
Automatic Parameterization of Automation
Software for Plug-and-Produce

Jens Otto 1 and Oliver Niggemann1,2

1Fraunhofer IOSB-INA, 32657 Lemgo, Germany
email: {jens.otto, oliver.niggemann}@iosb-ina.fraunhofer.de

2inIT-Institut Industrial IT, University of Applied Sciences, 32657 Lemgo, Germany
email: oliver.niggemann@hs-owl.de

Abstract

Cyber-Physical Production Systems’ (CPPSs) main feature
is adaptability, i.e. they can adapt quickly to new produc-
tion goals such as new products or product variants. Today,
the bottleneck of such approaches is the automation system,
which still requires high manual engineering efforts for every
adaptation step. Many recent solutions for a more adaptable
automation software have focused on the automatic orches-
tration of software systems: for a new product and produc-
tion configuration, a software solutions is created by putting
together reusable software components. But such solutions
come with a price: reusable software components must be,
by definition, applicable to wide range of configurations. For
this, software components come with free parameters that
must be set according to the current configuration. Typically,
the main problem is not the orchestration of software compo-
nents but their correct parameterization.
This paper presents, to the best of our knowledge for the first
time, a solution to the parameterization problem of adaptable,
CPPS-enable software systems. Due to the nature of CPPSs,
no direct computation of parameters is possible. Instead, an
iteration-based approach using a model of both the plant and
the automation system is needed. An example from process
industry illustrates the ideas.

Introduction
Cyber-Physical Systems (CPS) combine computation with
physical processes (Lee 2008). A subset of CPS are Cyber-
physical Production Systems (CPPS) whose main feature is
adaptability, i.e. the system automatically adapts to new pro-
duction goals such as new products or product variants (Zim-
mermann et al. 2008; Reinhart et al. 2010). But while the
plants are becoming more and more modular and adaptable,
the automation software is still changed manually. There-
fore, the research question is how the next generation of au-
tomation software can fulfill the promise of adaptability and
plug-and-produce.

Classical vs. CPPS-enabled Automation Software
Development
Classical automation has a long established development
process: as shown in figure 1, normally informal descrip-
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tions –often provided verbally– of the product and the pro-
duction process are the starting point. The automation en-
gineer then uses automation software engineering tools to
write software for the controllers, often separately for each
controller. This software is written using classical procedu-
ral languages such as IEC 61131-3.
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Figure 1: Classical Automation Development Process.

CPPS-enabled automation software development works
differently: the automation engineer no longer writes the au-
tomation software manually, but solely defines the automa-
tion goal (product, process), with the result that the engi-
neering no longer defines the "how" but the "what". Pro-
duction goals are product features, costs, throughput or the
energy consumption. As, in contrast to the classical au-
tomation, these automation goals usually remain unchanged
during system modifications (e.g. replacement of a system
module), the automation engineer is no longer continually
involved. Moreover, it is easier to define the automation goal
(e.g. in the form of a description of the final product) than
the complete automation logic (i.e. the software). This re-
sults in a reduction of the complexity as perceived by the
automation engineer.

As a prerequisite for such adaptability, a transparent com-
munication connection between the production modules and
their respective controllers has to be established, which is
done in the communication layer. This includes tasks such
as physically connecting the hardware and software mod-
ules and specifying communication protocols. For this,
approaches for auto-configuration (Reinhart et al. 2010;
Dürkop et al. 2013) and middleware solutions (Cannata,
Gerosa, and Taisch 2008; Deugd et al. 2006; Zoitl et al.
2007; Schleipen 2008) are researched. For this paper, we
presume that the automation platform and the communica-
tion layer provide these features and therefore support adapt-
ability.

Figure 2 now outlines the main steps of a CPPS-enabled
automation software development: First, a production pro-
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Figure 2: CPPS Automation Development Process.

cess is computed, which transforms the provided raw mate-
rials into the required product. In the second step, a software
architecture is generated that automates this process. In the
last step, the software is parameterized. In the following
these steps are explained in detail.

Step 1: Computation of a production process
Ultimately, the final goal of all activities is the product.
Manufacturing engineering, automation and mechanical en-
gineering are all only means to this end. So as a vision,
CPPS-enabled automation should start from one single set of
requirements: product and raw material descriptions. Plan-
ning and scheduling methods are then used to generate a
suitable production process (Anis, Schaefer, and Niggemann
2014; Bannat et al. 2011; Loskyll et al. 2011), these solu-
tions use the product and raw material descriptions and also
descriptions of production ressources (robots, transportation
systems, reactors, etc.) and compute an optimal sequence of
production steps, i.e. the production process.

