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Abstract
Saving energy is a major concern. Hence, it is fun-
damental to design and construct buildings that are
energy-efficient. It is known that the early stage of ar-
chitectural design has a significant impact on this mat-
ter. However, it is complex to create designs that are
optimally energy efficient, and at the same time bal-
ance other essential criterias such as economics, space,
and safety. One state-of-the art approach is to create
parametric designs, and use a genetic algorithm to op-
timize across different objectives. We further improve
this method, by aggregating the solutions of multiple
agents. We evaluate diverse teams, composed by differ-
ent agents; and uniform teams, composed by multiple
copies of a single agent. We test our approach across
three design cases of increasing complexity, and show
that the diverse team provides a significantly larger per-
centage of optimal solutions than single agents.

Introduction
Sustainability and energy efficiency are major topics of in-
quiry. Given the current scenario of scarcity of resources, it
is fundamental to find energy efficient solutions for the built
environment globally. Designing energy efficient buildings,
in particular, is an important area for concern as built infras-
tructures are the leading consumers of global energy. Once a
building is constructed, it cannot be easily modified; and the
building design has a major impact in the consumption of
energy throughout its whole lifespan (Lin and Gerber 2014).

In architecture, human designers construct a schematic
design of the building, using Building Information Modeling
(BIM) software. Then, the designers can predict the energy
efficiency of the building by using Building Performance
Simulation tools. However, the variety of different designs
a human can explore while seeking optimality is highly lim-
ited (most often given strict time constraints, besides the
cognitive limits of the human designer (Flager, Gerber, and
Kallman 2014)). A further challenge is that we cannot sim-
ply optimize for energy efficiency; as other factors, such as
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construction cost and design requirements, are also impor-
tant to take into consideration. Hence, automated methods
have the potential to greatly improve the designs.

Currently, Genetic Algorithms (GA) have been widely ap-
plied to better explore the solution space. For example, Bea-
gle (Gerber and Lin 2013) is an example of the state of the
art, where a human inputs a first design of the building, and
the system generates a variety of high-quality variations in
the pareto frontier. A human designer, then, can choose one
of these variations, according to his/her own subjective eval-
uation, but most importantly with improved empirical cer-
tainty across the multiple objectives.

In this work, we further improve the state of the art, by
aggregating the opinions of multiple agents. Although the
benefits of combining opinions is known (Mao, Procaccia,
and Chen 2013; Caragiannis, Procaccia, and Shah 2013), we
present for the first time the potential of aggregating opin-
ions for multi-objective optimization problems. We show
that agent teams are able to find a significantly larger per-
centage of optimal solutions than the current state of the art
in building design. Hence, our application is able to lead to
better designs, by: (i) providing the designer with a higher
number of optimal solutions to choose from; (ii) eliminating
suboptimal solutions falsely shown as “optimal” by individ-
ual agents; (iii) increasing the confidence of the designer that
the system found the true pareto frontier.

When using multiple agents, we ran into the challenge of
deciding how to form the team. It has been shown that di-
verse teams are able to outperform uniform teams composed
by copies of the best agent in some scenarios (Marcolino,
Jiang, and Tambe 2013; Marcolino et al. 2014). Hence, we
also compare different teams, and we find that for some de-
sign problems, a diverse team outperforms a uniform team.

Related Work
This work is the result of a multi-disciplinary research, re-
lated to artificial intelligence and architectural design. We
start by discussing AI works, and then we will present the
state of the art of applying AI methods to building design.

In AI, this work is related to the study of team formation,
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social choice, ensemble systems, and genetic algorithms
(GA). We begin by discussing team formation. Marcolino,
Jiang, and Tambe (2013) and Marcolino et al. (2014) study
teams of agents that vote together for solving complex prob-
lems. They show that for certain problems, a diverse team
(composed by multiple different agents) is able to outper-
form a uniform team, composed by copies of the best agent.
Although the models presented are general, their experimen-
tal results are limited to the Computer Go domain. Besides,
they consider only single-objective optimization problems.

Concerning social choice, many recent works present
new models and theories (Caragiannis, Procaccia, and Shah
2013; Soufiani, Parkes, and Xia 2012). However, the field
still lacks more practical applications beyond elections.
Mao, Procaccia, and Chen (2013) study the performance of
combining the opinion of human subjects into solving prob-
lems, by using different voting rules. However, the problems
imposed to the humans are not yet “real world” ones. They
use a sliding squares 8-puzzle game, and they also ask the
subjects to count the number of dots in different pictures.
In this paper we show the applicability of social choice in
a very important real world domain: architectural design.
Moreover, social choice theory has not yet considered multi-
objective optimization problems.

