the MCG. MM of this MCG
would pick one edge of weight two. Thus, two can be ad-
missibly added to the MD of the state.

Triple and Higher-Order Groups This idea can be gen-
eralized to groups larger than 2. The full set of k-tile PDBs
include a PDB for each of the

(
n
k

)
different groups of k tiles.

Each PDB includes the number of moves of these k tiles that
are required to get them to their goal locations from each
possible set of k locations they could occupy. Potentially
there are (n + 1)n(n − 1)(n − 2) . . . (n − k + 2) differ-
ent entries in each table, since n is the number of tiles while
n+1 is the number of locations. In practice, in a k-tile PDB
we only need to store a value if it exceeds the sum of any
of the partitions of the k tiles to smaller size groups. For ex-
ample, for 3-tile PDBs, we only need to store those values
that exceed both the sum of the individual MD values, as
well as any of the three 2-1 partitions, i.e., where we add the

2The main idea of MM on the MCG was independently men-
tioned before by (Gasser 1995) and (Korf and Taylor 1996). But,
we were the first to investigate and implement this idea. A simi-
lar idea is that of the Canonical Heuristic (Haslum et al. 2007) for
cost-optimal planning.

pairwise distance to the MD of the third tile.3

We then build all k-tile PDBs for all values of k ∈ {2..r}
(where r > 2). The corresponding MCG contains a vertex
for each tile, an edge for each pairwise distance, and a hy-
peredge connecting k vertices for each k-tile distance (for
k > 2). In practice, we only store additions above MD. This
means that edges or hyperedges with weights of 0 are omit-
ted from the graph.

The task is to choose a set of edges and hyperedges of
the MCG that have no vertices in common, so that the sum
of the weights of the edges and hyperedges is maximized.
Unfortunately, the MM problem for hypergraphs (i.e., for
k > 2) is NP-complete (Garey and Johnson 1979). For the
Tile Puzzle, however, if we only include tiles whose pairwise
or triple distances exceed the sum of their MD the MCG be-
comes very sparse, and the corresponding matching problem
can be solved relatively efficiently. For problems where the
MCG is not sparse, we might have to settle for a suboptimal
matching which is still an admissible heuristic.

A better heuristic based on constraints
MM is an elegant direction but we can do better. Consider
again the state shown in Figure 2 and its MCG. What is the
largest admissible heuristic for this situation? The MM of
this MCG can only contain one edge with a cost of two.
However, for this state four moves can be added to the MD
of the three tiles, because two of the three tiles must tem-
porarily move out of the goal row. Thus, while MM is clearly
admissible, it doesn’t always yield the largest possible ad-
missible heuristic. If the pairwise distance of tiles X and Y
in a given node is a, there will be an edge in the correspond-
ing MCG between vertices X and Y , weighted by a. If x
is the number of moves of tile X in a solution, and y is the
number of moves of tile Y , then their pairwise distance rep-
resents a constraint that x + y ≥ a. Each edge of the MCG
represents a similar constraint on any solution.

The general problem here is to assign a number of moves
to each vertex such that all the pairwise constraints are satis-
fied. The heuristic is the sum of numbers over all tiles (plus
MD). Since the constraints are all lower bounds, assigning
large values to each vertex will satisfy all the constraints. In
order for the resulting heuristic to be admissible, however,
the sum of the values of all vertices must be the minimum
sum that satisfies all the constraints. In the case of the trian-
gle MCG of Figure 2, assigning a value of one to each vertex
or tile, for an overall heuristic of three, is the minimum value
that will satisfy all the pairwise constraints.

In formal, we are solving the following optimization prob-
lem. The tiles are labeled t1, t2, . . . tq (for the 15 puzzle
q = 15). We are given a list of PDBs in the from: P i =
{ti1 , ti2 , . . . , tik}. For a given search node s each of these
PDBs returns a heuristic value: hP i(s). We want to assign
an integer value ci(s) ≥ 0 for each tile ti. The constraints
are that for each P i:

∑k
j=1 cij (s) ≥ hP i(s). The objective

function is to minimize h(s) =
∑q

j=1 cj . h(s) is then used

3A very related idea is that of ”Interesting Patterns” described
by (Pommerening, Röger, and Helmert 2013).
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as an admissible heuristic for search node s.4

Weighted Vertex Cover Heuristic
While this constraint-based approach is useful for the gen-
eral case, we can take it further for the Tile Puzzle domain.
In this domain any path between any two locations must
have the same even-odd parity as the MD between the two
locations. Therefore, if the pairwise distance of X and Y is
larger than their MD by two, then at least one of the tiles
must move at least two moves more than its MD to satisfy
the pairwise conflict. Such an edge of weight 2 in the MCG
represents a constraint (not only that x+ y ≥ 2 but) that

x ≥ 2 or y ≥ 2.