The reader may note that such a planning step requires
that production steps can still be rearranged. Since the plant,
from a mechanical point of view, is usually already installed
at the time of automation software creation, a corresponding
dynamic plant layout is required—a prerequisite seldom true
in real-world production.

Step 2: Orchestration of a software architecture
Many research projects take such a production process as an
input and compute a suitable software architecture (Loskyll
et al. 2011; Pfrommer, Schleipen, and Beyerer 2013). Nor-
mally, this is done by combining pre-defined software com-
ponents (Witsch and Vogel-Heuser 2009; Papakonstantinou,
Sierla, and Koskinen 2011) whereat software components
usually correspond to production modules. This step is
called software orchestration.

If software orchestration is used, the process description
has to be some-how related to the description of the software
components. In most projects, this is done by creating two
taxonomies of process steps and of software components–
often formally modeled as ontologies. Elements of both tax-
onomies are then mapped onto each other, allowing for an
automatic choice of software components for process steps.
E.g. a production step “transportation” is mapped onto a
software component “transporting”.

The reader may note that the behavior of software compo-
nents and process steps are modeled as symbols/ontologies
only and no dynamic system features are therefore captured,
i.e. it is an open research question whether this type of mod-
eling is sufficient for real-world production plants.

Only few projects try to generate the software from the
scratch instead of using pre-defined software components
(Henning et al. 2014; Otto, Henning, and Niggemann 2014).

Step 3: Parameterization of a software architecture
The usage of software components in step 2 comes with
a price: the automation software must be abstracted into
reusable and capsulated software components. While in
classical automation, software is written for each produc-
tion scenario individually, such software components must
be now applicable to a large set of scenarios. This is only
possible if software components can be adapted to individ-
ual scenarios by means of free parameters in the software.
Examples for parameters are machine timing, controller pa-
rameters such as PID, physical dimensions of products, sen-
sitivity of diagnosis functions, etc.

So the usage of software orchestration and of software
components raises a new key research question: How can we
choose automatically optimal parameters of the automation
software for a specific production scenario? This paper tries
to give one possible answer.

Software Parametrization
As outlined before, software parametrization is a key re-
search question for CPPS-enabled automation. In general,
two types of software parametrization approaches can be dif-
ferentiated: Figure 3 shows the first type: Based on product
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Figure 3: Rule-based Software Parameterization.

and process features, the software can be parameterized by
means of simple rules. An example is a robot that is adapted
to physical dimensions of the product or a filling station that
chooses the amount of liquid according to bottle sizes. One
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might notice that this approach only works (i) if the produc-
tion machine can be adapted locally and local parameters do
not influence other parts of the production line and (ii) if the
rules are rather straightforward and simple.

If the rule-based approach does not work, an iterative ap-
proach as shown in figure 4 must be used: In an optimiza-
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Figure 4: Iteration-based Software Parameterization.

tion loop, sets of parameters are analyzed virtually using a
model of both the plant and the automation system. If a good
set of parameters is identified virtually, this parameter set is
used for the real world plant.

Unlike the rule-based approach, this approach allows for
a system-wide optimization of parameters. This approach is
therefore used in this paper.

Smart Products and Agents
In this context, the approach of smart products must be men-
tioned (Loskyll et al. 2011; Abramovici and Stark 2013):
Smart products store product IDs, product information and
process information on the product itself—e.g. in form of
an RFID chip. Often the smart product contains software
parameters such as physical dimensions, i.e. it supports the
rule-based parameterization described above. In other cases,
it contains a product-specific production process, this re-
quires a dynamic plant layout as described in step 1 of figure
2.

Agent-based automation software (Ulewicz, Schutz, and
Vogel-Heuser 2012; Urbas et al. 2011) is another way to
solve the software parameterization challenge. This ap-
proach also uses distributed software components–called
agents–but the parameter optimization is done online within
the agents.

Solution Approach
In this section, our approach for an iteration-based software
parameterization is introduced.

The iteration-based software parameterization requires a
model to simulate the plant. More precisely, the simulation

model must be able to simulate the physical behavior and the
automation software. This simulation model allows the eval-
uation of parameter configurations virtually. Furthermore, a
measure rating the result of an evaluation and a method to
find a better parameter configuration is defined.

In the following section, a formal problem definition is
given, the used simulation model for evaluation of parame-
ter configuration is explained and the method to find better
parameter configurations is introduced.