In machine learning, the aggregation of opinions has been
widely studied. Generally, multiple weak learners vote to-
gether in classification problems (Polikar 2012). In our case,
however, we are not dealing with a classification problem,
but rather finding solutions to a complex multi-objective op-
timization problem by using evolutionary algorithms.

Distributed GA systems have also been studied (Knysh
and Kureichik 2010). Our approach relates to the “island
model”, where populations evolve concurrently. Normally,
however, the populations interact by transferring offsprings.
To the best of our knowledge, aggregating GAs in the way
that is explored in this work has not been tried before.

In the design studies, automated methods that can provide
a high number of optimal alternatives are highly desirable,
as it is hard for the human designers to manually find opti-
mal solutions, and they need a large solution pool in order to
be able to pick one that best fits their aesthetical/subjective
evaluation (Flager, Gerber, and Kallman 2014; Lin and Ger-
ber 2014; Welch, Moloney, and Moleta 2014; Briscoe 2014).
The most common method for generating alternatives is
to use genetic algorithms, as shown by a very recent and
through survey of the literature (Zavala et al. 2014). How-
ever, there is not any work in design exploring the potential
of agent teams to maximize the number of optimal solutions.

Design Domain
In the early stage of design, designers explore alternatives
before proceeding to further design development. A broad
range of possible solutions are intuitively and to a limited
degree empirically analyzed. Typically energy performance
assessments are made after this initial phase, where the anal-
ysis is performed on a very limited set of design alterna-
tives (Radford and Gero 1980). Currently there is limited
feedback between the domains of design and energy simula-
tion available during the early stage. However, it has been

(a) Base (b) Office Park (c) Contemporary

Figure 1: Parametric designs used in our experiments.

acknowledged that such feedback has the highest poten-
tial impact on the building performance (Bogensttter 2000;
Lin and Gerber 2014).

In this work we use the Beagle system (Gerber and Lin
2013). Beagle is a multi-objective design optimization soft-
ware framework that assists users in the early stage design of
buildings. It incorporates an optimization methodology that
combines parametric designs with multi-objective optimiza-
tion through an integrated platform; enabling rapid iteration
and trade-off analysis across different factors.

First, the designer uses Autodesk Revit software to create
a parametric design. This serves as a schematic design of the
building, containing a set of parameters that can be modified
within a specified range, allowing the creation of many pos-
sible variations of the design. The parameters can be integers
or floating point numbers. These parameters, their type and
their valid range are specified by the designer.

A series of designs have been studied in Gerber and Lin
(2013) and a sub-set of these are used in this paper (Figure
1). We start with base, a simple building type with uniform
program (i.e., tenant type). Then, in order to test the appli-
cability of the method we progress to more real world like
designs, with increased geometric as well as programmatic
complexity (multiple tenant or functional occupancy types),
leading to more challenging energy profiles for evaluation.
Our second case study, office park, is a multi-tenant group-
ing of towers. The third, contemporary, is a double “twisted”
tower that includes multiple occupancy types, relevant to
contemporary architectural practices. These scenarios serve
as proxies for real world design scenarios.

Beagle uses a Genetic Algorithm (GA), in order to
optimize the building design based on three objectives.
Each solution is analyzed in the multi-objective optimiza-
tion framework, according to the following three factors:
(Sobj , Eobj , Fobj). The objective functions are: Sobj :
maxSPCS; Eobj : minEUI; Fobj : maxNPV . SPCS
is the Spatial Programming Compliance Score, EUI is the
Energy Use Intensity and, finally, NPV is the Net Present
Value, defined as follows.

SPCS defines how well a building conforms to the project
requirements (by measuring how close the area dedicated to
different activities is to a given specification). Let L be a
list of activities (in our designs, L=<Office, Hotel, Retail,
Parking>), area(l) be the total area in a building dedi-
cated to activity l and requirement(l) be the area for ac-
tivity l given in a project specification. SPCS is defined as:

116



SPCS = 100 ∗
(
1−

∑
l∈L |area(l)−requirement(l)|

|L|

)
EUI regulates the overall energy performance of the

building. This is an estimated overall building energy con-
sumption in relation to the building floor area. It is calcu-
lated by the DOE-2.2 software, using the Autodesk Green
Building Studio (GBS) web service (https://gbs.autodesk.
com/GBS/).