In order to satisfy all such constraints, one of the vertices
incident to each edge must be set to at least two.

The problem is to assign a number of moves to each vertex
such that all the constraints are satisfied. In order for the
resulting heuristic to be admissible, however, the sum of the
values of all vertices must be the minimum sum that satisfies
all the constraints. This sum is then the maximum admissible
heuristic for the given state. If all edges included in the MCG
have cost two, then the minimal assignment is two times the
number of vertices needed such that each edge is incident to
one of these vertices. Such a set of vertices is called a vertex
cover (VC), and the smallest such set of vertices is called
a minimum vertex cover. A minimum VC of the graph in
Figure 2 must include two vertices, for an overall heuristic
of four (plus MD).

Vertex Cover for k > 2

For hyperedges corresponds to k > 2 tiles, the correspond-
ing constraint is that the sum of the costs assigned to each
of the k tiles (in units of 2) must be greater than or equal to
the weight of the hyperedge but we want to cover all possi-
bilities to do so. There are two possibilities to cover a pair-
wise edge (X,Y ) = 2, i.e., assigning two moves either to
X or to Y . However, for hyperedges (k > 2) the cost can be
more than two. For example, some 3-tile PDB values were
4. When we have a 3-tile hyperedge of (X,Y, Z) = 4 then
the following constraint should be added:

(X ≥ 2 and Y ≥ 2) or
(Y ≥ 2 and Z ≥ 2) or
(X ≥ 2 and Z ≥ 2) or
(X ≥ 4) or (Y ≥ 4) or (Z ≥ 4)

For k > 3, values larger than 4 occur in the corresponding
PDBs but the principle is the same. The optimization prob-
lem to solve is similar to the optimization problem defined
above. The difference is that now the constraint we add for a
hyperedge must allow all possibilities to split the cost among
the tiles in units of 2.

The general problem here can be called “weighted vertex
cover” (WVC). Given a hypergraph with integer-weighted
edges, assign an integer value to each vertex, such that for

4The hPhO heuristic by (Pommerening, Röger, and Helmert
2013) uses linear programming to solve a very similar set of con-
straints. hPhO may return non integer values while we are re-
stricted to only use integer values.

each hyperedge, the sum of the values assigned to each ver-
tex incident to the hyperedge is at least as large as the weight
of the hyperedge.5

To be admissible, we are interested in the minimum WVC,
i.e., we are looking for a WVC for which the sum of the ver-
tex values is the lowest possible. It is easy to prove that WVC
is NP-complete since ordinary VC is a special case where we
only allow regular edges (between two vertices) and we only
allow weights of 1. See (Felner, Korf, and Hanan 2004) for
a longer proof.

It is important to note that our optimization problem of
WVC is NP-complete because we are solving it as an integer
problem. We can relax this optimization problem to allow
real values. It can solved in polynomial time but the resulting
heuristic will be less informed.

Computing the WVC heuristic

In practice, since increases of moves assigned to a tile in the
tile-puzzle come in units of two we can divide all edges by 2
before solving the WVC problem and then multiple the re-
sult by 2. In our experiments, we performed a simple branch
and bound with simple pruning on the space of possible as-
signments and returned the minimum assignment. Naturally,
encoding this as a CSP, SAT, or Integer Programming might
speed up this process.

Since WVC is NP-complete, and we have to solve this
problem to compute the heuristic for each search node, it
may seem that this is not a practical approach for computing
heuristics. Our experimental results show the contrary, for
several reasons. First, in our experiments we only included
pairs, triples and quadruples. By only including those hy-
peredges that exceed MD, the resulting MCG is extremely
sparse as many of the hyperedges were 0 and omitted. Be-
cause the MCG is sparse, it is likely to be composed of
two or more disconnected components and we can solve the
problem for each of these independently. Second, by only
including pairs, triples and quadruples, the values of the
nonzero hyperedges were rather small: most of them were 2,
some were 4 and very few were 6. The number of possibili-
ties to split the weight w of an hyperedge among the vertices
that make up that hyperedge is exponential in w; in our case
this was small too. Third, in the course of the search, we
can compute the heuristic incrementally. Given the heuristic
value of a parent node, we compute the heuristic value of
each child by focusing only on the difference between the
parent and child nodes. In our case, only one tile moves be-
tween a parent and child node, so we incrementally compute
the WVC based on this small change to the MCG.