Problem Definition
An automation software A has a set P of parameters, where
P is defined as P = {p1, . . . , pi, . . . , pk}. These param-
eters adapt the orchestrated software components to a spe-
cific production scenario. An element pi of P is a tuple
pi = (vi, ri), where vi is the parameter’s name and ri =
(vmin, vmax) is the range of the possible values for vi. Ex-
amples for parameters are machine timing, controller param-
eters such as PID, physical dimensions of products, sensitiv-
ity of diagnosis functions, etc. For an instance of the soft-
ware, a parameter configuration θ = {θ1, . . . , θi. . . . , θk}
where θi ∈ ri is the value of the parameter pi. We denote ri
by range(pi). The overall set of possible parameter config-
urations is defined as Θ = r1 × . . .× ri × . . . rk.

The problem can be defined as follows:
Find a good parameter configuration θ in the parameter
configuration space Θ for an automation software A using
a simulation modelM.

Next, the measure for a good parameter configuration is
defined. Our hypothesis is that a plant operates optimal in a
specific production scenario, if the production output rate is
high, without using more energy as needed. This means that
a good parameter configuration θ for an automation software
A results in a high production output rate and an optimal
energy consumption. So, the objective function is defined
as:

min
θ∈Θ

f(θ), f(θ) =
e(θ)

o(θ)
, o : Θ→ R, e : Θ→ R (1)

where e(θ) ∈ R is the value of consumed energy and o(θ) ∈
R is the production output rate in a specific time window
twindow. For example, f defines how many bottles can be
filled in 10 minutes and how much energy is needed for this.
Both e(θ) and o(θ) are computed by analyzing the parameter
set θ with the system modelM.

Simulation Model
The simulation model is formally defined as a hybrid au-
tomata, more precisely a hybrid timed automata. Hybrid
automata describes both discrete and continuous dynamics
(Alur et al. 1995). In (Niggemann et al. 2012), hybrid timed
automata are identified as a crucial class of models for tech-
nical systems, such as production plants. It also introduces
an algorithm called HyBUTLA, which can be used to learn
a hybrid timed automaton automatically from observations.
Furthermore, a compositional interchange format for hybrid
systems exists, which allows the development of tools to de-
scribe production plants manually (van Beek et al. 2008).
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In the automation domain, the time behavior and the
energy consumption of the plant are relevant information.
Mostly, they are the only measurable behavior, for example
a water tank has only binary sensors to measure the filling
level. The continuous behavior is hidden. So, our defini-
tion of a hybrid timed automaton has a function that returns
the relative time and the used energy consumption for each
transition (see definition 1).

Definition 1 A hybrid timed automaton is a tuple A =
(Σ, S, s0, F, δ, T ), where

• Σ is the alphabet,
• S is a set of states,
• s0 ∈ S is the initial state,
• F ⊆ S is the set of final states,
• δ : S × Σ→ S is the state-transition function, and
• T is a set of functions f : p → (t, e) that returns the

relative time and energy consumption e of a transition,
given the parameter p.

For a better understanding, the simulation is encapsulated
as a mathematical function: m(θ, twindow). The parameters
of m are the parameter configuration θ and a time window
twindow. The time window describes that how long should
the simulation runs. The return value of m is the optimiza-
tion criteria f , which is defined above.

Parameter configuration
The exploration of the parameter configuration space Θ is
separated into the following two algorithms:

Algorithm 1 samples n ∈ N initial parameter configura-
tions I and evaluates each parameter configuration with the
simulation, i.e. with function m(θ, twindow). The value of
twindow is use case specific. The function uniform denotes
a uniform sampling.

Algorithm 1: creates initial parameter configurations
Input: Set of parameters P , n number of initial

parameter configurations, twindow the time
window of the simulation

Output: a set I ⊆ Θ of parameter configurations
1 I ← ∅
2 for i← 1...n do
3 θ ← ∅
4 foreach p ∈ P do
5 r ← range(p)
6 θ ← θ ∪ uniform(r)

7 v ← m(θ, twindow)
8 I ← I ∪ (θ, v)

9 return I

Algorithm 2 tries to find a good parameter configuration.
The set I of initial parameter configurations is assigned to
set H (line 1). The set H is used for a function approxima-
tion of the objective function (line 3). An optimization al-
gorithm tries to find a good parameter configuration θ′ (line

4). The expected parameter configuration θ′ is evaluated by
the simulation model (line 5). The set H of all evaluated
parameter configurations is extended by θ′ (line 6). The ter-
mination criterion is defined by the algorithm parameter k.