Finally, NPV is a commonly used financial evaluation. It
measures the financial performance for the whole building
life cycle, given by: NPV =

(∑T
t=1

ct
(1+r)t

)
− c0, where

T is the Cash Flow Time Span, r is the Annual Rate of
Return, c0 is the construction cost, and ct = Revenue −
Operation Cost.

In the end of the optimization process, the GA pareto-
ranks all the solutions. There will be a set of optimal (1st
ranked) solutions, and a designer must choose one among
them according to his/her own subjective qualitative and
quantitative evaluation. Note, however, that these are not
necessarily the true optimal solutions of the multi-objective
optimization problem, but merely the solutions that were not
dominated by any other solution found by the GA.

Many options can affect the execution of the GA, includ-
ing: initial population size, size of the population, selec-
tion size, crossover ratio, mutation ratio, maximum iteration.
More information can be found at Gerber and Lin (2013).

In the original Beagle, there is a deterministic algorithm
for generating the initial population: the range of a param-
eter is uniformly divided among all offsprings. For exam-
ple, if a parameter is an integer varying from 1 to 10 and
the initial population size is 10, the first offspring will have
value 1 for that parameter, the second value 2 and so on.
In this work we modified the system, as the initial popula-
tion would always be the same across different runs with
the same initial population size. We randomized the initial
population procedure: we keep the uniform division of the
parameter range, but randomly decide which offspring will
receive which value. We perform this modification in order
to make the runs more randomized, avoiding that agents end
up picking solutions sets that are too similar. The crossover
and mutation also occurs probabilistically in the system.

Aggregating Opinions
We model each GA as an agent, that given a parametric de-
sign outputs its opinion (“optimal” solutions, according to
its internal evaluation) about how the final design should be.
We, then, aggregate the opinions of a team of agents. Since
we are solving a multi-objective optimization problem, each
agent has multiple optimal solutions. Therefore, we choose
a limited number of them from each agent, and aggregate
across all the combinations, generating a set of solutions for
the team. Note that one combination includes only one solu-
tion from each agent, but different combinations will select
different solutions from each agent.

Formally, let Φ be a set of agents φi, and Ω a set of pa-
rameters ωj . Each ωj has an associated set of possible values
Aj. Each agent φi is going to output a set Si of solutions Si

k,
where a solution assigns a value aij for each parameter ωj .

Agent PZ SZ CR MR
Agent 1 12 10 0.8 0.1
Agent 2 18 8 0.6 0.2
Agent 3 24 16 0.55 0.15
Agent 4 30 20 0.4 0.25

Table 1: GA parameters for the diverse team. Initial Popula-
tion and Maximum Iteration were kept as constants: 10 and
5, respectively. PZ = Population Size, SZ = Selection Size,
CR = Crossover Ratio, MR = Mutation Ratio.

The solutions in Si are optimal (1st ranked, in a pareto rank-
ing approach) according to the agent’s internal evaluation,
but they are not necessarily true optimal solutions.

Hence, given a fixed Si
k for each agent φi, we can aggre-

gate all aij , creating a new solution of the team ST
k . In this

paper we study three different aggregation methods: mean:
for each ωj , calculates the mean across all aij ; median: for
each ωj , calculates the median across all aij ; vote: for each
ωj , assigns the value aj that appears the most often among
all aij (ties are broken randomly). We consider values that
are the same up to 3 decimal places as equal.

In order to obtain the solutions Si
k, we consider a subset

S′i ⊂ Si containing only n solutions for each agent φi. We
can then select one solution Si

k from each S′i, and aggregate
those to create one solution ST

k . By repeating this process
through all the possible combinations of one solution from
each S′i, we create a set of team solutions ST.

The system allows each agent to be initialized with differ-
ent options, which affects the agent behavior. Hence, we can
select different options for each φi, or set the same options
for all φi. The first approach will generate a diverse team,
and the second a uniform team. Note that the agents of the
uniform team will not necessarily output the same set of so-
lutions, since the search is stochastic and they are initialized
with different random seeds.

Experiments
We run experiments across the different parametric designs
shown in Figure 1. These are designs with increasing com-
plexity. More details about the designs and the meanings of
each parameter are available in Gerber and Lin (2013). We
create 4 different agents, using the options in Table 1.