5The term weighted vertex cover is also used in the literature
to denote another problem (Bar-Yehuda and Even 1981). We are
given a graph G = (V,E) with weights on the vertices of V . We
want to find a set V ′ ∈ V of vertices that cover all edges such that
sum of the weights of vertices in V ′ is minimized. In this paper
we stick with our definition of weighted vertex cover so as to be
consistent with our previous paper (Felner, Korf, and Hanan 2004)
which used that term.
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Direction 3: WVC for a set of large PDBs
We now describe yet a third method to retrieve data from
different PDBs in an admissible manner. This method was
never published before but appeared in my Ph.D thesis (Fel-
ner 2002). It is a hybrid between the two directions described
above, namely PA and WVC (for small groups). Similar to
PA, we select a small number of groups of tiles but each
group can be large and can contain up to 8 tiles. The groups
chosen should potentially have high values of additional cost
above MD. However, unlike PA but similar to WVC, these
groups are not required to be disjoint and may overlap; a
given tile can belong to more than one group. As in PA we
first calculate the additional cost above MD for all different
combinations within a group and store them in a PDB.

However, since a tile may belong to more than one group,
we cannot add up these values. Alternatively, as done for the
collection of small PDBs in Direction 2, here too we build
a MCG for this fixed set of PDBs, calculate the minimum
WVC and use it as an admissible heuristic. WVC is NP-
complete but for small sizes of groups used in Direction 2
(up to quadruples) this was not a limitation even when we
included all possible groups. In that case, most values of the
MCG were 0 and omitted from the graph and those who
were present had small values. Thus the MCG was sparse
and we could optimally solve the WVC problem rather fast.
This is not the case for larger PDBs (where we stored up to
8 tiles in a PDB). Here, larger values of up to 16 are stored,
hyperedges that weigh zero are rare and the resulting MCG
is not sparse and usually contains a single connected com-
ponent. Furthermore, since hyperedges have large values we
have an exponentially large number of possible partitions
that split these large values along the vertices (tiles) that
make up the hyperedge. Thus, optimally solving WVC for
the resulting MCG drastically increases the CPU time. In
our experiments this was not practical.

Storing all VC values in a table
This run time problem can be solved as follows. When we
have a fixed set of PDBs, the structure of the MCG (its ver-
tices and hyperedges) is also fixed throughout the search
process as it is composed of exactly the same set of hyper-
edges, each corresponds to a given PDB. Nevertheless, the
values of these hyperedges may change from node to node.
But, since we have the entire set of PDBs at hand, we know
the exact set of values that are possible for each PDB.

For example, for a 6-tile PDB the values vary from 0
to 12 with increases of 2, i.e., we can get 7 different val-
ues for each hyperedge. If we have q different 6-tile PDBs
then we will have 7q different combinations for the weights
of the graph (not including symmetries). We can therefore
precompute the WVC for all these 7q combinations of val-
ues and store them in a lookup table. We call this table the
vertex-cover table (VCT). For example, for the 24-Puzzle
we had 8 different 6-tile PDBs and the resulting table was
of size 78 = 5, 764, 801. In a preprocessing phase we iterate
over all these combinations, calculate the minimum WVC
for each and store it in the VCT. Similar to the generation
of a PDB, this preprocessing phase might take a long time.

However, as in PDBs it is only calculated once and then can
be amortized over solving many problem instances. In fact,
building the entire set of PDBs and the corresponding VCT
for the 24-puzzle took a few days. But, these tables are still
present and can be used today with zero overhead.

To summarize, in the VCT method, in order to get the
heuristic of a node during the actual search, perform the fol-
lowing three steps, each can be done in constant time:

Step 1: Retrieve the PDB values for all groups.
Step 2: Use these values as indexes and lookup the rele-

vant entry in the VCT to retrieve the value of WVC.
Step 3: Add this value to MD.