For the optimize procedure, the basin-hopping algorithm
is used (Wales and Doye 1997). The basin-hopping al-
gorithm finds the global minimum of a function and is
an efficient method for a wide variety of problems. The
approximate procedure is a Nearest-neighbour interpola-
tion in N dimensions.

Algorithm 2: explores Θ

Input: Set I of initial parameter configurations, k the
number of iterations, twindow the time window
of the simulation, approximate : H → v′,
optimize : f → minf , min : H → θopt

Output: θopt
1 H ← I
2 for i← 1...k do
3 f ← approximate(H)
4 θ′ ← optimize(f)
5 v ← m(θ′, twindow)
6 H ← H ∪ (θ′, v)

7 return min(H)

Results
In this section, a case study and our experimental results are
presented. The case study shows how to create a simulation
model with a real world scenario. The experimental results
illustrate the gain of the algorithm in general by evaluating
a standard test functions for optimization.

Case Study
The filling process, which is shown in figure 5, is used to
show the creation of a simulation model with a real world
scenario. The goal of this filling process is to fill water
into bottles. The water must be heated to 70 degree Cel-
sius to kill the bacteria before it can be filled. The filling
process is realised by three technical resource: t1: heater,
t2: filler and t3: transporter. It consists of four actuators (a1

– a4) and four sensors (s1 – s4), which are connected by
three IO-devices to a central programmable logic controller
(PLC). The actuator a1 is a heating element, s1 measures
the temperature of the water, whereby a2 and a3 are pro-
portioning valves, s2 and s3 are filling level sensors and a4

is a transporter with a light barrier s4. The used field bus
is PROFINET. The three technical resources can be substi-
tuted with other modules with the same or similar capabili-
ties. The modular structure enables a simple modification of
the system representing the general plug-and-produce idea.

The automation software has the following parameters:
p1 sets the electrical energy for heating element a1, p2 sets
the valve opening a2, p3 sets the valve opening a3 and p4 set
the speed of the transport a4. For simplification, all ranges
are normalized.
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Figure 5: Filling process.

The hybrid timed automaton (shown in figure 6) of the
filling process has four states. It starts with an enabled heat-
ing element a1. If the specific temperature (c1 = 70) is
reached, the heating element is disabled and the first propor-
tioning valve a2 opens. If sensor s2 is enabled (c2 = 1), the
proportioning valve a2 is closed and proportioning value a3

opens. If sensor s3 is enabled (c3 = 1), proportioning value
a3 is closed and the transport a4 is activated. If sensor s4 is
enabled (c4 = 1), the transport is deactivated. The process
starts all over again.

1 2 3 4
s1 >= c1

a1=0; a2=1;
t1(p1)

s2 == c2

a2=0; a3=1
t2(p2)

s3 == c3

a3=0; a4=1
t3(p3)

s4 == c4

a4=0; a1=1;
t4(p4)

Figure 6: Hybrid timed automaton of the filling process.

Experimental Results
For the experimental results, the two dimensional rastrigin
function is used. So, the set of parameters P has the ele-
ments p1 and p2. The range for p1 and p2 is set to [−5...5].

Figure 7 shows the rastrigin function on the left side and
the contour of the rastrigin function on the right side. The
global minimum at [0, 0] is marked with a dot and is evalu-
ated by the basin-hopping algorithm.

(a) Function (b) Contour

Figure 7: Two dimensional rastrigin function.

Figure 8 shows the approximated rastrigin function and
the surface after algorithm 1 with n = 10000 initial param-
eter configuration.

(a) Function (b) Contour

Figure 8: Approximated rastrigin function after algorithm 1.

Figure 9 shows the approximated rastrigin function and
the contour. The evaluated values are marked with dots. The
algorithm 2 found an optimum function value v = 0.08445
at p1 = 0.02023 and p2 = 0.00412 after k = 100 iterations.

(a) Function (b) Contour

Figure 9: Approximated rastrigin function after algorithm 2.

Summary and Future Work
This paper presents a new approach towards more adapt-
able automation software for CPPSs. For such software, the
question of finding optimal parameters for the software com-
ponents is a key challenge. As a solution, a new iteration-
based algorithm using a model of both the plant and the au-
tomation system is given. Our approach finds a suitable pa-
rameter configuration. The simulation model for evaluating
the parameters is formalized as a timed hybrid automaton
and a case study from a real world scenario is used to illus-
trate the solution approach.

Future steps will be the refinement of the algorithms and
the application to other more complex use cases, for example
to the Lemgo Smart Factory. Such further applications will
allow for a optimized choice of optimization methods and
for an evaluation of the used model formalism.
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