In this work we are dealing with real (and consequently
complex) design problems. Hence, for these parametric de-
signs the true set of optimal solutions are not known in ad-
vance. Therefore, we approach the problem in a compara-
tive fashion: when evaluating different systems, we consider
the union of the set of solutions of all of them. That is, if
each system x has a set of solutions Hx, we consider the
set H =

⋃
x Hx. We, then, compare all solutions in H, and

consider as optimal the best solutions in H, forming the set
of optimal solutions O. We use here the concept of pareto
dominance. That is, the best solutions inH are the ones that
dominates all other solutions (i.e., they are better in all 3
factors). As we know which system generated each solution
o ∈ O, we are able to estimate the number of unique optimal
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Figure 2: Percentage of unique optimal solutions found by
each system

solutions of each system under evaluation.
We first compare all solutions of all agents (i.e., construct

theH set as the union of the solutions of all agents), in order
to estimate which one has the largest set of optimal solu-
tions. We then run again that agent multiple times, creating
the uniform team. Next, we aggregate the solutions of the
diverse and the uniform team. We use n = 3, that is, we use
three solutions from each agent.

We evaluate together all the solutions of the agents and the
teams (i.e., we construct the H set with the solutions of all
systems), in order to estimate the number of unique optimal
solutions of each system. Since the true optimal solutions
set is unknown, we first plot in Figure 2 (a) the percentage
of unique solutions found by each system in relation to the
total number of unique optimal solutions found inH (|O|).

In all parametric designs the diverse team is able to find
a larger percentage of optimal solutions than the individual
agents. In general, the agents find less than 5% of the so-
lutions (with a few exceptions that go slightly above 5%),
while the diverse team is always close to or above 15%. Note
that, in total (considering all aggregation methods), for base
the agents are able to find only 13% of the optimal solutions,
while uniform finds 37% and diverse 49%. For office park,
the agents find merely 0.8%, while uniform find 51%, and
diverse 47%. Finally, for contemporary, the agents find only
5%, while diverse finds 93% and uniform 1% of the optimal
solutions. As we can see, diverse is able to find a larger per-
centage of solutions than uniform in the contemporary and
in the base design. We are currently analyzing why the uni-
form team has such a low performance for contemporary.

In Figure 2 (b), we show the percentage of optimal solu-
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Figure 3: Additional analysis.

tions, in relation to the size of the set of evaluated solutions
of each system. That is, let Ox be the set of optimal solu-
tions of system x, in O. We show in the figure the value
|Ox|
|Hx| . Concerning vote, for example, the teams are able to
find a new optimal solution around 20% of the time for base,
around 73% of the time for office park and around 25% of
the time for contemporary (considering the diverse team).
Meanwhile, for the individual agents the number is close to
0% (except for agent 3 and 4 in base, that have around 7%).

One of the advantages of our approach is that it allows the
designer to eliminate solutions that are falsely reported to be
optimal by the individual agents. Hence, in Figure 3 (a) we
show the percentage of solutions that were reported to be op-
timal by each individual agent, but were later discovered to
be suboptimal by evaluating the set with all solutionsH. We
can see that a large amount of solutions are eliminated (in
some cases close to 100% of the reported solutions), helping
the designer to avoid making a poor decision, and increas-
ing her confidence that the set of optimal solutions found
represent well the “true” pareto frontier.

Moreover, we test for duplicated solutions across different
aggregation methods, different teams and different agents.
We find that there are no duplicates in all parametric designs.
Hence, we obtain a high coverage of the pareto frontier. We
show the total number of unique optimal solutions in Figure
3 (b).

Finally, in order to better study the solutions proposed by
the agents and teams, we show all the optimal solutions in
the factors space in the online appendix (at http://teamcore.
usc.edu/people/sorianom/wcs15-ap.pdf), where we show
that the solutions give a good coverage of the pareto fron-
tier.

Conclusion
We showed the potential of aggregating the opinions of a
team for architectural building design. That is a very impor-
tant application in the current scenario, since the designs are
optimized according to energy performance (among other
factors). Our approach provides a significantly larger per-
centage of optimal solutions than the current state of the art,
enabling the designer to make a better decision according
to her subjective evaluation. Moreover, we eliminate falsely
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reported optimal solutions by single agents, increasing the
designer confidence in finding the true pareto frontier.
Acknowledgments: This research is supported by MURI
grant W911NF-11-1-0332, and the National Science Foun-
dation under grant 1231001.
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