Generality of the idea
This idea of storing a lookup table for all possible combi-
nations can be used by others who need to solve hard com-
binatorial problems for every node. We make the following
observations on the general applicability of this idea:
(1) When we have a fixed goal and/or a fixed set of PDBs the
entire lookup table can be calculated once and then be used
for a large number of problem instances. In this case the cost
of building the table can be omitted as it is amortized over
all these instance. For example, I still have the VCT for the
6- and 7-tile PDBs that I generated in 2000.
(2) If the number of generated nodes is expected to be much
larger than the number of entries in the lookup table it might
be worthwhile to calculate this table even for solving a single
instance only.
(3) The table can be built up lazily during the search as val-
ues are being requested. In this way, no value will ever be
calculated without a specific need.
(4) Finally, this method is applicable for other optimizations
problems that are needed to be solved at each node. A basic
requirement is that the different combinations of parameters
are fixed and known beforehand.

Experimental Results
We performed extensive experiments with our three direc-
tions on the 15- and 24-Puzzle. All experiments were per-
formed during the year 2000.

15 puzzle
Table 1 presents the results of running IDA* with different
heuristics averaged over the same 1000 random instances of
the 15-Puzzle used in (Korf and Felner 2002). The average
optimal solution length was 52.552 moves. Each row corre-
sponds to a different heuristic. The Value column shows the
average heuristic value of the 1000 initial states. The Nodes
column shows the average number of nodes generated to find
an optimal solution. The Seconds column gives the average
amount of CPU time that was needed to solve a problem on
a 500 megahertz PC. The next column presents the speed of
the algorithm in nodes per second. Finally, the last column
shows the amount of memory in kilobytes that was needed
for the PDBs, plus the VCT when applicable.

The rows are ordered according to the chronological order
that we experimented and received these results. In general,
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# Heuristic Function Value Nodes Sec. Nodes/sec Memory
1 Manhattan 36.940 401,189,630 53 7,509,527 0
3 MM: pairs 39.411 21,211,091 13 1,581,848 1,000
4 MM: pairs+triples 41.801 2,877,328 8 351,173 2,300
5 WVC: pairs 40.432 9,983,886 10 959,896 1,000
6 WVC: pairs+triples 42.792 707,476 5 139,376 2,300
7 WVC: pairs+triples+quadruples 43.990 110,394 9 11,901 78,800
8 PA: 5-5-5 41.560 3,090,405 .540 5,722,922 3,145
9 PA: 6-6-3 42.924 617,555 .163 3,788,680 33,554

10 PA: 7-7-1 44.586 116,985 .047 2,489,042 268,437
11 VCT: 7 6-tile PDBs 43.211 397,107 .134 2,963,485 34,377
12 VCT: 10 6-tile PDBs 43.485 242,186 .115 2,105,965 332,806
13 VCT: 5 7-tile PDBs 44.563 97,730 .044 2,221,136 402,669
14 VCT: 6 7-tile PDBs 44.531 76,634 .037 2,071,189 419,548

15 PA: 7-8 45.630 36,710 .028 1,377,630 576,575

Table 1: Experimental results on the 15-Puzzle.

5-5-5 6-6-3 7-7-1 7-8 
6-6-6-6 

Figure 3: Different PA-PDBs for the Tile Puzzles

with exceptions, they are also ordered by decreasing CPU
time and by increasing amount of memory. The first row
presents the results of MD. The next two rows present the re-
sults of the dynamically-partitioned additive PDBs when the
heuristic was MM of the MCG for pairs, and for pairs plus
triples. Clearly, a significant speedup is shown over MD. The
next three rows present the results of the WVC heuristic over
the same MCG. WVC is more accurate than MM and this re-
sults in better performance for WVC. With WVC, the num-
ber of nodes decrease when moving from pairs to triples and
from triples to quadruples. But, the best CPU time is that
of pairs+triples. We have found that the bottleneck here was
keeping the MCG accurate for each new node of the search
tree. For every tile that moves we need to check all the pairs,
triples and quadruples that include this tile to see whether
edges were added or deleted from the MCG.

Lines 8-10 are for PA-PDBs of 5-5-5, 6-6-3 and 7-7-1
shown in Figure 3. Each of these was also reflected about
the main diagonal and the numbers correspond the maxi-
mum of the two possibilities. As the PDBs get larger more
memory is needed but the number of nodes and the CPU
time decreases. The best variant in this set is the 7-7-1.

Next, we report results for a number of variants of VCT.
Lines 11-12 report results for 7 different (but overlapping)
6-tile PDBs, and 10 6-tile PDBs, respectively. Lines 13-14
show 5 different 7-tile PDBs and 6 different 7-tile PDBs, re-
spectively. A very important observation is that the number
of nodes per second for the VCT variants is very similar to
that of PA. This shows that performing VCT lookups is very
efficient. Our machine only had half a giga byte of memory
and given this limit, the VCT variants were clearly better in

terms of nodes. Line 14 (6 groups of 7-tile PDBs) is the best
variant both in nodes and in CPU time in this set. In fact, it
was the winner variant in my lab for a few months.

However, then comes Line 15 where the 7-8 partition
(also shown in figure 3) is provided. All the previous PDBs
were stored in a simple multi-dimensional array (called
sparse mapping in (Felner, Korf, and Hanan 2004)). By
contrast, the 7-8 PDBs were stored in a more sophisticated
single array (called compact mapping in (Felner, Korf, and
Hanan 2004)). Still, it needed more than half a giga byte of
memory and was executed much later on a different machine
with larger memory. Clearly, this partition is most elegant
and provides the best results. Since the VCT variants were
only slightly better than the PA variants for up to 7 tiles we
decided to omit VCT from our previous papers.

24 puzzle
For the 24-Puzzle we compare the pairs+triples WVC sys-
tem, the 6-6-6-6 PA partitioning (shown in Figure 3) plus
their reflection about the main diagonal (a total of 8 PDBs)
and the VCT system for the same 8 6-tile PDBs used by
PA. Table 2 shows the results for the first ten randomly-
generated problem instances from (Korf and Felner 2002).
The Sol column gives the optimal solution length. The next
three columns give the number of nodes for WVC, PA and
VCT. The last three columns give the CPU time for these
options. The memory needs for the PA and VCT methods
was around 250 Megabytes.

For the 24-Puzzle, WVC usually results in fewer node
generations. Problem instance 3 in our set is the only case
where WVC did not win in nodes. VCT consistently gener-
ates 20% less nodes than PA. On average, all three systems
are within 7% of each other in terms of CPU time. It is im-
portant to note that the fastest method, however, was VCT.

We also built the WVC and PA systems for the 35-puzzle.
Due to the large size of this puzzle optimal solutions are not
known even today (2014). In (Felner, Korf, and Hanan 2004)
we provided an analysis based on the prediction formula by
(Korf, Reid, and Edelkamp 2001) and predicted that VC will
outperform PA by a factor of 1.8.
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Nodes Time (seconds)
# Sol WVC PA VCT WVC PA VCT
1 95 306,958,148 2,031,102,635 1,377,159,819 1,757 1,446 1,063
2 96 65,125,210,009 211,884,984,525 158,889,554,781 692,829 147,493 123,018
3 97 52,906,797,645 21,148,144,928 14,448,309,001 524,603 14,972 11,294
4 98 8,465,759,895 10,991,471,966 9,262,519,107 72,911 7,809 7,016
5 100 715,535,336 2,899,007,625 2,480,350,516 3,922 2,024 1,894
6 101 10,415,838,041 103,460,814,368 86,134,496,298 151,083 74,100 65,252
7 104 46,196,984,340 106,321,592,792 85,774,231,083 717,454 76,522 66,491
8 108 15,377,764,962 116,202,273,788 83,209,058,152 82,180 81,643 64,424
9 113 135,129,533,132 1,818,055,616,606 1,476,665,302,180 747,443 3,831,042 3,222,608

10 114 726,455,970,727 1,519,052,821,943 1,331,681,205,551 4,214,591 3,320,098 3,390,445
Avg 102.6 106,109,635,224 391,204,783,118 309,119,152,126 720,877 752,698 695,351

Table 2: 24-Puzzle results for static vs. dynamic databases

Summary
We demonstrated that NP-hard problems may be efficiently
solved and exploited at every node, either directly or through
the use of a lookup table.

The results clearly show that as the puzzle gets larger the
relative advantage of PA over WVC decreases. The reason
is that PA systems are most effected by the constant amount
of available memory. We can only build PDBs on our avail-
able memory and their relative size compared to the puz-
zle size decreases on bigger puzzles. The WVC method is
more modest in its memory requirements and can still be
fully built when the size of the puzzle increases. Despite the
fact that it is NP-complete, it can be solved rather fast. This
was our conclusion in (Felner, Korf, and Hanan 2004).

Our implementation of VCT is complex to implement and
was only moderately better than PA. Therefore, we omitted
it from our former papers. Nevertheless, it provides a moti-
vation for others who perform hard optimization problems
to try and build a lookup table for all their possible values
if they are initially known. This will incur a large overhead
when generating this table but it can be later used an infinite
number of times. In many settings this might pay off.
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